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The sound quality of transmission system noise significantly impacts user experience. This study aims to
predict the sound quality of dual-phase Hy-Vo chain transmission system noise using a small sample size. Noise
acquisition tests are conducted under various working conditions, followed by subjective evaluations using the
equal interval direct one-dimensional method. Objective evaluations are performed using the Mel-frequency
cepstral coefficient (MFCC). To understand the impact of the MFCC order and the frame number on predic-
tion accuracy, MFCC feature maps of different specifications are analyzed. The dataset is expanded threefold
using fuzzy generation with an appropriate membership degree. The convolutional neural network (CNN) is
developed, utilizing MFCC feature maps as inputs and evaluation scores as outputs. Results indicate a pos-
itive correlation between the frame number and prediction accuracy, whereas higher MFCC orders introduce
redundancy, reducing accuracy. The proposed CNN method outperforms three traditional machine learning
approaches, demonstrating superior accuracy and resistance to overfitting.
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1. Introduction

The silent chain transmission system is widely used
in automobiles, motorcycles, and forklifts because of
its low noise, high reliability, and high motion accu-
racy. As an advanced product of the silent chain, the
Hy-Vo chain transmission system reduces the polygon
effect because of the rocker pin. Based on the principle
of bidirectional superposition, the dual-phase Hy-Vo
chain transmission system can further reduce the poly-
gon effect, vibration, and noise. In previous studies,
researchers mainly focused on the design of the dual-
phase Hy-Vo chain transmission system, with empha-
sis on the coupling effect between size parameters and
the polygon effect (Cheng et al., 2015; 2016a; 2016b;
2023). So far, the noise related research of the dual-
phase Hy-Vo chain transmission system has not been
involved.

A lot of studies have shown that noise can seri-
ously harm people’s mental and physical health (Bas-
ner et al., 2014; Dratva et al., 2012). Therefore, con-

sumers are also paying more attention to the use expe-
rience of low noise. Recently, there have been more and
more researches on the sound quality in various fields
(Song, Yang, 2022; Ruan et al., 2022; Park et al.,
2020). In common sound quality prediction methods,
acoustic parameters such as A-weighted sound pressure
level (A-SPL), loudness, sharpness, roughness, fluctu-
ation, and articulation index (AI) are used as inputs
(Wang et al., 2022; Chen et al., 2022). Wang et al.
(2022) proposed a nonlinear sound quality modeling
method that uses an extreme gradient boosting algo-
rithm to predict the overall sound quality inside a pure
electric car. Chen et al. (2022) used the backpropa-
gation neural network and support vector regression
(SVR) to predict the sound quality of tractors, and
used a genetic algorithm to optimize the parameters
of the prediction models. To predict the sound qual-
ity using the convolutional neural network (CNN), the
researchers introduced various feature maps as inputs
(Huang et al., 2021; Jin et al., 2021). Huang et al.
(2021) converted the objective parameter evaluation
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into feature graphs and proposed a prediction method
with an adaptive learning rate tree based on CNN.
Jin et al. (2021) demonstrated that MFCC can dis-
tinguish noise of different sound qualities and used
MFCC feature maps as inputs to predict the trans-
mission sound quality. In the above studies on sound
quality prediction, neural networks are widely used be-
cause of their strong ability to adjust to nonlinearity.
However, when the number of samples is insufficient,
the accuracy of a prediction model will be poor.

To predict the sound quality in the case of small
samples, we have the following studies in this paper:
firstly, we collected the noise of the dual-phase Hy-Vo
chain transmission system under different working con-
ditions. Random 5 s clips are taken from each noisy
audio for subsequent processing. Based on the equal
interval direct one-dimensional evaluation method, all
noise samples are subjectively evaluated by the testers.
Secondly, we calculate the MFCC for each sample. The
standard MFCC only reflects the static characteristics
of the noise, and the dynamic characteristics can be
described by the difference of these static character-
istics. To further study the influence of MFCC order
and frame number on the prediction effect, we con-
struct MFCC feature maps of different sizes as inputs
of the prediction model. Thirdly, we propose a data
enhancement method called fuzzy generation based
on the fuzzy phenomenon in the subjective evalua-
tion. By constructing the membership function of each
noise sample, the appropriate membership degree is
selected for sample generation. After the dataset is ex-
panded, we build a CNN model for the sound quality
prediction, and the prediction results show that the
full-frame standard MFCC feature map has the best
prediction effect when the membership degree is 0.9.

Noise test
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Correlation test

Calculating MFCC

MFCC feature maps 
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Construct membership 
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Select membership 
degree

Random perturbation 
expands the dataset
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Fig. 1. Flow chart of sound quality prediction model construction.

