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The signature of fifths is a special kind of music representation technique enabling acquisition of musical
knowledge. The technique is based on geometrical relationships existing between twelve polar vectors inscribed
in the circle of fifths, which represent individual pitch-classes detected in a given composition. In this paper
we introduce a real-time key-detection algorithm which utilizes the concept of the signature of fifths. We
explain how to create the signature of fifths and how to derive its descriptors required by the algorithm, i.e.,
the main directed axis of the signature of fifths, the major/minor mode axis, the characteristic vector of the
signature of fifths, the characteristic angle of the signature of fifths, and the angle of the major/minor mode. We
performed a series of experiments to test the algorithm’s effectiveness. The results were compared with those
obtained using key-detection approaches based on key-profiles. All experiments were conducted using works
composed by J.S. Bach, F. Chopin, and D. Shostakovich. The distinctive features of the presented algorithm,
with respect to the considered key-detection approaches, are computational simplicity and stability of the
decision-making process.
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1. Introduction

Tonality, or key-detection, algorithms utilize var-
ious techniques. The foundations of tonality analysis
date back to the time of Pythagoras, who defined
numerical relationships between consonant and dis-
sonant sounds. Major input to the tonality analysis
is also ascribed to Leonard Euler, who in his tone
network, commonly referred to as Tonnetz, “tied to-
gether” the tones that make up the major and mi-
nor chords. The fifths and thirds (major and minor)
intervals present in Tonnetz constitute the founding
elements of the harmonic relationships among major
and minor scales. Similar interval relationships are re-
flected in the Longuet-Higgins tonal maps (Longuet-
Higgins, 1962a; 1962b). Harmonic networks also con-
stitute the basis for various 3D spiral array models
(Shepard, 1982; Chew, 2000; 2007). Such models al-

low us to associate individual pitch-classes present
in a given music piece with particular locations on the
spiral, enabling chord and key recognition (Mauch
et al., 2010; Osmalskyj et al., 2012; Sigtia et al.,
2015; Chuan, Chew, 2005; 2007).

More sophisticated models for representing the
content of musical works have recently been pro-
posed (Harte et al., 2006; Bernardes et al., 2016;
Herremans, Chew, 2019; Tymoczko, 2006; 2011).
They have been used, for example, to detect har-
monic changes (Harte et al., 2006; Boulanger-
Lewandowski et al., 2013; Chen, Su, 2018; Jacoby
et al., 2015; Hori et al., 2017; Ni et al., 2013; Peiszer
et al., 2008; Wu, Li, 2018), represent chords geometri-
cally for visualization (Tymoczko, 2006; 2011; Can-
cino Chacón et al., 2014; Sapp, 2001), and assess
changes in distribution of pitch-classes present in com-
positions from different epochs (Yust, 2019). Such
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models have also been utilized in the algorithms for
recognition of musical genres (Anglade et al., 2010,
Pérez-Sancho et al., 2010) and have been applied
to the evaluation of the chord structure (Bernardes
et al., 2016). Other applications of tonal models in-
clude generating structured music with constrained
patterns, shaping the harmonic structure of musical
pieces (Roig et al., 2014), and assessment and cre-
ation of tension in composition fragments (Chapin
et al., 2010; Yang et al., 2021). Naturally, such models
also find utility in computer-aided composition soft-
ware (Huang et al., 2016; Sabathé et al., 2017). In
recent years, many tonal analysis solutions implement-
ing artificial intelligence (Foscarin et al., 2021; Daw-
son, 2018; Deng, Kwok, 2017) or machine learning
(Korzeniowski, Widmer, 2017; Masada, Bunescu,
2017; McFee, Bello, 2017; Zhou, Lerch, 2015)
techniques have been proposed.

There are many ways to represent the content of
a musical work. One of the most popular representa-
tions is Euler’s Tonnetz, which illustrates chord rela-
tionships of the harmonic triad in 2D space. The spi-
ral array model of Chew (2000), which depicts chords
in 3D space, is a more advanced approach. Other ap-
proaches introduce more dimensions, e.g., the tonal
centroid 6D space of Harte et al. (2006), or the solu-
tion provided by Bernardes et al. (2016) which em-
ploys a space spanning as many as 12 dimensions. In-
crease in the dimensionality of the proposed models re-
sults from the constant quest for new ways to improve
the accuracy of the analysis of musical works. How-
ever, improvement of computer analysis should not be
sought only in the implementation of more and more
complicated solutions. The signature of fifths is one ex-
ample of a simple yet effective concept that can make
a significant contribution to the development of algo-
rithmic key-detection methods. Creation of the signa-
ture of fifths corresponding to a given musical piece (or
its fragment) enables finding its key via analysis of the
geometrical arrangement of the polar vectors compris-
ing the signature. Details of this procedure are pres-
ented later in this paper.

