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In the actual situation of measuring an environmental noise, it is very often that only
the resultant stochastic �uctuation contaminated by an additional noise of arbitrary dis-
tribution type can be observed. In this paper at �rst a noise cancellation for reasonably
removing the e�ect of the above additional noise, especially in a whole probability distri-
bution form, is derived theoretically in order to estimate only the undisturbed objective
output response. Next, for the purpose of predicting a whole expression form of the out-
put response probability of an acoustic system excited by an arbitrary stochastic input
with the additional noise, a new stochastic signal processing method, re�ecting the e�ect
of the additional noise �uctuation, is proposed in a whole probability distribution form.
The e�ectiveness of the proposed theoretical methods is experimentally con�rmed too by
applying them to the actual data measured in the complicated sound wall systems.

1. Introduction

In the actual measurement of environmental noise, the desired signal is usually con-
taminated by an additional noise of an arbitrary distribution type and it is only the
resultant signal that can be observed [1].

In this paper, at �rst, a new practical trial of estimating (especially in a whole prob-
ability distribution form) the uncontaminated output response probability of sound wall
systems with background noise is derived without using any arti�cial error criterion like
the least-squares method. More concretely, a mathematical model of arbitrary sound en-
vironmental systems is introduced by using a physical law of additive principle on the
energy scale [2] in a form of a linear system on the intensity scale. At �rst, after in-
troducing a probability expression form of the resultant output response contaminated
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by the background noise, a noise cancellation method in a whole probability distribu-
tion form is developed by which only the uncontaminated output response probability
function form for the above sound environmental systems can be detected from the data
contaminated by the background noise. Next, for the purpose of predicting the output
response probability excited by an arbitrary stochastic input with background noise, a
new signal processing method of probabilistically re�ecting the e�ect of the background
noise is proposed. More speci�cally, a relationship between two kinds of the probabil-
ity density function (abbr. p.d.f.) and the cumulative distribution function (abbr. c.d.f.)
forms on the system output excited by a speci�c stochastic input of reference type and
an arbitrary random input without the additional noise for an arbitrary environmental
systems is discussed in the form on an intensity scale. Then, a relationship between two
kinds of p.d.f.s of the system outputs excited by an arbitrary stochastic input in the
absence and in the presence of background noise is also derived in the form on an in-
tensity scale. Based on these relationships, a new prediction method on a whole p.d.f.
and/or c.d.f. forms of the system output for the arbitrary environmental systems with
the background noise is proposed especially by the use of the observed data excited by
the speci�c stochastic input of reference type with the background noise. Finally, the
e�ectiveness of the proposed methods is con�rmed experimentally too by applying them
to the actual type sound wall systems.

2. Theoretical consideration

2.1. Noise cancellation on a whole probability form

The observed data are usually given in a sound level form (dB scale) based on the
logarithmic type non-linear transformation of the sound pressure. Therefore, for the pur-
pose of determining the uncontaminated output response, it is necessary to �nd a method
of reasonably removing the e�ect of the background noise and that of the observation
mechanism based on the above non-linear transformation.

Based on the additive principle of sound energy, the arbitrary sound environmental
systems on an intensity scale can be described in a simpli�ed form of the following linear
system:

ξ =
N∑

i=0

ai · xi , (1)

where ξ and xi are the system output and input, respectively. Here, the acoustic system
order N and the system parameters ai (aN+1 = 1) have been found in advance in the
previous paper [3]. Let us consider the observation mechanism based on the linear and/or
non-linear transformations as following equations:

y = f(ξ), (2)

z = f

(
ξ +

N+1∑

i=0

ai · vi

)
. (3)
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Hereupon, f(·) denotes the mechanism of the linear and/or non-linear transformation
measurement. Also, z and y are two kinds of observed data with and without the back-
ground noise. And, vi (i = 1, 2, ..., N) and vi (i = N + 1) show the sound intensities of
background noises added on the input and output sides, respectively.