The more frames, the more complete the information
contained in the MFCC, and the higher the predic-
tion accuracy. However, higher order MFCC contains
more redundant information, which will damage the
prediction accuracy of the model. Finally, three com-
mon sound quality prediction methods are used in this
paper, including the generalized regression neural net-
work (GRNN), SVR, and ridge regression (RR). For
each noise sample, we calculate six acoustic parameters
(A-SPL, loudness, sharpness, roughness, fluctuation,
and AI) as inputs. The comparative results show that
the proposed new method has the lowest prediction er-
ror and strong resistance to overfitting. The flow chart
of the sound quality research in this paper is shown
in Fig. 1 and the structure of this paper is as follows:
Sec. 2 involves the noise acquisition test and subjective
evaluation of the noise sample. After the samples are
preprocessed, we organize the testers to score the noise
annoyance degree and test the correlation of the sub-
jective evaluation results. In Sec. 3, the MFCC of all
noise samples is calculated as an objective evaluation.
After constructing the MFCC feature maps of differ-
ent dimensions, the original dataset for the sound qual-
ity prediction is obtained by combining the subjective
evaluation results. To train a more accurate prediction
model, we use fuzzy generation to triple the size of the
original dataset. In Sec. 4, we use MFCC feature maps
of different specifications as input for the sound quality
prediction and compare their prediction effects. After
obtaining the optimal prediction model based on CNN,
we compare it with the traditional sound quality pre-
diction method. The results show that the prediction
method proposed in this paper is more advantageous.
Lastly, Sec. 5 presents the study’s conclusion and sum-
mary.
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2. Noise test and subjective evaluation

Different from single-phase transmission, the dual-
phase sprocket teeth have phase difference. In our
noise test, the drive sprocket tooth number is 35 with
5.14○ phase difference, the driven sprocket tooth num-
ber is 37 with 4.86○ phase difference, the pitch is
9.525 mm, the number of links is 84 and the chain form
is 4× 3.

As shown in Fig. 2, the noise test is conducted in
an indoor reverberation environment. We use measure-
ment microphone (MINIDSP UMIK-1) to collect the
noise and the measurement microphone is positioned
at the same height as the center of the drive sprocket.
There are two measurement points we selected, the
first one is at the distance of 0.5 m from the center
of the drive sprocket, the second one is at the dis-
tance of 1 m from that. The minimum speed of the
test is 500 rpm and the maximum speed is 4000 rpm.
The test loads are 500 N, 600 N, and 750 N. Starting
from 500 rpm, noise data is collected under three loads
for each 500 rpm increase. There are two collection
points (0.5 m and 1 m from the center of the drive
sprocket), eight speeds (500 rpm, 1000 rpm, 1500 rpm,
2000 rpm, 2500 rpm, 3000 rpm, 3500 rpm, 4000 rpm),
and three loads (500 N, 600 N, 750 N), so 2× 8× 3 = 48
original noise samples can be obtained. The sampling
frequency is 48 000 Hz, and the noise data is recorded
using Adobe Audition 2022 software. All noise acquisi-
tion times are longer than 30 s, we randomly intercept
5 s segment for subsequent data processing. Under the
same working conditions, the time-domain waveform
of the single-phase and dual-phase transmissions are
shown in Fig. 3. The orange line on the left represents

a) Chain sample b) Noise test

c) Subjective evaluation test d) Audio acquisition and preprocessing

Fig. 2. Noise acquisition and data processing.

the dual-phase transmission, and the blue line on the
right represents the single-phase transmission.

As can be seen in Fig. 3, we can find that due to
the principle of dual-phase superposition, the wave-
form of the dual-phase transmission is more uniform
and denser at low speeds. When the speed is medium,
the waveforms of the two transmissions are very simi-
lar. However, when running at high speed, the noise en-
ergy of the dual-phase transmission is obviously greater
than that of the single-phase transmission. There-
fore, the noise of the dual-phase transmission is dif-
ferent from that of other transmissions, and it is of
great significance to study the sound quality predic-
tion method of the dual-phase Hy-Vo chain transmis-
sion system.

After obtaining 48 noise samples, we organize
twelve testers to conduct a subjective evaluation test.
All of the testers are between 20 and 30 years old, and
the ratio of men to women is 5:1. In addition, all testers
have normal hearing and driving experience. As shown
in Table 1, the subjective evaluation method is equal to
the interval direct one-dimensional evaluation method
(Guski, 1997). We rate the sound quality on a scale
of discomfort, and there are five uncomfortable lev-
els. A score of 0 is extremely uncomfortable level and
a score of 10 is not uncomfortable level. Each of the
remaining three uncomfortable levels has three scores,
each score indicating the degree of discomfort in the
same level. The subjective evaluation test is conducted
in a quiet indoor environment, and the maximum SPL
does not exceed 30 dB. The tester sits in a chair with
headphones, and all the noise samples are played three
times by Groove software. After listening, the tester
gives the score and records it in a table.
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Fig. 3. Time-domain waveform comparison:
a) 1000 rpm – 0.5 m – 1000 N; b) 2500 rpm – 0.5 m – 1000 N; c) 4000 rpm – 0.5 m – 1000 N.