The major-minor tonality is inherently associated
with Western music. An important current research
problem is algorithmic determination of a musical
piece’s key (Baumann, 2021; Bernardes et al., 2017;
Foscarin et al., 2021; Korzeniowski, Widmer,
2018; Nápoles López et al., 2019; 2020; Quinn,
White, 2017; Toiviainen, Krumhansl, 2003). In-
put data used in key-finding algorithms is either
in symbolic (e.g., MIDI, MusicXML) or audio (e.g.,
wav, mp3) format (Baumann, 2021; Chuan, Chew,
2005; Gebhardt et al., 2018; Peeters, 2006; Pa-
padopoulos, Peeters, 2012; Raphael, Stoddard,
2004; Weiss, 2013; Wu, Li, 2018). The compu-
tationally simplest key-detection approaches utilize
the so-called key-profiles (Herremans, Chew, 2019;

Korzeniowski, Widmer, 2017; Albrecht, Shana-
han, 2013; Gomez, Herrera, 2004; Kania, Ka-
nia, 2019; Kania et al., 2022; Krumhansl, Kessler,
1982; Krumhansl, 1990; Temperley, 2004; Tem-
perley, Marvin, 2008). In the most basic scenario,
determination of the key is based on searching for the
maximum correlation coefficient of a given fragment
of the analyzed composition with the 12 major and
12 minor key-profiles. It is still unclear which family
of key-profiles and which fragment of a music piece
are most appropriate for the analysis purposes. Some-
times the methods based on local-key estimation are
also considered (Nápoles López et al., 2020).

There are many families of key-profiles (Herre-
mans, Chew, 2019; Korzeniowski, Widmer, 2017;
Albrecht, Shanahan, 2013; Gomez, Herrera,
2004; Krumhansl, Kessler, 1982; Krumhansl,
1990; Temperley, 2004; Temperley, Marvin,
2008). They were created using a variety of methods,
ranging from extensive experimental research based on
cognitive psychology (Krumhansl, Kessler, 1982;
Krumhansl, 1990) to computationally intensive sta-
tistical/probabilistic analyses (Aarden, 2003; Bell-
mann, 2005; Temperley, 2004) anchored in the the-
ory of music. In some cases, creation of new key-
profiles resulted from experiences with well-established
key-profiles. For example, analysis of the Krumhansl–
Kessler profiles inspired Temperley to propose a new
family of key-profiles (Temperley, 2004; Temper-
ley, Marvin, 2008). Temperley’s proposal was backed
with advanced models based on probabilistic reason-
ing. In some cases, key-profiles were created based on
the analysis of numerous audio files (Chuan, Chew,
2014; Gomez, Herrera, 2004; Korzeniowski, Wid-
mer, 2018). Particularly interesting are the key-
profiles developed with the use of artificial intelli-
gence techniques (Albrecht, Shanahan, 2013). Ex-
periments have proven their high key-detection efficacy
(Kania, Kania, 2019).

Although the correlational approach to music key-
detection based on key-profiles has low computational
complexity, it is possible to create simpler solutions.
Reducing the number of multiplication operations is
usually a good way to speed up an algorithm. In this
respect, the key-detection algorithm based on the sig-
nature of fifths, presented in (Kania, Kania, 2019),
is much simpler than its strictly correlational alter-
natives. The simplification results from the fact that
the correlation coefficients are calculated only for two
relative key-profiles, not all 24 of them. In (Kania
et al., 2021a), it was shown that the signature of fifths
can also be utilized to determine the key signature of
a given piece of music without calculating any corre-
lation coefficient. The authors’ proposed an algorithm
that inspired the search for a simplified key-detection
method and the study discussed in this paper. Com-
putational simplification of the key-detection process is
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particularly important when it comes to solutions im-
plemented in hardware, e.g., for instruments presenting
musical notation in a real-time manner.

The aim of this paper is to present an original al-
gorithm for real-time key determination based solely
on the signature of fifths. The novelty of the proposed
approach lies in the assessment of the structure of the
signature of fifths. Essentially, the method boils down
to the analysis of the geometrical relationships exist-
ing between the so-called characteristic vector of the
signature of fifths and the pair of directed axes –
the main directed axis of the signature of fifths and the
major/minor mode axis. The algorithm takes a sym-
bolic description of the piece as input. Therefore, its
application is justified only in the context of equal-
temperament tuning, i.e., when all keys are equivalent,
so there are no better or worse-sounding keys, as in the
case of mean-tone or non-temperament tuning. It is as-
sumed that the analyzed pieces are tonal works, which
is not always true, especially in contemporary music
since the mid-19th century. The essence of the algo-
rithm lies in searching for the most populous set of
notes forming a pentatonic scale consisting of steps I,
II, III, V, and VI in the major mode and I, III, IV,
V, and VII in the Aeolian minor mode (both consist
of any five neighboring keys in the circle of fifths). Ad-
ditionally, the durations of pitch classes are analyzed,
but no additional information is considered, such as
the significance of individual notes in chords, which
impacts listeners’ perception.