Let us derive a synthetic probability density function of the stochastic sound environ-
mental system with background noise, after the linear and/or non-linear transformations
in Eqs. (2) and (3). If employing this synthetic probability expression into an inverse
direction of analysis, it becomes possible to estimate reasonably a p.d.f. of the output
response uncontaminated by the background noise without introducing any arti�cial er-
ror criterion like the well-known least-squares method. More concretely, we introduce
an arbitrary function ψ(z) which plays the role of a certain kind of the catalytic like
operation in the decomposition of the above synthetic expression for the p.d.f. Here, let
us write the expectation value of this arbitrary function under consideration, as a certain
catalytic function of analysis, as follows:

I ≡ 〈ψ(z)〉 =

∞∫

−∞
ψ(z)pz(z) dz, (4)

where pz(z) is a p.d.f. of z and 〈∗〉 denotes an expectation operation with respect to the
variable ∗. Here, it seems to be natural to assume that the i-th (i = 0, 1, 2, ...) successive
derivatives of ψ(z) and/or pz(z) tend to zero at the boundary region z → ±∞. After
substituting Eq. (3) into ψ(z) and expanding it in a Taylor's expansion series form under
the above natural boundary condition, ψ(z) can be rewritten as follows:

ψ(z) =
∞∑

n=0

[(
N+1∑

i=0

ai · vi

)n/
n!

]
· (d/dξ)n · ψ(f(ξ)). (5)

Accordingly, after substituting Eq. (5) into Eq. (4) and successively integrating by
parts, the expectation I of the arbitrary function ψ(z) can be concretely expanded under
the above natural boundary condition as follows:

I =

∞∫

−∞
ψ(y) ·

{ ∞∑
n=0

(−1)n
/

n! ·An · [〈Bn | f−1(y)〉 · py(y)
]
}

dy, (6)

where

A =




1
df−1(y)

dy

d

dy


, B =

(
N+1∑

i=0

ai · vi

)
.

After replacing y with z owing to the property of the de�nite integral operation in
Eq. (6) and comparing the de�nition of the expectation of the arbitrary function in Eq. (4)
with Eq. (6), the above p.d.f. pz(z) of z can be derived as the following equations:

pz(z) = py(z) +
∞∑

n=1

(−1)n
/

n! ·An · [〈Bn | f−1(z)〉 · py(z)
]
, (7)
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or

py(z) = pz(z)−
∞∑

n=1

(−1)n
/

n! ·An · [〈Bn | f−1(z)〉 · py(z)
]
, (8)

Here, we must notice the fact that py(z) means to replace only a stochastic variable y

with z in the p.d.f. expression py(y) of y itself. Based on the above synthetic probability
expression Eq. (8), it is possible to estimate reasonably only the undisturbed p.d.f. py(y)
of the objective output y without the background noise for arbitrary sound environmental
systems. That is, after substituting py(z) in the expansion series expression on the right
hand side of Eq. (8) by the whole right side of this equation and successively repeating
the same procedure, the following expression of py(y) can be derived:

py(y) = pz(y)−
∞∑

n1=1

An1 ·An1 · [〈Bn1 | f−1(y)〉] · pz(y) + · · ·

+ (−1)s
∞∑

n1=1

∞∑
n2=1

...

∞∑
ns=1

s∏

k=1

Ans ·Ank · [〈Bnk | f−1(y)〉] · pz(y) + · · · , (9)

where
Ank

= (−1)nk/nk!.

Therefore, the p.d.f. expression for the output response of sound environmental systems
after noise cancellation can be explicitly estimated from the observed actual data obtained
by the logarithmic type non-linear transformation of the data including background noise.

2.2. Prediction of the system response probability with background noise
and arbitrary input

First, we derive, both on the intensity scale and in the parameter di�erential form, the
relationship between two p.d.f.s of the system outputs excited by a reference stochastic
input and an arbitrary input without additional noise. Let a system output without
additional noise change from y0 to y:

y = y0(1 + γ/s0), (10)

where y0 and y denote two system outputs emitted by a speci�c stochastic input of
reference type and an arbitrary random input without additional noise in the form of
the intensity scale, respectively. The γ/s0 shows some ratio of a dimensionless deviation
from a standard distribution type and is statistically independent of y0. We can express
a relationship between two p.d.f.s of acoustic system responses excited by a speci�c input
of reference type and an arbitrary input without additional noise in the expression form
of p.d.f. as follows [4]:

py(y) =
∞∑

l=0

(−1)l/l! · (d/dy)l
[〈

(γ · y/s0)l | y〉 · py0(y)
]
. (11)
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Here, we must notice the fact that only a random variable is changed from the original
y0 to y in the proper p.d.f. expression py0(∗) of y0. Also, the conditional moment can be
directly obtained as: 〈