Table 1. Subjective evaluation scoring table.

Uncomfortable
level

Extremely
uncomfortable

Very
uncomfortable

Moderately
uncomfortable

Little
uncomfortable

Not
uncomfortable

Scores 0 1–3 4–6 7–9 10
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Fig. 4. Score boxplot for each speed.

All scores of each speed are presented in Fig. 4.
Based on the horizontal line in the middle of the box-
plot, in the range of 500 rpm–2500 rpm, it can be seen
that the score decreases with the increase of the ro-
tational speed. In this speed range, the sound qual-
ity of the chain transmission system becomes worse
as the speed increases. The score of 3000 rpm remains
unchanged compared to the score of 2500 rpm. How-
ever, the score continues to decline at 3500 rpm. As
for the score of 4000 rpm, it is the same as the score of
3500 rpm. Therefore, in the case of medium and high
speed, the sound quality of the chain transmission sys-
tem shows a step-like decline trend. The length of box
reflects the dispersion of scores. We can see that the
scores are more dispersed at medium and high speeds,
and there are even outliers at 1000 rpm and 1500 rpm.
In the subjective evaluation test, we want all testers
to have relatively consistent feelings about the same
noise sample. The Spearman correlation analysis is
performed on the scores of twelve testers and the re-
sults with poor correlation will be excluded. In the
Spearman correlation analysis, the greater the coeffi-
cient R, the stronger the correlation. The equation of
correlation coefficient (R) is:

Table 2. ACC of each tester.

Tester P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
ACC 0.850 0.842 0.846 0.866 0.800 0.813 0.817 0.893 0.796 0.835 0.854 0.882

Table 3. Average score of each noise sample.

Sample 1 2 3 4 5 6 7 ... 42 43 44 45 46 47 48
Score 8.75 8.58 8.33 9.08 8.75 8.67 7.08 ... 5.25 3.00 2.33 1.92 5.50 4.67 4.17

R =

n

∑
i=1

(xi − x)(yi − y)

¿
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2

¿
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2

, (1)

where xi and yi represent the corresponding elements
of the two variables, x and y represent the average
value of the corresponding variables.

Based on Eq. (1), the R between the twelve testers
are calculated, as illustrated in Fig. 5. The numbers
from P1 to P12 represent the twelve testers, and it
can be seen that P3–P6, P3–P11, and P6–P11 have
a maximum correlation of 0.96. The correlation be-
tween P5–P6 and P6–P9 are both less than 0.7, indi-
cating a weak correlation. According to Fig. 5, we cal-
culate the average correlation coefficient (ACC) for
each tester, as shown in Table 2.

In Table 2, all testers have an ACC of more than
0.7, indicating that the scores of each tester is rea-
sonable. Generally speaking, the average score of the
twelve testers is used as the final score of each noise
sample, as shown in Table 3.
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Fig. 5. Correlation heat map.

3. Objective evaluation and fuzzy generation

3.1. Construct Mel-frequency cepstral coefficient
feature map

The MFCC is a feature extraction method com-
monly used in speech processing and audio analysis.
It is based on the hearing characteristics of the hu-
man ear, by simulating the human ear’s ability to per-
ceive sounds of different frequencies, the sound signal is
converted into a set of coefficients describing its char-
acteristics. The advantage of MFCC is that they can
effectively capture the main features of speech signals
and have good adaptability for different speech pro-
cessing tasks. However, they also have limitations, such
as sensitivity to noise and possible degradation of per-
formance in some complex environments. Therefore, in
practical applications, MFCC is often used in combi-
nation with other types of feature and signal process-
ing technologies (Abdul, Al-Talabani, 2022; Moon-
dra, Chahal, 2023). The extraction process of MFCC
is as follows:
1) Preprocessing: the sound signal is pre-weighted to

increase the energy of the high frequency part:

y(t) = x(t) − αx(t − 1), (2)

where x(t) is the original signal, y(t) is the pre-
weighted signal, and α usually takes 0.95 or 0.97.

2) Framing: the segmentation of the sound signal into
a series of short-time frames, each frame usually
contains 20 ms–40 ms of data.

3) Windowing: the data of each frame is windowing
processed, usually using hamming windows:

y(n) = x(n) ⋅ ω(n), (3)

where x(n) is the signal in a frame, ω(n) is the
window function, and y(n) is the signal after
the window is added. The hamming window func-
tion is as follows:

ω(n) = (1 − a) − a ⋅ cos(2πn/N) 1 < n < N, (4)

where N is the number of sampling points, and
different values of a will produce different ham-
ming windows, in general, a = 0.46.

