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Measurements in the very near �eld of piezoelectric transducers are fundamental for
many ultrasonic problems. In such cases also the transducer vibrations should be known
to perform mathematical models of radiated beams. Acoustic pressure measurements near
to the transducer surface can give the necessary information. The pressure of the radiated
wave at the transducer surface corresponds to its normal vibration velocity multiplied
by the ρc value of the medium. However, this is valid only for the central wave, when
the edge wave of the transducer can be ignored. On the other hand, pressure measure-
ments on and very near to the transducer surface are not possible because of the voltage
leakage between the electronic transmitter and the PVDF hydrophone used in such mea-
surements. By means of a numerical model, central and edge waves were found for a plane
PZT transducer 7.5mm in radius, with the applied 2.7MHz voltage pulse composed of
3 cycles. Two types of boundary conditions of Dirichlet and Neumann were considered
showing a negligible di�erence in the case of short pulses. Basing on numerical and exper-
imental results, practical conditions were determined which make it possible to carry out
pressure measurements in the very near �eld of the transducer, and hence to determine
the transducer vibrations which are important for modeling ultrasonic pulse beams.

1. Introduction

In many ultrasonic applications the knowledge of transducer vibrations and their
surface distribution is decisive for modeling the radiated ultrasonic beams. Hence the
experimental results obtained in ultrasonic devices can be compared with the theoretical
ones showing possible optimal solutions predicted by the theory. One of the methods used
for determination of transducer vibrations is the measurement of the wave pressure in the
liquid medium, near to the transducer surface, by means of the wide band piezoelectric
polymer hydrophone PVDF. However, the structure of the near �eld is very complex due
to the interaction of central and edge waves in this region. On the other hand, pressure
measurements on and very near to the transducer surface are not possible because of
the voltage leakage between the electronic transmitter and the PVDF hydrophone used
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in measurements. The purpose of the present paper is to investigate and to establish
necessary conditions in the very near �eld which make it possible to determine vibrations
of the transducer surface by means of pressure measurements.

2. Central and edge waves

Complex structure of the near �eld is caused by the interference of the central wave
which is radiated by the front surface of the transducer and of the edge wave generated
by the transducer contour. This problem was extensively discussed by Hutchins and
Hayward [4] and con�rmed experimentally by many authors in the case of plane and
concave transducers (see for example [1]). The generation of edge waves can by easily
explained by means of the Fresnel zones (see Appendix).

The pressure on the transducer plane surface p(z = 0, t) corresponds exactly to the
normal acoustic velocity v(t) according to the relation

p(z = 0, t) = ρc · v(t). (1)

In the case when the edge wave interferes with the central wave, the relation (1) is no
more valid [5]. Relation (1) is practically ful�lled on the axis of the circular transducer
near to its surface. Outside of the axis it can be ful�lled only in such a case when the
contribution of the edge wave is so small in relation to the central wave that it can be
neglected.

3. Parameters of the examined system and the experimental equipment

The considered system was composed of an electronic pulse transmitter with the car-
rier frequency of 2.7MHz. The generated ultrasonic pulses composed of 3 cycles and their
spectrum are shown in Fig. 1. The voltage applied to the transducer was equal to 40Vpp.
The radius of the circular plane PZT transducer equaled 7.5mm. Pressure measure-
ments were performed in a water container by means of the PVDF bilaminar membrane
hydrophone, model 800 (Sonic Technologies), calibrated by the National Physical Lab-
oratory (Teddington, England) with the sensitive electrode diameter of 0.6mm. Since
PZT transducers in such conditions are linear devices [2], the whole measurement sys-
tem can be considered also as a linear one for small distances z from the transducer.
For distances up to z = 40mm we did not observe any nonlinear e�ects. They may
be expected for higher values of z being caused by nonlinear propagation in water.
Since we examine the medium near to the transducer, the system can be considered
as linear.

The velocity distribution on the transducer surface was assumed to be uniform for
the radius r < 7.5mm and zero for r > 7.5mm. In reality, the uniform distribution of
amplitudes and phases can be considered as a rather good approximation when the back
side of the transducer is acoustically heavily loaded [6].



NUMERICAL AND EXPERIMENTAL PRESSURE DETERMINATION ... 225

Fig. 1. The shape of the ultrasonic pulse assumed for computations (top) and its spectrum (bottom).

4. The numerical procedure

Two types of boundary problems were solved numerically: the Dirichlet and Neumann
ones [8]. Dirichlet conditions �x the value of the scalar acoustic potential φ related directly
to the acoustic pressure by the relation p = (−)ρ ∂φ/∂t. Neumann conditions �x its
gradient ∂φ/∂n which is equal to the acoustic velocity (+) − v. The signs of pressure
and velocity shown in brackets are used in mechanics while the other ones outside the
brackets are employed in acoustics [7].