In the next section of the article, the basic con-
cepts behind the proposed key-detection algorithm are
presented. In Sec. 3, the algorithm is thoroughly de-
scribed. The ideas presented in Secs. 2 and 3 are sup-
ported with simple examples. Section 4 presents the
results of the carried out experiments, along with a dis-
cussion focused on identifying the strengths and weak-
nesses of the proposed algorithm. The article ends with
a summary of the conducted study.

2. Theoretical background

A musical piece can typically be represented with
tones belonging to twelve pitch-classes: C, C♯/D♭, D,
D♯/E♭, E, F, F♯/G♭, G, G♯/A♭, A, A♯/B♭, B. Let X
be the set of durations of individual pitch-classes com-
prising a given fragment of a musical piece (1):

X = {xC, xC♯ /D♭, xD, xD♯ /E♭, xE, xF, xF♯ /G♭,

xG, xG♯ /A♭, xA, xA♯ /B♭, xB}. (1)

The vector K, which represents the normalized aggre-
gate durations of pitch-classes corresponding to the
analyzed fragment of music, is given by:

K = [kA, kD, kG, kC, kF, kB♭, kE♭, kA♭, kD♭, kG♭ /F♯, kB, kE], (2)

where

ki =
xi

max(xA,xD,xG,xC,xF,xB♭,xE♭,xA♭,xD♭,xG♭ /F♯,xB,xE)
, (3)

and

i ∈ {A,D,G,C,F,B♭,E♭,A♭,D♭,G♭ /F♯,B,E}.

The values comprising the vector K are ordered in
accordance with the succession of the pitch-classes
in the circle of fifths, beginning from the A tone and
continuing counter-clockwise.

Definition 1 (Kania, Kania, 2019):
The signature of fifths is a set of twelve polar vec-

tors {ki ∶ i = A,D,G, ...,E} whose coordinates (ri, φi)
fulfill the following conditions:

– the length of each vector is equal to the normal-
ized corresponding component of a given pitch-
class vector K, i.e., ri = ∣ki∣ = ki;

– the direction of each vector is determined with the
following relationship: φi = j ⋅30○, where j = 0∣i=A,
j = 1∣i=D, and so on.

Example 1 (Kania, 2021):
Let us create the signature of fifths for the first bar

of J.S. Bach’s Prelude No. 1, BWV 846, whose musical
notation was illustrated in Fig. 1.

Fig. 1. First bar of Bach’s Prelude No. 1, BWV 846.

The vector K corresponding to the tones presented
in Fig. 1 can be expressed as:

K = [0 0 0.2 1 0 0 0 0 0 0 0 0.9] , (4)

whereas the signature of fifths associated with the
above vector is shown in Fig. 2.

Fig. 2. Signature of fifths obtained for the fragment
of the prelude shown in Fig. 1.

We can define a number of directed axes of the
circle of fifths Y → Z, which connect two opposite
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pitch-classes. A given axis points from Y towards Z,
where pair (Y ;Z) ∈ (C, F♯); (F, B); (B♭, E); (E♭, A);
(A♭, D); (D♭, G); (F♯, C); (B, F); (E, B♭); (A, E♭);
(D, A♭); (G, D♭). The value [Y → Z] is called the char-
acteristic value of the directed axis Y → Z. It is equal
to KR −KL, where KR and KL are the sums of the
lengths of the vectors comprising the signature of fifths,
located on the right and left sides of the directed axis
Y → Z, respectively.

Definition 2 (Kania, Kania, 2019):
The directed axis of the signature of fifths Y → Z,

for which [Y → Z] assumes the maximum value is
called the main directed axis of the signature of fifths
(MDASF).

Definition 3:
The polar vector obtained as the sum of vectors

comprising the signature of fifths is called the charac-
teristic vector of the signature of fifths (CVSF).

The position of the characteristic vector of the sig-
nature of fifths can be described with the Cartesian co-
ordinates (x, y) depicting its end or by providing polar
coordinates (rSF, φSF).

Definition 4:
The angle φSF is called the characteristic angle of

the signature of fifths.

The MDASF, CVSF, and φSF corresponding to the
signature of fifths presented in Fig. 2, are shown in
Fig. 3. The outline of the plot illustrated in Fig. 3
was supplemented with the characteristic values as-
sociated with individual directed axes. The maxi-
mum value (2.1) indicates the direction of the MDASF,
which is B → F in the considered case.

[B→ F] = KR −KL = 1 + 0.9 + 0.2 = 2.1

Fig. 3. Signature of fifths supplemented with the MDASF,
CVSF, and φSF.