4) The Fourier transform: a fast Fourier transform
(FFT) is performed on each frame of data to con-
vert it into a signal in the frequency domain:

Y (k) =
N−1
∑
0

y(n) ⋅ e−j
2π
N kn, (5)

where Y (k) is the k-th component in the fre-
quency domain, and N is the number of FFT
points.
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5) Mel filtering: the frequency domain signal is
passed through a set of Mel filter banks to sim-
ulate the human ear’s perception of different fre-
quencies. Compared with the normal frequency
mechanism, the Mel value is closer to the hear-
ing mechanism of the human ear. It grows fast in
the low frequency range, but it grows slowly in the
high frequency range. Each frequency value cor-
responds to a Mel value, and the corresponding
relationship is as follows:

m = 2595 ⋅ log10 (1 +
f

700
). (6)

If we want to convert the Mel-frequency m to the
frequency f , we can get it by sorting the above
Eq. (6):

f = 700 ⋅ (10m/2595 − 1). (7)

The response Hm(k) of each filter is usually de-
fined as a triangular filter that is uniformly dis-
tributed on the Mel scale, and the output S(m)

is the signal energy that passes through the filter:

k=
(1+N) ⋅ fm

fs
, (8)

Hm(k)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k<f(m−1),

2(k−f(m−1))

a∗
f(m−1)≤k≤f(m),

2(f(m+1)−k)

a∗
f(m)≤k≤f(m + 1),

0 k ≥ f(m+1),

(9)

S(m)=
K−1
∑
k=0

∣Y (k)∣
2
⋅Hm(k), (10)

where

a∗ = (f(m + 1) − f(m − 1))(f(m) − f(m − 1)).
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Fig. 6. MFCC feature map: a) 311× 13; b) 311× 26; c) 311× 39.

6) Log the output of the Mel filter bank to obtain
the logarithmic energy spectrum:

L(m) = log(S(m)), (11)

where L(m) is the logarithmic energy spectrum.
7) Discrete cosine transforms: perform a discrete co-

sine transform (DCT) on the logarithmic energy
spectrum to obtain the MFCC coefficient:

C(n) =
M−1
∑
m=0

L(m) ⋅ cos [
π

M
(m + 0.5)n],

n = 1,2, ..., L, (12)

where C(n) is the n-th cepstral coefficient, M is
the number of Mel filters, and L refers to the
MFCC coefficient order, usually 12–16.

From Eq. (3) to Eq. (12), we can get the standard
MFCC, which only reflects the static properties of au-
dio. The dynamic characteristics of audio can be de-
scribed by the difference of these static characteristics,
as follows:

∆Ct =

N

∑
n=1

n(Ct+n −Ct−n)

2
N

∑
n=1

n2
, (13)

∆∆Ct =

N

∑
n=1

n(∆Ct+n −∆Ct−n)

2
N

∑
n=1

n2
. (14)

Equations (13) and (14) represent the first- and
second-order difference, respectfully. In this paper,
we take each frame as 32 ms, the noise sample is
divided into K frames and the MFCC of L order
is calculated. As shown in Fig. 6, we can obtain
K × L feature maps of different orders. The standard
full-frame MFCC feature map is 311× 13, 311× 26
with only first-order differences, and 311× 39 also with
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second-order differences. We also get the feature maps
of two frame numbers, 208× 13 and 104× 13, respec-
tively. Finally, we can get 5 input features of different
sizes.

3.2. Fuzzy generation

Fuzzy mathematics is a mathematical method to
deal with uncertain information. Compared with tra-
ditional binary logic and precise mathematics, it pays
more attention to the description and processing of
fuzzy and uncertain phenomena in the real world. The
core concept of fuzzy mathematics is a fuzzy set. Un-
like traditional sets, where the elements either belong
to or do not belong to the set, the degree to which an
element in a fuzzy set belongs to the set is a numer-
ical value between 0 and 1, called membership. This
makes fuzzy sets more flexible in describing uncer-
tainty and ambiguity in the real world. Membership
functions are used to describe the degree to which an
element belongs to a fuzzy set. The value of this func-
tion is between 0 and 1. The core strength of fuzzy
mathematics is that it provides an effective way to deal
with the uncertainty and ambiguity that are prevalent
in the real world. By introducing fuzzy concepts, it al-
lows for the more flexible and realistic problem solving
and decision-making process (Ruan, Li, 2021; Gün-
doğdu, Kahraman, 2019; Bustince et al., 2016).

