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The application of the NARMAX method to the modelling of the nonlinearity of dy-
namic loudspeakers is described. The principle of creating a polynomial representation of
a model, the problems stemming from a too large number of model coe�cients and the
method of optimizing the model are presented. The method was tested on data from ac-
tual loudspeaker measurements. Di�erent models are compared as regards their accuracy
depending on the modelling parameters. Finally, the model characteristics are compared
with the results of loudspeaker measurements performed by classical methods.

1. Introduction

Loudspeaker nonlinearity can be modelled by various methods such as Volterra se-
ries [7, 12], nonlinear analogous equivalent circuits [9], nonlinear di�erential equations
[6] and so on. One of the methods is NARMAX (Non-linear AutoRegressive Moving
Average with eXogenous input). The NARMAX model was proposed by Leontaritis
and Billings in 1985 [11, 12]. In this model, the output signal values are computed using
both the input signal values and the previous output signal values. This greatly reduces
the number of coe�cients.

The NARMAX model is then analogous to IIR (In�nite Impulse Response) digital
�lters similarly as the Volterra series model is analogous to FIR (Finite Impulse Response)
digital �lters. FIR-�lters use only input signal samples and require a large number of
coe�cients. IIR-�lters use both input and output signal samples and require a much
smaller number of coe�cients. The above terminology is used in this paper.

The polynomial NARMAX model for the dynamic loudspeaker is described in the
paper. It has been proved that the direct model can be unstable. In order to stabilize the
model, the optimization procedure is necessary. The optimization causes also signi�cant
reduction of the number of coe�cients. The modeling of an actual loudspeaker has been
done, and the results of the modeling and measurements are compared.
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2. Polynomial representation of the NARMAX model

The most general NARMAX model of a system with one input and one output can
be expressed by the following equation:
y(t) = F [y(t− 1), ..., y(t−ny), x(t−d), ..., x(t−d−nx), e(t−1), ..., e(t−ne)] + e(t), (1)

where F [·] � an unknown nonlinear function, t � the discrete time, x(t) � the exci-
tation, y(t) � the system response, e(t) � the prediction error, nx � the order of the
input signal, ny � the order of the output signal, ne � the order of the noise, d � the
delay of the system.

If it is assumed that the system does not produce any noise, a simpli�ed form of the
NARMAX model can be developed. The latter can be described by the following general
equation [1, 4]:

y(t) = F [y(t− 1), . . . , y(t− ny), x(t− d), . . . , x(t− d− nx)] + e(t). (2)

Polynomial functions are most commonly applied as the F functions, although other func-
tions, e.g. rational or radial ones, can also be used [2, 4]. The polynomial representation
of the NARMAX model is as follows:

y(t) =
n∑

i1=0

θi1ui1(t) +
n∑

i1=0

n∑

i2=i1

θi1i2ui1(t)ui2(t)

+
n∑

i1=0

n∑

i2=i1

n∑

i3=i2

θi1i2i3ui1(t)ui2(t)ui3(t) + . . . + e(t), (3)

where n = ny + nx, u1(t) = y(t− 1), u2(t) = y(t− 2), ..., uny(t) = y(t− ny), uny+1(t) =
x(t− d), ..., un(t) = x(t− d− nx), θ � model coe�cients.

Equation (3) can be written as:

y(t) =
M∑

m=1

θmpm(t) + e(t), (4)

where M � the number of polynomial coe�cients, pm(t) � the monomials of elements
ui(t) of degree l at the most.