Let us assume that Y ↓ Z is the major/minor mode
axis, which is perpendicular to the Y → Z axis. Its
tip indicates the tone, which is 90○ away in clockwise

direction from the tone indicated by the Y → Z axis.
Let us then depict the inclination of the major/minor
mode axis Y ↓ Z with respect to the abscissa as the
angle φ1.

Definition 5:
The angle between the CVSF and the major/minor

mode axis is called the major/minor mode angle, de-
picted with the symbol φm. It is calculated as φm =

φSF − φ1.

Figure 4 helps to clarify the way in which the ma-
jor/minor mode angle corresponding to the signature
of fifths presented in Fig. 2 was obtained.

Fig. 4. Clarification of the way in which the angle of the
major/minor mode φm is determined (for the signature of

fifths presented in Fig. 2).

Determination of the key of a music composition
becomes possible via computation of the major/minor
mode angle φm, relating the direction of the major/
minor mode axis and the direction of the characteristic
vector of the signature of fifths.

3. Algorithm

In this section we present a real-time key-finding al-
gorithm based on the signature of fifths. It is a simpli-
fied version of the algorithm shown by Kania and Ka-
nia (2019). It determines the major/minor mode of the
analyzed piece of music via application of new descrip-
tors of the signature of fifths, i.e., the major/minor
mode axis, the characteristic angle of the signature
of fifths, and the major/minor mode angle. The key-
detecting procedure consists of several steps which lead
to the calculation of the major/minor mode angle.
In general, the value of this angle can be positive, neg-
ative, or zero. It is strictly associated with the key cho-
sen from the obtained pair of two relative keys. A pos-
itive value indicates the major key whereas a negative
value indicates the minor key. When the value of the
major/minor mode angle is zero, i.e., the major/minor
mode axis coincides with the characteristic vector of
the signature of fifths, the analyzed fragment of the
musical composition should be extended.
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The proposed algorithm for the musical key-
detection can be divided into the following steps:
1) Creation of the signature of fifths corresponding

to the analyzed fragment of a music composition:

– determination of the aggregate durations of
individual pitch-classes within the considered
fragment of music;

– designation of the vector K, representing the
normalized aggregate durations of individual
pitch-classes.

2) Determination of the MDASF:

– calculation of the characteristic values corre-
sponding to all possible directed axes;

– selection of the directed axis with the maxi-
mum characteristic value, i.e., MDASF;

– if MDASF cannot be determined:
a) increment the length of analyzed frag-

ment;
b) jump to the point no. 1.

3) Determination of the two relative keys associated
with the obtained MDASF (one of which is the key
of the analyzed fragment of music). The relative
keys corresponding to a given MDASF are pointed
by the MDASF rotated clockwise by 30○.

4) Determination of the major/minor mode axis and
the angle it creates with the axis OX (φ1). The
major/minor mode axis is perpendicular to the
MDASF, and its tip points to the tone which is
90○ away, clockwise, from the tone indicated by
the MDASF.

5) Determination of the CVSF and the angle it cre-
ates with the OX-axis (φSF).

6) Calculation of the angle of the major/minor mode
(φm):

– if φm = 0:
a) increment the length of the analyzed

sample/fragment of music;
b) jump to the point no. 1;

– if φm > 0, the analyzed piece of music is in the
major key from the pair of the two previously
obtained relative keys;

– if φm < 0, the analyzed piece of music is in the
minor key from the pair of the two previously
obtained relative keys.

The essence of the developed algorithm is illus-
trated resorting to example 2.

Example 2 (Kania, 2021):
Let us determine the keys of the first two preludes

from the part I of J.S. Bach’s collection “The Well-
Tempered Clavier” [in German: Das Wohltemperierte
Klavier], the first bars of which are shown in Fig. 5.

a)

b)

Fig. 5. First bars of the preludes from the part I of Bach’s
collection “The Well-Tempered Clavier”: a) Prelude No. 1,
written in C major, BWV 846; b) Prelude No. 2, written

in C minor, BWV847.

In the first step of the algorithm, after determining
the aggregate durations of individual pitch-classes and
calculating the vector K, the signature of fifths is cre-
ated (step no. 1). Knowing the lengths and directions
of the vectors comprising the signature of fifths, it is
possible to determine the MDASF (step no. 2). Fig-
ure 6 presents the signature of fifths and the MDASF
for the analyzed excerpts of preludes.

Knowing the direction of the MDASF, we deter-
mined the pairs of the potential keys of the analyzed
pieces of music as well as the directions of the ma-
jor/minor mode axes (steps no. 3 and 4). The potential
keys are shown in Figs. 6a–c (marked in red). They are
pointed out by the MDASFs rotated by 30○ clockwise
(step no. 3). In each case, the major/minor mode axis
is perpendicular to the MDASF and points towards
the tone which is 90○ away, clockwise, from the tone
indicated by the MDASF (step no. 4). The directions of
the major/minor mode axes and the angles they create
with the OX-axis, marked as φ1, were shown in Fig. 6b.
In the case of the Prelude No. 1, the angle φ1 is equal
to 30○, whereas for Prelude No. 2 it reaches 120○.