In the previous subjective evaluation, there is
a fuzzy problem. Generally speaking, for the same
noise sample, researchers only calculate the average
score as the final subjective evaluation score. In fact,
the scores of all testers are reasonable after the corre-
lation test. Therefore, we believe that in the range of
minimum and maximum scores, the average score as
a label value is when the membership degree is 1, and
the fuzzy mapping is constructed as follows:

F ∶ V → [0, 1],

m↦ F (m),
(15)

where V is value field [0 10], F is the fuzzy interval
of V , and F (m) is the membership function.

For each noise sample, we can construct its fuzzy
interval and membership function. In Table 4, the aver-
age score is the core of the fuzzy interval, the minimum
score is the left boundary (LB), and the maximum score
is the right boundary (RB). We construct the mem-
bership function on the fuzzy interval and select the
appropriate membership degree to delimit the sample
generation interval. Then the label value is randomly
perturbed over the sample generation interval to
expand the dataset. The membership function is
defined as follows:

F (md) − 0

d − r
=

1 − 0

k − r
⇒ F (md) =

1

r − k
(r − d), (16)

Table 4. Fuzzy intervals.

Sample LB Core RB Sample LB Core RB
1 8 8.75 10 25 4 5.17 6
2 8 8.58 9 26 3 4.33 6
3 7 8.33 9 27 3 4.17 6
4 8 9.08 10 28 5 6.83 9
5 8 8.75 10 29 4 5.83 8
6 7 8.67 10 30 4 5.75 8
7 6 7.08 8 31 3 4.33 6
8 5 6.92 8 32 2 3.75 5
9 6 7.00 8 33 2 3.83 6

10 7 8.33 9 34 4 6.33 9
11 6 8.00 9 35 3 5.83 8
12 6 7.58 9 36 3 5.50 8
13 3 5.58 8 37 2 3.67 5
14 3 5.25 7 38 1 3.25 5
15 2 5.25 7 39 1 3.25 6
16 7 7.75 9 40 3 5.50 7
17 6 7.17 8 41 3 5.25 7
18 6 6.83 8 42 3 5.25 7
19 4 5.50 7 43 1 3.00 5
20 3 5.08 7 44 0 2.33 5
21 2 4.83 7 45 0 1.92 5
22 6 7.25 8 46 3 5.50 8
23 6 6.83 8 47 2 4.67 8
24 5 6.50 7 48 1 4.17 7

F (md) − 0

d − l
=

1 − 0

k − l
⇒ F (md) =

1

k − l
(d − l), (17)

F (md) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (0 ≤ d < l),

1

k − l
(d − l) (l ≤ d < k),

1

r − k
(r − d) (k ≤ d ≤ r),

0 (r < d ≤ 10),

(18)

where k is the core point, l is the LB point, r is the
RB point, d is a random generation point, and F (md)

is the membership of d.
As can be seen in Fig. 7, the farther away from

the core point, the smaller the membership degree.
For different samples, the span of their membership
function is usually different. Under the same member-
ship degree, the larger the span, the larger the sam-
ple generation interval. In the generation interval, the
sample label values are randomly perturbed to ex-
pand the dataset. However, the larger the interval, the
more noise the new sample points contain. In this pa-
per, we choose four membership degrees of 0.3, 0.5,
0.7, and 0.9 for fuzzy generation. The dataset is ex-
panded to three times its original size, including 144
samples.
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Fig. 8. Histogram comparison of original dataset and new datasets.

Figure 8 shows the histogram comparison between
the original dataset and the expanded new dataset.
The histogram of the original dataset shows a relatively
symmetric unimodal distribution with a mean of 5.84
and a standard deviation of 1.82. The new dataset1
is very similar in shape to the original dataset, with
the mean remaining at 5.84 and the standard devia-
tion slightly reduced to 1.81. The new dataset2 has
a slightly changed distribution shape, with a mean of
5.83 and a standard deviation of 1.85, slightly increas-
ing the variability. The distribution shape of the new
dataset3 has a significant change, with the mean of 5.82
and the standard deviation increasing to 1.94, indicat-
ing a further increase in variability. The new dataset4
has the most significant change in distribution shape,
with a mean of 5.81 and a standard deviation of 2.08,
indicating the greatest variability. As the membership
value decreases, the standard deviation of the new
dataset gradually increases, indicating that the pertur-
bation introduces more variability. The mean remains
essentially unchanged, indicating that the new dataset
is still centered around the mean of the original data.
By analyzing Fig. 8, we can conclude that higher mem-
bership values (such as 0.9 and 0.7) retain the main fea-
tures of the original dataset and increase the number of
datasets while maintaining low variability. Lower mem-

bership values (such as 0.5 and 0.3) introduce more
variability and outliers, and may introduce more noise
despite increasing the diversity of the dataset.