(γ · y/s0)l | y〉
= yl/sl

0 · 〈γl〉. (12)

Accordingly, after substituting Eq. (12) into Eq. (11), the latter can be easily rewritten
as follows:

py(y) =
∞∑

l=0

(−1)l/l! · (d/dy)l
[
yl/sl

0 · 〈γl〉 · py0(y)
]

=
∞∑

l=0

(−1)l/l! · 〈γl〉(d/dy)l
[
py0(y) · yl/sl

0

]
. (13)

Paying our attention to the fact that the system output on an intensity scale, y

always �uctuates in a non-negative region. The probability density function for the system
output can be expressed in advance especially in the general form of a statistical Laguerre
expansion series [5] as:

py0(y) =

{
1 +

∞∑
n=1

Cn · L(m0−1)
n (y/sl

0)

}
pΓ (y; m0, s0), (14)

where
m0 = 〈y〉2

/ 〈
(y − 〈y〉)2〉 , s0 =

〈
(y − 〈y〉)2〉

/
〈y〉, (15)

pΓ (y; m0, s0) = ym0−1 · e−y/s0/ (Γ (m0) · sm0
0 ) (16)

and
Cn = Γ (m0) · n!/Γ (m0 + n) ·

〈
L(m0−1)

n (y/s0)
〉

, (17)

where L
(m0−1)
n (∗) is a Laguerre polynomial of the n-th order, and Cn is the expansion

coe�cient re�ecting hierarchically the lower and higher order statistics of the output
intensity �uctuation. Furthermore, Eq. (14) can be transformed into a parameter di�er-
ential type series expansion expression taking a gamma distribution function as the �rst
expansion term:

py0(y) =

{
1 +

∞∑
n=1

C ′n(∂/∂s0)n

}
pΓ (y; m0, s0), (18)

where
C ′n = Γ (m0) · (−s0)n

/
Γ (m0 + n) ·

〈
L(m0−1)

n (y0/s0)
〉

. (19)

After some complicated calculation procedures, the following relationship between
the variable di�erential and the parameter di�erential can be derived as:

(∂/∂y)l
[
py0(y) · yl/sl

0

]
= (−1)l(∂/∂s0)lpy0(y). (20)

Consequently, by employing Eq. (20), Eq. (13) can be rewritten as follows:

py(y) =
∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpy0(y). (21)
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Next, the relationship between the two kind p.d.f.s of the system output emitted by
the arbitrary stochastic input with and without additional noise is also introduced by
the expression of the parameter di�erential form on an intensity scale. Based on these
relationships, we derive a new prediction method being able of evaluating the acoustic
system output excited by the arbitrary stochastic input in the presence of additional
noise. The output �uctuation on the intensity scale for the arbitrary sound environmental
system can be written in the following linear form:

z = y +
N+1∑

i=0

aivi , (22)

where z and y denote the system outputs with and without additional noise in the form
of an intensity scale. Here, N and ai are the system order and system parameter. Also,
vi (i = 1, 2, ..., N) and vi (i = N + 1) denote the intensities of additional noises on the
input and output sides, respectively. The following expression can be simply deduced
from Eq. (7) taking into consideration that df−1(z)/dz = 1 for the system output given
by Eq. (22) and 〈Bn|f−1(z)〉 = 〈Bn〉 when the system output y and the additional noise
are statistically independent:

pz(z) =
∞∑

n=0

(−1)n/n! ·
〈(

N+1∑

i=0

aivi

)n〉
· (d/dz)npy(z). (23)

After substituting Eq. (21) into Eq. (23) under the above condition, it is possible to
rewrite Eq. (23) as:

pz(z) =
∞∑

n=0

(−1)n/n! ·
〈(

N+1∑

i=0

aivi

)n〉
· (d/dz)n

{ ∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpy0(z)