In the next phase of the procedure, the CVSF and
the angle it creates with the OX-axis, denoted as φSF,
are calculated (step no. 5). In the case of the Prelude
No. 1, this angle is equal to 39.4○, whereas for the
Prelude No. 2 it is 103.9○ (Fig. 6c).

Knowing the angles φ1 and φSF , we determined the
value of the mode angle φm (step no. 6), which was
then used to select one key from the previously ob-
tained pair of relative keys. In the case of the Pre-
lude No. 1, the value of angle φm is greater than zero
(φm = 9.4○), hence the key is C major. For Prelude
No. 2, φm is smaller than zero (φm = −16.1○), hence the
key is C minor. In Fig. 6d, the keys detected using
the proposed algorithm are marked in red. For read-
ability, major keys are written in uppercase, whereas
minor keys are written in lowercase. We apply this con-
vention throughout figures and tables in the article.
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Prelude No. 1 in C major Prelude No. 2 in C minor

a)

b)

c)

d)

Fig. 6. Illustration of the successive steps of the proposed music key-detection algorithm based on Prelude No. 1 in C major
and Prelude No. 2 in C minor, both from the part I of Bach’s collection “The Well-Tempered Clavier.”
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4. Results and discussion

The aim of the conducted experiments was to
compare the effectiveness of the developed algorithm
with computationally simple key determination ap-
proaches based on correlation with well-known key-
profiles. Four sets of preludes in 12 major and 12 mi-
nor keys were used in the experiments: the preludes
by J.S. Bach from two collections of the “The Well-
Tempered Clavier” – part I and part II (WTC I and
WTC II), preludes by F. Chopin (Op. 28), and pre-
ludes by D. Shostakovich (Op. 87).

At first, we focused on determining the minimum
number of notes needed for key-detection using the al-
gorithm based on the signature of fifths. In each case
the analysis was started with the minimum number of
notes equal or greater than two. The analyzed frag-
ment was extended by subsequent notes until it was
possible to indicate the main directed axis of the sig-
nature of fifths (MDASF). All the constituent notes of
any chords present were taken into account at once.
For most of the analyzed works, the analysis process
ended as soon as the main directed axis of the signa-
ture of fifths was determined for the first time. In a few
cases, however, for which the major/minor mode axis
coincided with the characteristic vector of the signa-
ture of fifths, the analyzed fragments were extended,
and all the steps of the process reiterated.

The determined minimum numbers of notes needed
to identify keys for different pieces of music are shown
in Fig. 7. The vertical axis corresponds to the number
of notes needed to detect the piece’s key, while the hor-
izontal axis represents the numerical identifiers of the
analyzed preludes. Correctly detected keys are marked
with blue diamonds, whereas incorrectly detected ones
are marked with orange triangles.

The analysis of the results indicates that the effec-
tiveness of the developed algorithm, understood as the
ratio of the number of correctly detected keys to the to-
tal number of analyzed works, was 85.4 %. In the
case of Bach’s preludes, it was 89.6 %, whereas for
Shostakovich’s and Chopin’s preludes the effectiveness
reached 83.3 % and 79.2 %, respectively.

Figure 8 shows the effectiveness of the developed
algorithm and the average number of notes needed
to detect the key for each of the analyzed sets of
works. Detection of the key was possible after analy-
sis of 6.7 notes, on average (considering all collec-
tions). Excluding the significantly different result ob-
tained for Shostakovich’s 14th prelude (207 notes),
the average number of notes for key-detection was
4.6 notes. The fewest notes were needed for Bach’s
works – 3.7 notes, on average. In the case of Chopin’s
compositions, the key was found after 4.4 notes, on
average, and in the case of Shostakovich’s works,
15 notes were required, on average. Again, after reject-
ing Shostakovich’s Prelude No. 14, the average num-

J.S. Bach’s Preludes, WTC I

J.S. Bach’s Preludes, WTC II

F. Chopin’s Preludes, Op. 28

Fig. 7. Minimum number of notes required to detect the key
using the proposed algorithm for individual preludes, where
blue diamonds and orange triangles represent, respectively,
the correctly and incorrectly detected keys (in the case
of the Prelude No. 14 by Shostakovich the algorithm was
able to correctly detect the key after analysis of 207 notes).

a)

b)

Fig. 8. Results of the music key-detection using the pro-
posed algorithm based on the signature of fifths: a) ef-
fectiveness of the algorithm; b) average number of notes

needed to detect the key.

ber of notes required to detect the key dropped to 7.
It should be emphasized that the specificity of the mu-
sical notation often limits opportunities to use a small
number of notes, as there are compositions which start
with chords comprised of multiple notes. For exam-
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ple, if a given piece of music starts with a five-note
chord, it is not possible to perform the analysis for 2,
3 or 4 notes.