4. Modeling and prediction

4.1. Convolutional neural network

The CNN is a kind of deep learning model that
has achieved great success in image recognition, video
analysis, natural language processing and other fields.
CNN is particularly suited for working with data with
a grid structure, such as images and time series data.
The core idea of CNN is to use convolutional lay-
ers to automatically learn features of spatial hierar-
chy from data. These features are gradually abstracted
and combined through multiple convolution layers and
subsampling layers (usually pooling layers) to accom-
plish complex tasks. The advantage of CNN is its abil-
ity to automatically learn and extract features with-
out the need for manual feature engineering (Bhatt
et al., 2021; Goumiri et al., 2023; Mandouh et al.,
2023). CNN is generally used to solve the classification
problem. To predict the sound quality, we set the out-
put layer to have only one node, and do not use nonlin-
ear activation function, so that the output is a linear
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Fig. 9. Model structure.

transformation of the inputs, which can get a continu-
ous value.

As shown in Fig. 9, the model structure consists
of four convolution layers, two pooling layers, a flat-
ten layer and three fully connected layers. In addi-
tion to the output layer, the activation function of the
other layers is a rectified linear unit (ReLU). The pool-
ing layer adopts the maximum pooling, the step size
is 2 with 0 padding. The convolution layer has a step
size of 1 without 0 padding. The numbers of neurons in
the three fully connected layers are 1024, 128, and 1, re-
spectively. Using dropout technology in the first fully
connected layer, proceeds with the dropout rate set
to 0.5. The last layer is the output layer, which outputs
the evaluation score. Taking the input feature map
MFCC311×13 as an example, the model structure pa-
rameters are shown in Table 5.

Table 5. Structural parameters.

Layer type Channels/Units
Input 311× 13 3

3× 3 Conv1 ReLU, stride 1 6
3× 3 Conv2 ReLU, stride 1 12

2× 2 Maxpooling1 ReLU, stride 2 12
3× 3 Conv3 ReLU, stride 1 24
3× 3 Conv4 ReLU, stride 1 48

2× 2 Maxpooling2 ReLU, stride 2 48
Flatten 3600

Fully connected (1) 1024
Dropout 1024

Fully connected (2) 128
Fully connected (3) 1

The MFCC feature map is taken as input, the eval-
uation score is taken as output, and the ratio of train-
ing set to test set is 5:1. Using the Adam optimizer,
the initial learning rate is 0.001, a root mean squared

error (RMSE) is the loss function, and the epoch is set
to 200. With 5 input feature maps and 4 membership
degrees, the average of 5 training results is taken, and
the model is trained 5× 4× 5 = 100 times in total. In
model training, we choose the R, the RMSE, and the
mean absolute error (MAE) as evaluation indexes, and
the calculation formula is as follows:

R =

n

∑
i=1

(xi − x)(yi − y)

√
n

∑
i=1

(xi − x)2
√

n

∑
i=1

(yi − y)2
, (19)

RMSE =

¿
Á
ÁÀ 1

n

n

∑
i=1

(xi − yi)2, (20)

MAE =
1

n

n

∑
i=1

∣ xi − yi ∣, (21)

where n is the number of samples, xi is the predicted
value of the sample, and yi is the true value of the
sample.

The prediction effects of MFCC feature maps with
different orders are shown in Table 6, and ∆ represents
the increment compared to the results in the first row.
Based on the training results of standard full-frame
MFCC311×13 feature map, we can see that with the
increase of the MFCC order, the three evaluation in-
dexes are deteriorating. The high order MFCC con-
tains too much useless information and damages the
performance of the model. In addition, the influence
of the MFCC frame number on the training results is
shown in Table 7.

In Table 7, all three evaluation indexes get worse
as the number of frames decreases. Compared with
MFCC311×13, the frame number of MFCC208×13 de-
creases by 33.3 %, but RMSE and MAE increase by



538 Archives of Acoustics – Volume 49, Number 4, 2024

Table 6. Prediction effects of different MFCC orders.

Feature maps
Training Prediction

R (∆) RMSE (∆) MAE (∆) R (∆) RMSE (∆) MAE (∆)
MFCC311×13 0.979 0.394 0.314 0.971 0.474 0.371
MFCC311×26 0.966 (−0.013) 0.505 (+0.111) 0.392 (+0.078) 0.953 (−0.018) 0.603 (+0.129) 0.467 (+0.096)

MFCC311×39 0.923 (−0.056) 0.670 (+0.276) 0.539 (+0.225) 0.902 (−0.069) 0.785 (+0.311) 0.617 (+0.246)

Table 7. Prediction effects of different MFCC frame number.