}

=
∞∑

n=0

(−1)n/l! · (∂/∂s0)l

{ ∞∑
n=0

(−1)n

/
n! ·

〈(
N+1∑

i=0

aivi

)n〉
· (d/dz)npy0(z)

}
. (24)

Consequently, after taking into consideration a p.d.f. py0(z) of z corresponding only to
y0 (instead of y) expressed in the same form as Eq. (23), we directly have:

pz(z) =
∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpz0(z). (25)

Thus, we can predict theoretically the response p.d.f. for an actual sound environmental
system with an arbitrary stochastic input in the presence of additional noise, especially
by employing the information on the system output p.d.f. for the same system with a
speci�c reference input in the presence of an additional noise knowing its statistics.

3. Experimental consideration

3.1. Experimental arrangement

Figure 1 shows a block diagram of the experimental arrangement in two reverberation
rooms. The speaker excites the transmission room and two microphones receive the input



SOME NOISE CANCELLATION AND PREDICTION METHODS ... 299

and output intensity �uctuations of the sound insulation system respectively. Table 1
shows values of the system parameters for the sound insulating structures considered
in the experiment (the system order N = 2). We have employed the actual road tra�c
noise measured in Hiroshima City and the white noise as the stochastic input and the
background noise, respectively. The aperture of the wall between the transmission and
the reception has an area of 1.74m× 0.84m.

Fig. 1. Block diagram of experimental arrangement.

Table 1. Values of the system parameters.

a0 a1 a2

Single wall 2.43× 10−3 2.10× 10−3 1.95× 10−3

Non-parallel double wall 9.28× 10−3 6.08× 10−3 5.53× 10−3

Double wall with sound bridge 5.52× 10−3 4.18× 10−3 3.37× 10−3

The proposed methods are applied to three types of the sound insulation wall systems,
a) a single wall � an aluminum panel (surface density : 3.22 kg/m2, thickness : 1.2mm),
b) a non-parallel wall � composed of aluminum (at an angle 9 degrees each other), and
c) a double wall with sound bridge � composed of aluminum with a sound bridge (air
gap thickness : 50mm).

3.2. Experimental results

3.2.1. Noise cancellation on a whole probability form. The results of the c.d.f. for the
estimation of the output response probability after the background noise cancellation in
cases of the double wall with sound bridge and the non-parallel double wall are shown
in Fig. 2. The good agreement between the theoretically calculated values and experi-
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a)

b)

Fig. 2. Comparison between theoretically estimated curves and experimentally sampled values for cu-
mulative distribution function; a) a double wall with sound bridge, b) a non-parallel double wall. The
observed and �tted curve for Qz(z) are shown as (◦) and (· · · ). The true and estimated curves for Qy(y)

are shown as (•), (� · �): 1st approx. and (�): 2nd approx.

mentally observed data is recognized in Fig. 2 by employing only the �rst few expansion
terms in the proposed theoretically expansion expression.

3.2.2. Prediction of the system response probability with background noise and an
arbitrary input. The results of the c.d.f. for the prediction of the system output are
shown in Fig. 3 in cases of the single wall and the non-parallel double wall, respectively.
Here, the 1st, 2nd or 3rd approximations correspond to the cases of employing the 1st, 2nd
or 3rd terms in the above theoretical expansion expression, respectively. In the inverse
problem of in�nite series expression, there is generally some risk of series divergency
even if its original series expression is convergent. So, some reasonable countermeasure
of divergent error seem fairly important. For the purpose of reasonably minimizing this



SOME NOISE CANCELLATION AND PREDICTION METHODS ... 301

a)

b)

Fig. 3. Comparison between theoretically predicted curves and experimentally sampled values for cu-
mulative distribution function; a) a single wall, b) a non-parallel double wall. Experimentally sampled
values in cases of the arbitrary input and the reference input are marked by (•) and (◦), respectively.
Theoretically predicted curves are shown by (�): 1st approx., (· · · ): 2nd approx., (� · �): 3rd approx.

and (� ·· �): averaging method.