For further assessment, we compared the proposed
key-detection algorithm with correlational approaches
based on key-profiles. We chose to perform this com-
parison because key-profile methods in a certain way
resemble the algorithm based on the signature of fifths.
The way of determining the main directed axis of the
signature of fifths can be associated with assigning
the weight 1 to tones located on one side of the axis,
and −1 to the tones located on its other side. This pro-
cedure resembles assignment of appropriate weights to
particular tones, as in the considered key-profile ap-
proaches. As part of the assessment, we also accounted
for the each method’s computational complexity. The
key-detection algorithm based on the signature of fifths
is much simpler in this respect, as there is no need for
calculating the correlation coefficients, hence no need
for multiple (costly) multiplication operations. This is
particularly important when it comes to hardware im-
plementation of the key-detection process, e.g., in Sys-
tem on Chip (SoC) solutions.

In the conducted experiments, we used three sets of
key-profiles: Krumhansl–Kessler (Krumhansl, Kessler,
1982; Krumhansl, 1990), Temperley (Temperley, 2004),

Table 1. Results obtained for different key-detection approaches, given the minimum number of notes for which all the
considered methods were able to indicate the key.

Piece
No.

Bach’s Preludes, WTC I Bach’s Preludes, WTC II Chopin’s Preludes, Op. 28 Shostakovich’s Preludes, Op. 87
SF KK T AS SF KK T AS SF KK T AS SF KK T AS

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × × × × ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓

7 ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ × ✓ ✓ ✓ ✓ × ✓

8 ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓ × × ✓ × × × × ✓ ✓ ✓ ×

12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓

13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ×

16 ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓

17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓

19 ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ ✓ ✓ ✓ ✓

20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓

21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓

22 ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓

23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

24 × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓

SF – the method using the signature of fifths, KK – the correlation approach based on the Krumhansl–Kessler key-profiles, T – the
correlation approach based on the Temperley key-profiles, AS – the correlation approach based on the Albrecht–Shanahan key-profiles,
✓ – correctly detected key, × – incorrectly detected key.

and Albrecht–Shanahan (Albrecht, Shanahan, 2013).
For each of the analyzed preludes the key was deter-
mined based on a short fragment taken from the be-
ginning of a given composition. For the considered key-
profile approaches, the key was detected after analy-
sis of very short fragments of music, even ones com-
prised of just two notes. However, in many cases, ex-
tending the analyzed fragment of the piece resulted in
the change of the previously detected key. For the al-
gorithm based on the signature of fifths, the key was
detected later, as typically more notes were needed to
determine the MDASF. However, usually the deter-
mined key was stable and did not change with exten-
sion of the musical fragment.

Let us analyze in detail the results of the key-detec-
tion process for all the considered scenarios. We com-
pared the minimum number of notes for which all key-
detection approaches were able to indicate the key. The
number of notes needed to determine the key was dif-
ferent for individual preludes but was always equal to
the number of notes required by the algorithm based
on the signature of fifths (due to the specificity of the
performed comparison, as explained earlier in this ar-
ticle). Results for individual preludes are shown in Ta-
ble 1. Correctly and incorrectly detected keys are illus-
trated for all considered key-detection approaches.
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Table 2. Effectiveness of determining the key in particular groups of preludes and using different key-detection approaches.

Collection SF [%] KK [%] T [%] AS [%]
Bach’s Preludes, WTC I 95.83 95.83 100 100
Bach’s Preludes, WTC II 87.50 87.50 91.67 87.50
Chopin’s Preludes, Op. 28 83.33 45.83 62.50 83.33

Shostakovich’s Preludes, Op. 87 83.33 87.50 87.50 95.83
All Preludes 85.42 79.17 85.42 91.67

SF – the method using the signature of fifths, KK – the correlation approach based on
the Krumhansl–Kessler key-profiles, T – the correlation approach based on the Temperley
key-profiles, AS – the correlation approach based on the Albrecht–Shanahan key-profiles.

Table 2 presents a synthetic summary of the results.
It lists the effectiveness of each of the considered key-
detection approaches in different sets of preludes. The
results of the effectiveness obtained for the set of all
preludes are also given (last row).

Analyzing the results illustrated in Tables 1
and 2, one can get the impression that, in terms of
the effectiveness, the algorithm using the signature
of fifths does not differ significantly from the correla-
tional approaches implementing key-profiles (the same
or greater effectiveness was achieved with Albrecht–
Shanahan key-profiles). Moreover, the algorithm uti-
lizing the signature of fifths in the majority of cases
required a greater number of notes to indicate a piece’s
key. In some cases, it was the only method that in-
dicated the wrong key, e.g., for Prelude No. 22 from
Bach’s “The Well-Tempered Clavier” – part II – or
Prelude No. 20 by Shostakovich. However, this algo-
rithm does exhibit some unique and advantageous pro-
perties.