For example, for ny = nx = l = 2 there are M = 20 polynomials and they are as
follows:

p1(t) = y(t− 1), p2(t) = y(t− 2),
p3(t) = x(t− d), p4(t) = x(t− d− 1),
p5(t) = x(t− d− 2), p6(t) = y2(t− 1),
p7(t) = y2(t− 2), p8(t) = x2(t− d),
p9(t) = x2(t− d− 1), p10(t) = x2(t− d− 2),

p11(t) = y(t− 1) · y(t− 2), p12(t) = y(t− 1) · x(t− d),
p13(t) = y(t− 1) · x(t− d− 1), p14(t) = y(t− 1) · x(t− d− 2),
p15(t) = y(t− 2) · x(t− d), p16(t) = y(t− 2) · x(t− d− 1),
p17(t) = y(t− 2) · x(t− d− 2), p18(t) = x(t− d) · x(t− d− 1),
p19(t) = x(t− d) · x(t− d− 2), p20(t) = x(t− d− 1) · x(t− d− 2).
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If we have N input and output signal samples obtained from measurements, from
Eq. (4) we can develop a system of equations which can be expressed in following matrix
form [4, 5]:




y(1)
y(2)
...

y(N)




=




p1(1) p2(1) . . . pM (1)
p1(2) p2(2) . . . pM (2)
· · · · · · · · · · · ·

p1(N) p2(N) . . . pM (N)


 ·




θ1

θ2

...
θM




+




e(1)
e(2)
...

e(N)




(5)

and in this simpler form:
Y = Pθ + e. (6)

System (6) is a linear equation system since the terms of regression matrix P are
numbers calculated from the measured data. The model is identi�ed by the solution of
system (6), where coe�cients θ1 ... θm are unknown. Prediction error vector e is assumed
to be equal to 0.

There are various methods of solving a linear equation system, e.g. Gauss elimination
or iterative methods [8]. System (6) is often ill-conditioned and therefore matrix P should
be orthogonalized [1, 5] using, for example, the Gram-Schmidt method, the Givens ro-
tations or the Householder transformation [8]. In this paper the classical Gram-Schmidt
(CGS) orthogonalization is applied since it can be easily implemented in numerical com-
putations.

The orthogonalization algorithm is based on the decomposition of the prediction
matrix into two matrices [1, 5].

P = WA, (7)
whereW is columnwise orthonormal, i.e. WT W = I, I is a unit matrix, A is a triangular
upper matrix.

After orthogonalization, vector g is determined.
g = WT Y. (8)

Then taking advantage of the fact that matrix A is triangular, reverse substitution is
applied to determine coe�cients θ:

Aθ = g. (9)
The main drawback of polynomial representation is that a very large number of

parameters must be determined. The number of coe�cients (M) in the polynomial which
describes the model depends on the lag of the input and output signals and that of the
noise and on the particular order of the polynomial (order of nonlinearity � l). The
number can be determined from this recurrence formula [2, 14]:

M =
l∑

i=1

ni , ni = [ni−1(ny + nx + ne + i)]/i, n0 = 1. (10)

For example for ny = nx = ne = 10 and l = 3 the number of coe�cients is as high as
M = 5983 and the number of terms in matrix P is equal to M ·N where N ≥ M (most
often N > M).
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In order to compare various models, the following measure of accuracy is assumed:

ε =
‖e‖2
‖Yr‖2 =

∑
(yr − ym)2∑

y2
r

· 100%, (11)

where Yr � the vector of the response of an actual loudspeaker � Yr = Pθ + e, Ym

� the vector of the response of the model � Ym = Pθ, ‖a‖ =
√∑

i

a2
i � Euclid's norm

of the vector, ε is a ratio of the prediction error energy to the energy of the response.

3. Optimization of the model

Since the number of coe�cients to be calculated is very large (due to the fact that the
structure of the nonlinearity of the modelled actual system is unknown), the usefulness
of such a model is rather small. There are also di�culties in the correct interpretation of
the model. In addition, the unoptimized model is unstable in most cases.

In order to optimize the model, it is necessary to reject the insigni�cant coe�cients,
i.e. to identify the structure of the system.

The optimizing procedure has been built into the orthogonalization algorithm (CGS)
for regression matrix P. It is based on the choice of subset Ms (Ms < M) of columns from
all possible columns M of matrix P (Fig. 1). This yields new regression matrix Ps with
a lower number of coe�cients. The columns of Ps are selected using this error reduction
ratio [1, 5]:

[err]i =
g2

i

〈y, y〉 , (12)

where 〈·, ·〉 denotes the inner product, that is:

〈y, y〉 =
N∑

k=1

y2
k(t) (13)

and gi is i-th term of vector g.