divergency error caused by employing only the �rst �nite terms in the above in�nite series
expansion expression, some averaging evaluation procedure can be derived theoretically
as follows:

Q(z) = Q0(z) + (b + c)/(a + b + c) ·Q1(z) + c/(a + b + c) ·Q2(z)

+1/(a + b + c) · (a · ε0 + b · ε1 + c2 · ε2), (26)

where Qi(z)'s (i = 0, 1, 2) are respectively the c.d.f. in the special cases taking the 1st,
2nd or 3rd terms in the above in�nite series type theoretical p.d.f. expansion expression,
and a, b and c are the arbitrary constants. Also, the εi's (i = 0, 1, 2) denote the errors
caused by use of the �nite expansion terms in the cases of Qi(z) (i = 0, 1, 2), respectively.
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From Fig. 3, it seems that the 1st, 2nd and 3rd approximation curves do not show any
agreement with the experimentally sampled points owing to the above error. The aver-
aging method in Eq. (26), however, shows a better agreement with the experimentally
sampled points compared with the other curves.

4. Conclusion

In this paper, we have proposed two stochastic signal processing methods on a whole
probability distribution form without introducing in advance any arti�cial error criterion.
That is, for the arbitrary sound environmental system under the existence of background
noise, we have developed the method of estimating the output response probability after
noise cancellation and that of predicting the system output emitted by an arbitrary input
with background noise by employing the information on the system output p.d.f. for the
same system excited only by a speci�c reference input in the presence of the background
noise knowing its statistics.

Finally, the practical e�ectiveness of the proposed methods have been experimentally
con�rmed too by applying them to the actually observed response data in the reverber-
ation room.

Since the present methods are at an earlier stage of study, there still remain some
kinds of future problems, for example, to apply them to many other actual systems and
to �nd more simpli�ed methods for practical use through some approximation of the
proposed methods.

Appendix A

A.1. Simpli�ed determination method of the order for an arbitrary sound insulation
system based on time series model

An arbitrary sound insulation system can be described by the following discrete-time
type:

zk = f(Xk; A) Xk ≡ (xk, xk−1, ..., xk−l), (A.1)

where xk and zk are the system input and output at the discrete-time k, and f( )
denotes the linear and/or non-linear mechanisms of the system. Furthermore, a vector
A ≡ (a1, a2, ..., aN )T show system parameters.

We introduce a somewhat more simpli�ed method rather than such methods as the
well-known AIC method or the FPE method for determining the system order on the
time series model. When the white noise is adopted on trial as a test input of the system
described by Eq. (A.1), the relationship between the test input (= uk) and the system
output (= yk) can be written in the following form:

yk = f(Uk; A) Uk ≡ (uk, uk−1, ..., uk−l). (A.2)
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Because the statistical independence property originally does not change, even in an
arbitrary nonlinear transformation of the systems, the statistical independence for the
arbitrary random signal yk can be evaluated in terms of the following measure ε(yk, yk+j):

ε(yk, yk+j) =
〈ykyk+j〉
〈yk〉〈yk+j〉 − 1, (A.3)

where 〈∗〉 denotes the expected value of ∗ and ε(yk, yk+j) = 0 when yk and yk+j are
statistically independent. Then, it is surely reasonable that we adapt the system or-
der as l = j − 1, in the case when the value of ε(yk, yk+j) is saturated downward the
neighborhood of zero at j.

Figure 4 shows the result of the system order determined by Eq. (A.3). From this
�gure, it can be found that the system order is approximately 2 because the value of
ε(yk, yk+j) is close to zero at j = 3.

Fig. 4. Identi�cation results for the order of time series model based on the criterion function of inde-
pendency; ε(j) = 〈yk, yk+j〉/〈yk〉 · 〈yk+j〉 − 1.

A.2. Prediction of output probability distribution

Equation (A.1) can be rewritten as the following linear system on an intensity scale
supported by the well-known statistical energy analysis method:

zk =
2∑

i=0

aixk−i . (A.4)

By use of Eq. (A.4), the prediction of the output probability distribution can be obtained
for the sound insulation system excited by random input contaminated by background
noise.
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