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The present study focuses on the spatial characteristics of the sound pressure level (SPL) generated by
a circular piston (a circular-shaped acoustic transducer or loudspeaker). It presents a short theoretical review
to aid inunderstanding the primary sound field characteristic – acoustic pressure – as a function of time,
frequency, directivity angle, and distance from the source. The study introduces a simple and practical criterion
for determining the near- and far-field boundary along the axis of the circular piston as a function of frequency.
This criterion is validated through theoretical analysis and experimental measurements. Overall, the results
show the influence of circular piston parameters on the SPL spatial distribution.
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1. Introduction

The study of sound’s spatial characteristics plays
a critical role in numerous engineering and medical ap-
plications (Stefanowska, Zieliński, 2024). Over the
years, extensive research has been conducted on sound
propagation in different environments, such as water
(van Geel et al., 2022) and air (Iliev, Zhivomirov,
2015; Kudriashov, 2017).
Additionally, various experiments have explored

sound produced by different sources, including uncon-
ventional ones (Öztürk, Tiryakioglu, 2020).
To better understand the sound field generated by

an acoustic transducer, its spatial characteristics must
be examined using both conventional and innovative
methods (Klippel, Bellman, 2016; Shi et al., 2022).
In this context, the sound pressure pa is the physical
quantity (parameter) that provides the most detailed
information about the structure of the sound field in
the space.
Theoretical analysis indicates that the SPL near

a circular piston is not uniformly distributed. In clas-
sical acoustics, two primary regions are distinguished

around an acoustic source: the near-field and far-field.
A third region, known as the very near-field, is pri-
marily the subject of research in vibration mechanics.
In some references, the near-field is referred to as the
Fresnel zone, while the far-field is called the Fraun-
hofer zone. Each zone has distinct formulas for deter-
mining the sound pressure pa. This raises questions
about the delineation of the boundaries defining vari-
ous zones and the corresponding SPL variations within
each zone. Equally crucial is pinpointing the moment
at which the SPL stabilizes, ensuring accurate sound
reproduction.
This paper builds upon the author’s previous re-

search (Iliev, Zhivomirov, 2015), which provided
a theoretical overview of established mathematical
techniques for calculating the SPL generated by a cir-
cular piston in both near-field and far-field condi-
tions. Expanding on that foundation, this work pro-
poses a unified framework to define the boundary
between the near- and far-field zone of a circular
piston.
Understanding the formation of the SPL spatial

structure around the acoustic transducer enhances its
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design and application precision, especially in monitor-
ing and screening systems.

2. Background

As shown by Kinsler et al. (2000) the total acous-
tic pressure pa generated by a circular piston at an
arbitrary point A (Fig. 1) can be obtained using the
well-known Huygens–Fresnel principle (also referred to
as the Rayleigh integral):

pa(entire)(θ, f, r, t) = jρsfνm ∫
Q

1

l
e
j(2πft− 2πfl

c )

dQ, (1)

where θ – elevation angle; f – frequency of the sound
signal; r – distance between the circular piston and ob-
servation point A; t – time; ρs – density of the medium;
νm – deformation amplitude the transducer surface;
Q – surface area of the circular piston; l – distance
between the elementary section dQ and observation
point A; c – speed of sound in the medium.
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Fig. 1. Determination of the SPL in front
of a circular piston.

Equation (1) is not suitable for direct practical
implementation. However, the entire acoustic pres-
sure pa(entire), generated by a circular piston, can also
be computed using the authors’ modified expression
(Iliev, 2014):

pa(entire)(θ, f, r, t) = ρsfνmej2πft
a
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where a – radius of the circular transducer; b – radial
distance between the elementary section (point source)
dQ and the center of the circular piston O; α – direc-
tivity angle (azimuth).

A simplified solution of Eq. (2) allows for calcu-
lating the sound pressure in the far-field pa(far) (when
r ≫ d) on the axis of the circular piston (when θ = 0),
as follows (Kinsler et al., 2000):

pa(far)(0, f, r, t) =
ρsfνm

r
ej2πft
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Also, a simplified version of Eq. (2) for the near-field
SPL pa(near), on the axis of the circular piston, is given
(Kinsler et al., 2000):

pa(near)(0, f, r) = 2ρsfνm

⋅
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Equation (4) is graphically represented in Fig. 2, evalu-
ated for various distances and frequencies for a circular
piston with a = 0.08m. This provides insight into the
spatial structure of the near-field SPL.
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Fig. 2. Axial near-field SPL structure for various distances
and frequencies for a circular piston with radius a = 0.08m,
evaluated by Eq. (4). The pulsations of the SPL are evident.