Fig. 1. Selection of most signi�cant columns of regression matrix.
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The value of [err]i represents a decrease in the prediction error energy for coe�cient
θi expressed by column pi.

The optimizing procedure performs the following functions in every step of orthogo-
nalization:

� the computation of error reduction ratio [err]i for every coe�cient,
� the choice of a coe�cient with the maximum value of [err]i.
Now the size of matrix Ps, i.e. the number of coe�cients θi, remains to be determined.

The accuracy of the model: ρ (0 < ρ ≤ 1) is often assumed as the optimization-end
criterion [14]. The coe�cients are selected as long as Eq. (14) is not ful�lled.

1−
Ms∑

i=1

[err]i < ρ. (14)

This criterion has a disadvantage. When a high model accuracy (a low value of ρ) is
assumed, too many coe�cients (often all of them (Ms = M)) may be taken into account.
Akaike's information criterion (15) gives better results [1, 5, 14].

AIC(φ) = N log σ2
e + Msφ, (15)

where σ2
e =

1
N

N∑
i=1

e2
i � prediction error variance.

This criterion represents a compromise between the accuracy of the model (σ2
e) and

its compliance (Ms). The NARMAX model structure is usually de�ned by means of
φ = 4 (AIC(4)) [13]. The formation of Ps is stopped when AIC(4) reaches the minimal
value.

4. High-order model

Because of the long loudspeaker impulse response, a satisfactory accuracy can be
obtained only if the order of the model is su�ciently high but this entails a large number
of coe�cients. For example, to obtain a NARMAX model of the 30th order, a matrix
consisting of about 50 000 columns must be orthogonalized. It is practically impossible
to handle this amount of data � prediction matrix P would use about 20GB of memory.
Therefore a way had to be found to overcome this problem.

The fact that the number of coe�cients can be reduced many times through the
optimization procedure was exploited. The model is built in steps which are graphi-
cally represented in Fig. 2. First a low-order model with Mi: (300 � 500) coe�cients is
created and optimized. As a result, a model with maximally a few dozen coe�cients
is obtained. Then the model is supplemented with the next Mi coe�cients due to its
increased order. After the next optimization, again a few dozen coe�cients (not nec-
essarily the same as in the �rst step) are obtained. This procedure is repeated many
times until all the coe�cients associated with the assumed order of the model have been
analyzed.
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Fig. 2. Steps in creation of high-order NARMAX model.

5. Comparison of the results of measurements and modelling

5.1. Measurements

In order to obtain data (excitation x(t) and response y(t) values) for the creation of
the model, measurements of a low-frequency loudspeaker were performed in the anechoic
chamber of the Institute of Telecommunications and Acoustics. The loudspeaker (Ton-
sil GDN 20/35/1) was set in a closed box and digitally generated noise with uniform
probability distribution and an amplitude of 15 V RMS (28W) (2/3 of the loudspeaker's
nominal power) was used as the input signal [3]. The loudspeaker response was recorded
via a microphone and converted to a digital domain. In order to eliminate random noise,
the response was averaged 100 times. The measurement setup is shown in Fig. 3.

Fig. 3. Measurement setup.
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5.2. Unoptimized NARMAX model

A linear FIR-type model of the 50-th order was investigated �rst. The impulse re-
sponse of the model was compared with that of the loudspeaker � see Fig. 4. The accu-
racy was quite good, particularly in the initial part of the response.

Fig. 4. Loudspeaker impulse response obtained from measurement (dashed line) and from model
(solid line).

Then two IIR-type linear models of the 20-th and 50-th order were identi�ed. Finally,
FIR-type nonlinear models of the 8-th and 12-th order and IIR-type (i.e. NARMAX)
models of the 4-th and 6-th order were studied. In all the nonlinear models, the order of
nonlinearity was limited to l = 3.

The IIR-type models (which use also delayed system response samples) proved to be
unstable. The number of coe�cients and error ε for all the considered models are given
in Table 1.