In order to show the distinctive features of the al-
gorithm based on the signature of fifths, let us first
inspect the Prelude No. 14, Op. 87, by Shostakovich,
whose fragment is presented in Fig. 9.

Fig. 9. Initial fragment of the Prelude No. 14, Op. 87, by Shostakovich.

At the beginning of this Prelude, in its left-hand
part, one can notice many repeating tones of B♭. It
is also worth mentioning that up to the point marked
with the index 5, where the note G♭ appears in the
right-hand part, there are only three tones present in
the composition (E♭, D♭, B♭). Determination of the
MDASF (Fig. 10e) is not possible until reaching that
point on the staff. Knowing the MDASF, one can de-
termine the direction of the major/minor mode axis as
well as the angle φm = −36.6○ (Fig. 10f). The negative
value of the angle φm indicates the minor key mode –
in the considered case it is e♭ minor. The signatures
of fifths corresponding to the increasingly longer frag-
ments of the prelude (starting from its beginning to
a given index) are presented in Fig. 10.

The proposed algorithm correctly identified the key
after 207 notes. Table 3 presents the results of key-
detection obtained for all the approaches considered,
based on the analysis of fragments 0–1, 0–2, 0–3, 0–4,
and 0–5.

Analyzing the results presented in Table 3, we
can notice that the key-profile approaches need fewer
notes to detect the key. Unfortunately, the initial
indications are often incorrect and tend to vary as the
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Fragment 0–1 Fragment 0–2

a) b)

Fragment 0–3 Fragment 0–4

c) d)

Fragment 0–5 Fragment 0–5

e) f)

Fig. 10. Signatures of fifths corresponding to increasingly longer fragments of Prelude No. 14, Op. 87, by Shostakovich,
shown in Fig. 9 (up to the point marked with index 5).

Table 3. Summary of the key-detection results obtained for the fragment of the prelude shown in Fig. 10, using the
algorithm based on the signature of fifths (SF) as well as the considered approaches implementing the key-profiles of

Krumhansl–Kessler (KK), Temperley (T), and Albrecht–Shanahan (AS).

Method
Analized fragment

0–1 0–2 0–3 0–4 0–5
SF ? ? ? ? e♭
KK B♭ B♭ b♭ b♭ B♭
T b♭ b♭ b♭ b♭ b♭
AS B♭ e♭ b♭ e♭ e♭
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length of the analyzed music fragment increases. For
the key-profiles of Krumhansl–Kessler and Temper-
ley, the obtained keys were incorrect for all considered
fragments – B♭major (B♭) or B♭minor (b♭). This result
can be explained by the dominance of the sound B♭,
which is the tonic of the indicated keys. The Albrecht–
Shanahan key-profile approach detected various keys,
among which was the correct one, i.e., E♭ minor (e♭).
The algorithm using the signature of fifths needed
more notes than the key-profile approaches. However,
it indicated the key only when the MDASF was deter-
mined, and hence the detected key was usually correct.

Another distinctive feature of the key-detection al-
gorithm proposed in this paper is the stability of the
decision-making process, understood as low suscepti-
bility to changes in the detected key as the length of
the analyzed music fragment increases. This feature
can easily be illustrated by the Prelude No. 21, Op. 28,
by Chopin, the initial fragment of which is shown in
Fig. 11.

Fig. 11. Initial fragment of the Prelude No. 21, Op. 28,
by Chopin.

Table 4 presents the values of ri, which represent
the lengths of vectors making up the signatures of fifths
calculated based on the aggregate durations of individ-
ual pitch-classes for a given number of notes (starting
from the beginning of the prelude). The values from
Table 4 were used to create the signatures of fifths
shown in Fig. 12.

Table 4. Lengths of vectors representing the signatures of
fifths corresponding to the Prelude No. 21, Op. 28, by
Chopin, obtained for different numbers of initial notes.

Pitch-class
Number of notes

2 3 5 7 9 11 13 15
C 0.29 0.29 0.25

C♯/D♭
D 0.17 0.14 0.29 0.38

D♯/E♭ 0.2 0.17 0.14 0.14 0.13
E 0.25 0.2 0.17 0.14 0.14 0.13
F 1 1 1 1 1 1 1 1

F♯/G♭
G 0.25 0.2 0.17 0.14 0.14 0.13

G♯/A♭
A 0.2 0.17 0.14 0.14 0.13

A♯/B♭ 1 0.33 0.25 0.2 0.33 0.29 0.43 0.38
B

In Table 5, the results of the key-detection based on
the signature of fifths were juxtaposed with the results

Table 5. Key-detection results obtained for the Prelude
No. 21 by Chopin, Op. 28, using the algorithm based on the
signature of fifths (SF) as well as the considered approaches
implementing the key-profiles of Krumhansl–Kessler (KK),

Temperley (T), and Albrecht–Shanahan (AS).