The D'Alembert solution of the wave equation for the half-space z ≥ 0 with the plane
boundary S(x, y, z = 0) can be expressed in the form

P (x, τ) =
1
2

∑

i=1

Pn(x)e−inτ + c.c, Pn = i · n · φn , (2)
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where x ≡ (x, y, z), x = k0xw, t = ω0tw � dimensionless coordinates; xw, tw � dimensional
coordinates, c.c. � conjugate quantity, τ = t−z/c0 � retarded dimensionless time, k0c0 =
ω0, n = ωn/ω0 � dimensionless pulsation, {Pn}, {φn} � Fourier spectra of the pressure
and of the acoustic potential, φn(x) � Rayleigh-Sommerfeld solutions of the Dirichlet
problem

φn(x) = e−inz

∫

S

φn(S′)
∂G(x, S′)

∂s′
dS′,

∂G−(x, S′)
∂s′

≡ 1
2π

z

R

∂

∂R

einR

R
(3)

and of the Neumann problem

φn(x) = −e−inz

∫

S

vn,s′G(x, S′)dS′, G+(x, S′) ≡ 1
2π

einR

R
, (4)

where R ≡
√

(x− x′)2 + (y − y′)2 + z2 ; vn,s′ ≡ (∂/∂s′)φn � component of the velocity
vector normal to the surface S(x), S(x = x′, y = y′, z = z′ = 0) = S′; s′ � unit vector
normal to S; G+, G− � Green functions [9, 11]. φn(x) � ful�ls the Helmholtz equation
∆φn + n2φ = 0.

The numerical algorithm for the pressure determination in the ultrasonic beam ra-
diated by the piezoelectric transducer excited by the short pulse was determined from
Eqs. (3) and (4) by means of the spectral analysis. Calculations were performed for two
boundary conditions. In the �rst, the Dirichlet case, the constant pressure on the trans-
ducer surface and zero pressure outside of it was assumed. In the second, the Neumann
case, the transducer was mounted in a in�nitely rigid ba�e and its acoustic velocity in
the direction of z was constant on the transducer surface and zero outside of it.

In both cases, the dimensionless system of variables in time and frequency was applied.
The carrier frequency of the radiated pulse with the normalized amplitude corresponded
to the frequency of the main spectral line fm. The normalization base of λ0 determined
the sampling scale in time and in frequency for the known propagation velocity c0 in
the medium. The normalization base was chosen to equate the repetition time of the
radiated frequency 1/f0 with the dimensionless time 2π, where f0 = c0/λ0 denotes the
sampling frequency of the spectrum. Then the fundamental lobe of the spectrum contains
the number of spectral lines equal to Nm = fm/f0. The amplitude of every spectral line
depends also on the radiated pressure pulse wave-form. The envelope of the simulated
pulse was chosen analytically to �t maximally the real pressure wave-form.

The next step of numerical calculations was the determination of pressure in an
arbitrary point of the radiated ultrasonic beam for the transducer excited by the unit
amplitude continuous wave with various frequencies corresponding to the frequency nf0

of the n-th spectral line of the pulse. For this purpose the method of the surface integral
based on the Huygens principle was applied. Multiplying spectra for the same spatial
point and applying the inverse Fourier transform, the spatial distribution of the pressure
�eld of the ultrasonic transducer excited by short pulses was determined.

Figure 2 presents pressure amplitude distributions along the beam axis computed nu-
merically for Dirichlet boundary conditions of the transducer. It means that the acoustic
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Fig. 2. Amplitude pressure distributions computed along the transducer beam axis z in the case of
Dirichlet boundary conditions. CW (dotted line) denotes continuous waves, L (dashed line) � long and

S (full line) � short pulses (see Fig. 3).

Fig. 3. The shapes of the long (L) and short (S) pulses assumed for computations.

pressure is assumed to be constant on the transducer surface and zero outside of it (at
the plane z = 0). The computations were performed for continuous waves, for long and
for short pulses. Figure 3 shows the shapes of pulses used in computations.

Similar computations were carried out for Neumann boundary conditions as shown in
Fig. 4 where the normal component of the acoustic velocity is constant over the transducer
face and is zero outside it. The pressure distribution in the case of continuous waves can
be found analytically showing a series of maxima of constant amplitude with intervening
nulls. In the case of our calculations the density of the points determined numerically
was too low to follow the details of this series.

However, in real probes used in ultrasonography the Neumann boundary conditions
are suitable. If the transducer could be considered as a liquid surface or freely suspended
in a �uid with no other bu�e being present, then the Dirichlet boundary condition would
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Fig. 4. Amplitude pressure distributions computed along the transducer beam axis z in the case of
Neumann boundary conditions. All notations as in Fig. 2.

be adequate [4]. Therefore our considerations concern mainly the Neumann boundary
condition corresponding to the construction of real ultrasonic transducers used for ex-
ample in ultrasonography.