Table 1. Comparison of di�erent loudspeaker models.

Model (structure) ε [%] No of coe�.
l = 1, nx = 50, ny = 0, (FIR) 8.65 51
l = 1, nx = 200, ny = 0, (FIR) 5.18 201
l = 1, nx = 20, ny = 20, (IIR) � 41
l = 1, nx = 50, ny = 50, (IIR) � 101
l = 3, nx = 8, ny = 0, (nonlinear FIR) 53.7 165
l = 3, nx = 12, ny = 0, (nonlinear FIR) 111.6 560
l = 3, nx = 4, ny = 4, (nonlinear IIR) � 165
l = 3, nx = 6, ny = 6, (nonlinear IIR) � 680
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5.3. Optimized model

The results of the loudspeaker measurements described in Subsec. 5.1 were used to
check the optimization procedure. Models with di�erent structure (identical as in Sub-
sec. 5.2) were considered. The optimization results are presented in Table 2.

Table 2. Comparison of various loudspeaker models (after optimization).

Model (structure) ε [%] No of coe�.
l = 1, nx = 50, ny = 0, (FIR) 8.43 30
l = 1, nx = 200, ny = 0, (FIR) 6.44 52
l = 1, nx = 20, ny = 20, (IIR) 10.57 26
l = 1, nx = 50, ny = 50, (IIR) 6.12 43
l = 3, nx = 8, ny = 0, (nonlinear FIR) 34.03 6
l = 3, nx = 12, ny = 0, (nonlinear FIR) 35.19 8
l = 3, nx = 4, ny = 4, (nonlinear IIR) 37.61 9
l = 3, nx = 6, ny = 6, (nonlinear IIR) 36.54 10

The characteristic feature of all the optimized models is their stability. For a similar or
higher accuracy than that of the unoptimized models they require a much lower number
of coe�cients.

An illustrative impulse response of the 4-th order NARMAX model is shown in Fig. 5.
The response is very short, which means that the order of the model is too low.

A comparison of the plots for the loudspeaker and the model excited by the same
signal (Fig. 6) shows that the model has a tendency to reduce the maximum amplitude
values.

Fig. 5. Loudspeaker impulse response obtained from measurement (dashed line) and from 4-th order,
10-coe�cient NARMAX model (solid line).
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Fig. 6. Signal at loudspeaker output (dashed line) and from 4-th order, 10-coe�cient NARMAX
model (solid line).

The four coe�cients which if included in the model ensure the highest error reduction
values [err] are given in Table 3. They have the most decisive e�ect on the accuracy of the
model and are selected as the �rst ones by the optimization procedure. The coe�cients
are linear since the loudspeaker nonlinearities were slight.

Table 3. Coe�cients ensuring highest [err] values.

Model structure 1 2 3 4
term [err] term [err] term [err] term [err]

FIR and NFIR x(t− 2) 0.20 x(t− 3) 0.22 x(t− 1) 0.14 x(t− 4) 0.05
IIR and NIIR y(t− 1) 0.82 y(t− 2) 0.10 y(t− 3) 0.04 x(t− 1) 0.01

To gain a picture of the relationship between model accuracy and the number of
coe�cients, a group of models was built. All the models were developed for the same
signal and parameters:

� the order of nonlinearity � l = 3,
� the order of the model � nx = ny = 16,
� the criterion for the choice of coe�cients � error reduction ratio [err],
� the criterion for ending model development � ρ.
Only the value of ρ was changed to obtain models with di�erent numbers of coe�-

cients. Also modelling for the termination criterion based on AIC(4) was performed to
�nd out when the selection of coe�cients will end.
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The relationship between the modelling error and the number of coe�cients is illus-
trated in Table 4 and Fig. 7.

Table 4. Relationship between modelling error and number of coe�cients.