Method
Number of notes

2 3 5 7 9 11 13 15
SF ? ? ? ? B♭ B♭ B♭ B♭
KK F F F F F F d d
T f f f F F F B♭ B♭
AS b♭ b♭ F F B♭ F B♭ B♭

obtained for the correlational approaches utilizing key-
profiles.

The results in Table 5 indicate that key-detection
algorithm based on the signature of fifths offers greater
stability. The key indicated after analysing the 9th
note does not change as the length of the fragment in-
creases further because the direction of MDASF does
not change, whereas the sign of the angle φm expe-
riences only insignificant variations (Figs. 12e–h). The
keys found using the key-profile approaches changed at
least once. This example clearly illustrates that the al-
gorithm based on the signature of fifths requires more
notes to determine the key, but once the key is de-
tected the decision is usually correct and less prone to
changes.

In summary, we can state the following:
– the proposed algorithm is computationally simple

and easy to implement, as it does not require com-
plex calculations;

– the key-detection algorithm based on the signa-
ture of fifths is competitive with the correlational
approaches using key-profiles, especially if one
wants to determine the key from a very short frag-
ment of music;

– the algorithm using the signature of fifths usu-
ally needs a larger number of notes to determi-
ne the key than its key-profile alternatives, but
once the key is detected the decision does not tend
to change as the length of the analysed music frag-
ment increases.

5. Conclusion

Development of multimedia systems is inextrica-
bly linked with methods enabling acquistion of musi-
cal knowledge. Currently, when almost all songs are
only a few mouse clicks away, the problem for listen-
ers is selection of music. Nowadays, many listeners use
software applications which are able to suggest songs
suitable for a given person. Such applications have be-
come an integral part of the music industry.

Classification of music can be facilitated by vari-
ous types of signal quantification and feature extrac-
tion techniques. Criteria of selection may include the
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2 notes 3 notes
a) b)

5 notes 7 notes
c) d)

9 notes 11 notes
e) f)

13 notes 15 notes
g) h)

Fig. 12. Signatures of fifths obtained for different lengths of the analyzed fragments of the Prelude No. 21, Op. 28,
by Chopin.
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style, genre, character or key of a piece. The algorithm
presented in this paper could be applied in such clas-
sification applications.

In this paper, we presented a novel algorithm en-
abling determination of the key of a musical piece
based on the analysis of its signature of fifths. The al-
gorithm is a simplified version of the method discussed
by Kania and Kania (2019). The simplification boils
down to the determination of the major/minor mode
of the analyzed piece via application of new descrip-
tors of the signature of fifths, i.e., the major/minor
mode axis, the characteristic angle of the signature
of fifths, and the major/minor mode angle. The effec-
tiveness of the algorithm was tested on a collection
of 96 preludes comprised of two sets of 24 preludes
“The Well-Tempered Clavier”, BWV 846-869, by Bach,
24 preludes Op. 28 by Chopin, and 24 preludes Op. 87
by Shostakovich. Each set of preludes, individually,
covered all possible keys.

The main advantage of the proposed key-detection
algorithm is the stability of its decision-making pro-
cess, i.e., low sensitivity to changes of the indicated key
as the length of the analyzed fragment of music is in-
creased. This feature clearly distinguishes the method
from the tested correlational key-detection approaches
based on key-profiles. Another advantage is its con-
ceptual as well as computational simplicity. The latter
advantage facilitates the method’s implementation in
hardware, e.g., real-time presentation of musical no-
tation on electronic displays. Calculations required to
obtain the key signature with this method can be lim-
ited to execution of addition and comparison opera-
tions, which are convenient in terms of hardware im-
plementation (only these two operations are needed to
determine MDASF). Implementation of the proposed
algorithm in a microprocessor system or SoC uses min-
imal resources, smaller than those required by the con-
sidered correlation-based approaches (using tonal pro-
files), in case of which many multiplication and division
operations need to be performed.

The signature of fifths provides means for effective
realization of the key-detection process. The effective-
ness of the proposed algorithm, tested on the whole
set of 96 preludes, was over 85 %. The correct key was
detected after the analysis of 6.7 notes, on average.

The concept of the signature of fifths creates new
opportunities in the area of music information re-
trieval. In addition to key determination, it has already
been shown that the coefficients quantifying the vari-
ability of the signatures of fifths in time can be useful
as feature coefficients in music classification processes
(Kania et al., 2021b; Łukaszewicz, Kania, 2022).
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