Feature maps
Training Prediction

R (∆) RMSE (∆) MAE (∆) R (∆) RMSE (∆) MAE (∆)
MFCC311×13 0.979 0.394 0.314 0.971 0.474 0.371
MFCC208×13 0.977 (−0.002) 0.567 (+0.173) 0.481 (+0.167) 0.970 (−0.001) 0.663 (+0.189) 0.558 (+0.187)

MFCC104×13 0.965 (−0.014) 1.248 (+0.854) 1.143 (+0.829) 0.958 (−0.013) 1.326 (+0.852) 1.211 (+0.840)

Table 8. Prediction effects of different membership degrees.

Membership
degree

Training Prediction
R (∆) RMSE (∆) MAE (∆) R (∆) RMSE (∆) MAE (∆)

0.9 0.993 0.256 0.211 0.991 0.279 0.224
0.7 0.990 (−0.003) 0.319 (+0.063) 0.260 (+0.049) 0.985 (−0.006) 0.379 (+0.100) 0.305 (+0.081)

0.5 0.971 (−0.022) 0.447 (+0.191) 0.356 (+0.145) 0.966 (−0.025) 0.490 (+0.211) 0.400 (+0.176)

0.3 0.964 (−0.029) 0.552 (+0.296) 0.427 (+0.216) 0.941 (−0.050) 0.748 (+0.469) 0.554 (+0.330)

39.9 % and 50.4 %, respectively. For MFCC104×13, the
frame number continues to decline by 33.3 %, while
RMSE and MAE increase sharply by 179.7 % and
226.4 %. Therefore, the prediction error is more sen-
sitive to the frame number. Too few frames will lead
to missing key information, and the accuracy of the
model will be seriously degraded.

When the standard full-frame MFCC311×13 feature
map is used as input, different membership degrees
also affect the prediction results. As can be seen from
Table 8, the prediction is best when the membership
degree is 0.9. The membership degree gradually de-
creases, and the three evaluation indexes gradually
deteriorate.

Based on the above comparative experiments, we
can know that the model prediction is best when

Number of last iterations: 200
Training (RMSE): 0.142
Predicted (RMSE): 0.153

Iterations

Slow convergence

Training
Predicted

Fast convergence

R
M

SE

X 200
Y 0.153213

X 21
Y 1.90193

Fig. 10. Convergence curve.

the frame number is 311, the MFCC order is 13
and the membership degree is 0.9. Figure 10 shows
the convergence curve under optimal conditions. In the
first 21 iterations, the loss of the model decreases
rapidly, but there are some fluctuations. In subse-
quent iterations, the model slowly converges. Finally,
the RMSE of the training set is 0.142 and the RMSE
of the test set is 0.153. The error is small enough to
meet the scoring requirements of subjective evaluation,
and the final prediction results are shown in Table 9.

Table 9. Final CNN prediction results.

Indexes
Training Prediction

R RMSE MAE R RMSE MAE
Results 0.997 0.142 0.110 0.996 0.153 0.127
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To further verify the generalization ability of the pro-
posed method in small samples, we used a five-fold
cross-validation in the experiment. Five-fold cross-
validation divides the dataset into five subsets, using
one of the subsets as the validation set and the remain-
ing four subsets as the training set, repeating five times
to ensure that each subset is used as a single valida-
tion set. The final model performance is averaged by
the results of five experiments. As shown in Table 10,
training the model with the new dataset can signifi-
cantly improve the model’s predictive performance and
decreases the MAE value. This shows that the fuzzy
generation method is effective under the condition of
small samples and can enhance the generalization abil-
ity of the model. When the membership value is large
(such as 0.9 and 0.7), the MAE value of the model is
significantly reduced. At the same time, a low standard
deviation is maintained, indicating that this degree of
disturbance can effectively increase the data diversity
without introducing too much noise. When member-
ship values are small (such as 0.5 and 0.3), more noise
is introduced into the dataset. Although the model per-
formance is also improved, the effect is not as good as
when the membership value is larger.

Table 10. Five-fold cross-validation results.

Type of the dataset MAE Standard
deviation

Original dataset 3.241 1.034
New dataset1 (membership = 0.9) 0.736 0.121
New dataset2 (membership = 0.7) 0.885 0.178
New dataset3 (membership = 0.5) 1.078 0.141
New dataset4 (membership = 0.3) 1.448 0.149

4.2. Comparative analysis

To compare with traditional sound quality predic-
tion methods, generalized regression neural network,
SVR and RR models are used in this paper. We
first use the Audio toolbox in MATLAB to calculate
six acoustic parameters (A-SPL, loudness, sharpness,
roughness, fluctuation, and AI) for all noise samples,
as shown in Fig. 11. We take the six acoustic param-
eters as inputs, the evaluation scores as outputs, and
the ratio of training set to test the set is also 5:1.

A generalized regression neural network (GRNN) is
a type of neural network based on a radial basis func-

Table 11. Comparison of prediction effect on different models.