5. Discussion and conclusions

Measurements of the acoustic pressure in the very near �eld of the piezoelectric trans-
ducer make it possible to obtain information on the acoustic velocity of the vibrating
transducer. However, this is possible when the edge wave interfering with the central
wave can be neglected. Figure 5 shows the computed central and edge waves and their
interference along the transducer axis when increasing the distance z. The pressure am-
plitudes of the central and edge waves are the same, however their phases are reversed
(see Fig. 5 top).

Using the described numerical procedure, the in�uence of the distance from the trans-
ducer on the amplitude of the edge wave could be shown. So the minimum distance from
the transducer can be found for which it is possible to determine the amplitude of the
acoustic velocity on the transducer surface by means of pressure measurements, with-
out introducing signi�cant errors. In our case this distance determined numerically and
experimentally was equal to z = 4mm (Fig. 6). In such a case, the pressure amplitude
on the transducer edge is only by about 10% ⇔ 1 dB higher than the amplitude of
the central part of the transducer forming there the central wave. However, when in-
creasing the distance z to 10 and 36mm, the in�uence of the edge wave becomes very
high (Figs. 7 and 8). Then conclusions regarding the transducer vibrations from pressure
measurements would be wrong.
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Fig. 5. Interference of the computed central wave C with the edge wave E at the transducer beam
axis for various distances z = 4, 10, 16 and 36mm. The computations were performed for the Neumann

boundary condition.
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Fig. 6. The computed (solid line) and measured (points) pressure distributions before the face of the
transducer at the distance of z = 4mm. The radial distance from the transducer symmetry axis is

denoted by r.

Fig. 7. As in Fig. 6, however at the distance of z = 16mm.

In a similar way also the minimum distance on the transducer beam axis can be found
where the acoustic velocity of the transducer can be determined by means of pressure
measurements. This distance is now much greater; in the case under consideration it is
equal to z = 20mm as shown in Fig. 9.

In this way one can obtain by means of pressure measurements, the information on
transducer vibrations which is important for modeling the ultrasonic pulse beams used
in various applications.

It is interesting to notice that for the Dirichlet and Neumann boundary conditions,
pressure distributions in the near �eld di�er signi�cantly. However, this di�erence is much
smaller for long pulses and disappears for short pulses as shown in Figs. 2 and 4.
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Fig. 8. As in Fig. 6, however at the distance of z = 36mm.

Fig. 9. The computed (solid line) and measured (points) pressure distributions along the transducer
beam axis z.

Appendix. Interpretation of edge waves by means of Fresnel zones

Consider a vibrating circular plane surface which is divided into a number of con-
centric Fresnel zones. The slant distance from the observation point P is greater by λ/2
than that of the neighbour zone of the smaller diameter. It can be shown [10] that the
area of the n zone is given by πxλ if λ is small compared with the distance x of the point
P from the transducer (see Fig. 7.6 in [10]). The surface of every zone is the same and
equal to the surface of the �rst zone S = πxλ.

The amplitude of waves radiated by every zone is an arithmetic mean between both
the neighbouring waves, independently of how may they decrease [3]. Let us denote the
contribution of the n zone by zn. Then the contribution of all zones at the point P equals
(see Fig. 825 in [3]).
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z = z1−z2+z3−z4+z5−. . . or z = z1/2+(z1/2−z2+z3/2)+(z3/2−z4+z5/2)+. . .

Because all the values in parentheses equal zero, we obtain �nally

z = z1/2. (A1)

Hence it follows that the contribution of all the radiated waves in their full extent,
embracing all the Fresnel zones, is equivalent to the contribution of half of the �rst
Fresnel zone.

In the case of a circular transducer with radius r, a similar construction of Fresnel
zones can be performed, however now for the plane outside of the transducer (for greater
radii than r). So the distance of the Fresnel zones from the point P equals now b + λ/2,
b + 2λ/2, b + 3λ/2 etc. where b denotes the distance of the point P from the transducer
edge. Adding the contributions of all the Fresnel zones at point P (see Fig. 523 in [3]) we
obtain, in a similar manner as before, the relation

zr = zr1/2. (A2)

Hence it follows that the contribution of all the radiated waves in their extent outside of
the transducer (embracing there all the Fresnel zones situated outside of the transducer),
is equivalent to the contribution of one half of the �rst outside Fresnel zone zr1.

If one assumes that the contribution (A2) will have the reverse phase than the con-
tribution (A1) and remembering that the contributions of the Fresnel zones have the
same amplitudes, then the contributions of the surface situated outside of the transducer
disappear.

As a result, one obtains at the point P only the contributions of the transducer surface
being a sum of the central wave (A1) and the edge wave (A2) with the reverse phase.
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CHWILOWO ZAWIESZONE (bo patrz str 3 w.19-21 d)
These results were obtained numerically and con�rmed experimentally. One should

notice that the experimental pulse was a little longer than the numerical one due to small
ringing e�ect at its end, however, the di�erences in the computed and measured spectra
were very small.