Equation (4) reveals that extrema in the axial SPL
occur due to the sine function. For a constant sound
speed c and a specific circular piston with radius a,
the sine function reaches extremum values at distances
(Lependin, 1978):

rm =
a2f

mc
−

mc

4f
, (5)

where m ∈N. The maxima occur when m is odd, and
the minima when m is even. The first SPL maximum
(moving toward the circular piston axis) appears for
m = 1, at a distance:

rmax(first) =
a2f

c
−

c

4f
. (6)
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This relationship is depicted in Fig. 3. It turns out that
it represents the contour of the outer ridge of the SPL
structure shown in Fig. 2.
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Fig. 3. Distance of the first axial SPL maximum, evalu-
ated by Eq. (6), vs. frequency for a circular piston with
r = 0.08m. The plot can also address the problem of iden-
tification of the frequency of the first axial SPL maximum

in relation to distance (see Eq. (7)).

For distances r < rmax(first) the axial SPL suffers from
maxima and minima, and for distances r > rmax(first)

the SPL decreases monotonically, approaching an
asymptotic dependence 1/r (Rossing, 2017). There-
fore, one may consider the distance rmax(first) as a rea-
sonable threshold or dividing line between regions
where the SPL is not completely formed and where
the SPL becomes asymptotic. It is evident that rm is
frequency-dependent – the higher the frequency, the
longer the near-field zone of the transducer.
Moreover, Eq. (6) reveals that the distance

rmax(first) has physical meaning only for frequencies
f > c

2a
(Iliev, 2014). For those frequencies, the radi-

ation of the circular piston resembles that of a simple
source, that is, without extrema.
Consequently, from Eq. (6), one can derive a rela-

tionship to determine the frequency of the first maxi-
mum:

fmax(first) =

c (
√

a2 + r2 + r)

2a2
. (7)

It should be noted that different authors (Kleiner,
2013; Gelfand, 2017) have proposed various expres-
sions (similar to Eq. (6)) to estimate the last maxi-
mum, which some consider the upper border distance
of the near-field. In (Kozień, 2012), the hybrid inten-
sity method is used to determine the boundary be-
tween the near and far fields. However, these methods
have some disadvantages. The first (Kleiner, 2013;
Gelfand, 2017) is too rough and lacks accuracy. The
second method (Kozień, 2012) is too complicated and
less practical.

Currently, there is no established criterion for delin-
eating all zones, each with its unique characteristics,
that influence the distribution and formation of the
SPL in front of the circular piston.

3. Boundary between the near- and far-field

Identifying the region where sound pressure is fully
developed provides valuable insights into the practi-
cal utility of a circular piston. Conversely, employing
a circular piston at frequencies and distances where the
SPL is not fully formed yields unsatisfactory outcomes.
In this paper, the authors introduce an enhanced

method that not only determines the boundary be-
tween the fully developed acoustic field and the area
where the acoustic field suffers from interferences, but
also provide a new interpretation of the zones and their
characteristics in front of the circular piston. The lat-
ter is based on the normalized difference between the
axial SPLs calculated by Eqs. (2) and Eq. (3):

∆pa(0, f, r) =
pa(entire) − pa(far)

pa(far)
. (8)

For a given circular piston, the boundary can be iden-
tified in terms of distance and frequency when both
Eq. (2) and Eq. (3) yield similar results.
The axial overall sound pressure level produced by

a circular piston with a radius a = 0.08m, as deter-
mined by Eq. (2), is shown in Fig. 4. Additionally,
the axial far-field SPL, derived from Eq. (3), is de-
picted in Fig. 5. Both equations are numerically eval-
uated in the MathCAD environment and graphically
represented in MATLAB RO. The normalized difference
between the entire field SPL and the far-field SPL on
the axis, calculated by Eq. (8), is presented in Fig. 6.
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Fig. 4. Axial overall field SPL, evaluated by Eq. (2),
for a circular piston with r = 0.08m.

The authors propose that the distance where the
SPL difference ∆pa < 30% (using the well-known 3 dB
rule) should be considered the dividing line between
the area with unstable SPL (i.e., the near-field zone)
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Fig. 5. Axial far-field SPL, evaluated by Eq. (3),
for a circular piston with r = 0.08m.
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Fig. 6. Normalized SPL difference for a circular piston with
r = 0.08m, calculated by Eq. (8). The black dashed line de-
picts the boundary between the near- and far-field accord-
ing to the newly proposed criterion. The red dashed line
represents the outer ridge of the SPL structure, evaluated

by Eq. (4).

and the area with asymptotic SPL (i.e., the far-field
zone). It is evident that the boundary calculated by
this rule strongly differs from the generally accepted
rule-of-thumb, which is based on the outer ridge of the
SPL structure evaluated by Eq. (4).
When applying the proposed method to distin-

guish the dividing line between the interferential area
and the asymptotic area of the SPL for a circular pis-
ton with a radius a = 0.08m, one observes interferences
for frequencies f > 2147Hz up the upper-frequency
limit of the circular piston – 10 000Hz. By applying
the 30% difference criterion between the SPLs calcu-
lated by Eq. (2) and Eq. (3), one can determine the
distance r for each frequency where the SPL experi-
ences interferences. For example, at f = 5000Hz, using
the isobars from Fig. 6, the interference region is found
for r < 0.11m (close to rmax(first)).