Model
Training Prediction

R (∆) RMSE (∆) MAE (∆) R (∆) RMSE (∆) MAE (∆)
CNN 0.997 0.142 0.110 0.996 0.153 0.127
GRNN 0.998 (+0.001) 0.105 (−0.037) 0.055 (−0.055) 0.988 (−0.008) 0.239 (+0.086) 0.210 (+0.083)

SVR 0.991 (−0.006) 0.243 (+0.101) 0.288 (+0.178) 0.964 (−0.032) 0.407 (+0.254) 0.288 (+0.161)

RR 0.977 (−0.020) 0.360 (+0.218) 0.330 (+0.220) 0.966 (−0.030) 0.389 (+0.236) 0.336 (+0.209)

tion, mainly used to solve regression problems. The
structure of GRNN is relatively simple, including in-
put layer, pattern layer, summation layer and output
layer. GRNN has applications in many fields, especially
for scenarios that require fast and accurate regression
predictions (Zhu et al., 2022; Yao et al., 2023). In the
GRNNmodel, only one spread parameter σ needs to be
optimized. By using the particle swarm optimization
algorithm, the number of particles is 30, the maximum
number of iterations is 20, and the optimal parameter
σ = 0.12 is found on the interval [0.01 0.8].

The SVR is a regression method based on the prin-
ciples of support vector machines. The core idea of
SVR is to find a function that fits the training data
as best as possible within a limited error range while
maintaining the generalization ability of the model.
For nonlinear data, the SVR uses kernel functions to
map the data into a high-dimensional space, where lin-
ear regression is performed. Common kernel functions
include linear kernel, polynomial kernel, radial basis
function kernel, and so on (Zhan et al., 2022; Shi et al.,
2021). For the SVR model with radial basis function,
we also use the particle swarm optimization algorithm
to find the two optimal parameters (penalty parame-
ter c and kernel parameter g). The number of particles
is 30, the maximum number of iterations is 20, and
the best c = 34.83, g = 0.32 are found on the interval
[0.01 100].

The RR, also known as the Tikhonov regulariza-
tion, is a linear regression method for dealing with
multicollinearity problems. Multicollinearity refers to
the fact that there is a high degree of correlation be-
tween predictor variables in a regression analysis. The
RR solves this problem by introducing a regularization
term, thereby improving the stability and predictive
power of the model. The basic idea of RR is to add
a regularization term to the loss function of ordinary
least squares regression. Choosing proper regulariza-
tion parameter λ is the key to applying RR (Yasin
et al., 2022; Dar et al., 2023). In this paper, for the RR
model, the 5-fold cross validation is used to find the
optimal λ. The value range is [10−6, 10−5.76, ..., 106],
and the best λ = 1.33 is found when the mean square
error is minimum.

Table 11 shows the three evaluation indexes of
three traditional sound quality prediction methods.
Compared with the CNN model, we can see that the
GRNN model performs slightly better in training than
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Fig. 11. Acoustic parameters: a) A-SPL; b) loudness; c) sharpness; d) roughness; e) fluctuation; f) AI. The top picture
of each subgraph represents the parameters at 500 N, the middle picture of each subgraph represents the parameters at

600 N, and the bottom picture of each subgraph represents the parameters at 750 N.

the CNN. However, in the prediction, theR of the CNN
model is the largest (0.996), while RMSE and MAE are
the smallest (0.153 and 0.127, respectively). The effect
of the CNN model on the test set is the least different

from that on the training set, and the overfitting degree
of the three traditional methods is higher. Therefore,
the new sound quality prediction method proposed in
this paper is superior to other three methods.
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5. Conclusion

The noise of the dual-phase Hy-Vo chain transmis-
sion system is different from that of the single-phase
transmission. First of all, we have carried out the noise
acquisition test of the dual-phase Hy-Vo chain trans-
mission system. Then all the noise samples are sub-
jectively evaluated, and the results are tested for cor-
relation. The ACC of all testers is greater than 0.7,
indicating that the subjective evaluation results are
reasonable.

The MFCC feature maps of all noise samples are
calculated as objective evaluation. By selecting dif-
ferent membership degrees for fuzzy generation, the
original dataset is expanded by three times. The CNN
model is constructed to predict the sound quality. The
comparison results show that when the membership
degree is 0.9, the prediction effect of standard full-
frame MFCC feature map is the best.

Compared with the traditional sound quality pre-
diction methods (GRNN, SVR, and RR), the CNN
model has the best performance on the test set. The
correlation coefficient is 0.996, the root mean square er-
ror is 0.153, and the MAE is 0.127. In addition, for the
CNN model, the difference between the training effect
and the prediction effect is small. Therefore, the new
method proposed in this paper not only has the highest
accuracy, but also has a strong ability to resist overfit-
ting.
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