Ms (No of coe�.) ε [%] ρ [%]
7 44.56 2.00
9 24.14 1.00
11 15.22 0.70
13 13.41 0.60
15 14.53 0.50
16 17.26 0.45
18 17.39 0.40
20 14.33 0.37
21 17.63 0.35
24 15.19 0.33
27 13.51 0.30
28 13.19 0.28
29 11.27 AIC(4)
32 12.60 0.26
34 12.77 0.25

Fig. 7. Relationship between modelling error and number of coe�cients for NARMAX model.

5.4. High-order model

A NARMAX model was built according to the algorithm described in Sec. 4 for the
following modelling parameters:

� the order of nonlinearity � l = 3,
� the order of the model � nx = ny = 33,
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� the number of rows in matrix P � N = 700,
� the number of coe�cients determined in one step � Mi = 400,
� the number of samples for model testing � Nf = 8192,
� the criterion for the selection of coe�cients � error reduction ratio [err],
� the criterion for ending the creation of the model � AIC(4).
The modelling resulted in a 64-coe�cient NARMAX model characterized by error

ε = 13.9%.
The response of the model and that of the actual loudspeaker to the same excitation

are shown in Fig. 8; the impulse responses and the frequency characteristics are shown
respectively in Figs. 9 and 10.

Fig. 8. Model response (solid line) and actual loudspeaker response (dashed line).

By comparing the impulse responses and the frequency characteristics we can assess
only the linear properties of the model. To check how the model copes with nonlinearities,
THD (a coe�cient commonly used for assessing nonlinear distortions) was employed. To
obtain the data needed for the calculation of THD, sinusoidal excitations with di�erent
frequencies were fed at the loudspeakers input and a spectral analysis of the loudspeaker
responses was carried out, yielding the levels of the particular harmonics. The same exci-
tation signals were fed at the input of the model and the latter's response was analyzed.
Spectra of the response to the 300Hz sinusoidal signal excitation are shown in Fig. 11.
To see them better, the two spectra are shifted slightly relative to each other on the
frequency axis. No components higher than the third harmonic occur in the model re-
sponse spectrum (the left spectral lines) � due to the fact that the model nonlinearity
was limited to the 3rd order.
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Fig. 9. Model impulse response (solid line) and actual loudspeaker impulse response (dashed line).

Fig. 10. Model frequency characteristic (solid line) and actual loudspeaker frequency characteristic
(dashed line).
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Fig. 11. Spectra of loudspeaker response (right spectral lines) and model response (left spectral lines)
to 300Hz sinusoidal signal excitation.

The THD (dB) for the �rst three harmonics was calculated from the following formula:

LTHD = 10 log(10L2/10 + 10L3/10)− L1 [dB]. (16)

The results are given in Table 5.

Table 5. THD for actual loudspeaker and model responses.

Frequency [Hz] Loudspeaker THD [dB] Model THD [dB]
100 −21.9 −39.1

150 −25.9 −48.2

200 −25.5 −33.2

300 −28.9 −35.1

500 −30.7 −35.6

700 −38.5 −44.0

1000 −37.8 −49.3

2000 −33.1 −51.8

4000 −49.5 −73.6

6. Conclusions

The simulations and the measurements have shown that to model a dynamic loud-
speaker correctly it is necessary to use a high-order NARMAX model. A polynomial
representation of such a model requires a very large number of coe�cients. Besides the
obvious computational and interpretational problems associated with operations on such
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a large set of data, it is also di�cult to obtain stability. All the unoptimized NARMAX
models proved to be unstable (Table 1).

Therefore an optimization procedure was applied and as a result the number of coef-
�cients was reduced considerably whereby the stability of the model improved (Table 2).

It follows from Table 3 that the chosen criterion (based on AIC(4)) for ending the
selection of model coe�cients ensured the highest accuracy of the model in the analyzed
range of numbers of coe�cients.

An analysis of the higher-order model showed a close similarity between the model
linear characteristics and the actual loudspeaker linear characteristics. Some di�erences
can be observed between the frequency characteristics � the model one is more jagged
and irregular.

The model response has smaller linear distortions owing to the fact that no terms
with higher orders of nonlinearity occur in the model: their presence would result in the
appearance of higher harmonics and increase the level of the second and third harmonic.
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