4. Experimental results

An experiment was conducted to validate the theo-
retical statements and provide a semi-quantitative, in-
tuitive understanding of the proposed method, without
claiming accuracy. In future work, more precise results
will be obtained using numerical simulations and ac-
curate measurements in a controlled environment.
The object of the experiment is a circular piston

(loudspeaker) with a radius a = 0.08m, identical to
the loudspeaker with the same radius used for the the
theoretical analysis. For this loudspeaker, and taking
into account the aforementioned factors,one may ex-
pect extremes in the SPL to occur between 2147 Hz
and the maximum reproducible frequency of this loud-
speaker model – 10 000Hz.
Furthermore, for distances greater than r > 0.065m

at f > 2147Hz and r > 0.21m at f = 10000Hz, the SPL
is expected to decrease monotonically.
The measurements of the axial SPL are car-

ried out using an active sound-level meter, DAQ-
system, laptop, and MATLAB RO software developed
by the authors. The measurements are performed us-
ing a sine-wave signal with a frequency of f = 5000Hz
at eight different distances: r = {0.001,0.01,0.05,
0.1,0.2,0.3,0.4,0.5}m. The results are shown in Fig. 7
and are compared with the theoretical axial SPL in the
near-field, calculated by Eq. (4).

Fig. 7. Axial SPL at f = 5000Hz theoretically estimated
(solid red line) and measured at distances r = {0.001,0.01,

0.05,0.1,0.2,0.3,0.4,0.5}m (blue crosses).

There is a well-pronounced overlap between the
measured SPL (represented by blue crosses) and
the predicted theoretical SPL (solid red line). Notice-
able extrema in the axial SPL occur at r = 0.012m
(SPL minimum) and r = 0.076m (SPL maximum),
which are theoretically predicted by Eq. (5) for this
particular operating frequency. For relatively large
distances r, the theoretical and the experimental SPLs
decrease monotonically, approaching an asymptotic
dependence 1/r (black dashed line), in agreement with



I.Y. Iliev, H.Z. Karaivanov – Mapping Sound Pressure Levels: A Novel Approach. . . 213

Eqs. (3) and (4), and the proposed interpretation. In
this particular case, the near-field boundary is situated
at r = 0.11m, according to Eq. (8). Beyond this point,
the SPL decreases strictly monotonically, as expected.

5. Conclusion

The newly proposed method for distinguishing the
dividing line between the interference and asymptotic
areas of the SPL produced by a circular piston is rel-
atively simple, easy to apply, and practically accu-
rate. If one knows the radius a and frequency f of
the circular piston, one can implement Eqs. (2), (3),
and (8) to generate a graph similar to those shown in
Fig. 6.
From the presented review of the different areas in

front of the circular piston, the following conclusions
can be drawn:

– the larger the circular piston radius a, the longer
the interference area;
– the higher the frequency f , the longer the inter-
ference area;
– the higher the sound speed c, the shorter the in-
terference area.

Furthermore, when dealing with complex signals
exhibiting a complex and non-stationary spectral com-
position, a region of pronounced distortions in the
sound field emerges within a specific area in front
of the circular piston (specifically, between 0m and
0.21m in this case). This occurs due to the fact that
for certain spectral components, this region functions
as a near-field zone. In contrast, for others, it repre-
sents a far-field zone.
In this context, it becomes highly significant to de-

fine an ‘unconditional far-field zone’, which is deter-
mined by the maximum frequency of the considered
signal or the maximum reproducible frequency of the
circular piston, whichever is lower. Likewise, the con-
cept of an ‘unconditional near-field zone’ needs to be
introduced, with its boundary defined by either the
psychical characteristics of the circular piston (f > c

2a
)

or by the lowest frequency within the signal spectrum,
whichever is higher. The intermediate region between
these two zones can be referred to as the ‘transitory
zone’.
The results shown in Figs. 2, 3, 4, 5, and 7 can be re-

produced by the user using the MATLAB RO scripts and
data given in (Zhivomirov, Iliev, 2024) as supplemen-
tary material. This allows for a better understanding
of the visualization and the ability to reuse or adapt
the code for specific user data.
The conclusions drawn in this paper should be con-

sidered in the development of various screening sys-
tems (such as sonography, sound localization systems,
audio systems, etc.) and in the development of systems
using circular pistons in general.
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