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The propagation of ultrasonic plane waves in a polycrystalline aggregate (steel) is con-
sidered for a bulk sample of the material with plane initial (residual) stress, the material
being made of cubic crystals of the highest symmetry. Some e�ective sti�ness moduli of
the bulk sample and the components of the initial stress are found as functions of the prop-
agation velocities of the respective ultrasonic plane waves. Moreover, the use is made of
Jaynes' principle of maximum Shannon entropy and the averaging procedure proposed by
Voigt. In this way, the probability density function of the crystallite orientation (texture)
and the e�ective sti�ness moduli of a single crystallite of the polycrystalline aggregate
are evaluated numerically for the initial plane stress increasing from zero up to about
300MPa (in the range of elasticity). The numerical analysis shows that while the e�ect
of the initial stress on the results of these calculations increases with increasing initial
stress, the changes in the texture and e�ective sti�ness moduli of a single crystallite are
inconsiderable in the region of the values of the initial stress taken in to account.

Keywords: Polycrystalline aggregate, texture, initial (residual) stress, ultrasonic waves,
elastic moduli.

1. Introduction

Polycrystalline metals are of the form of polycrystalline aggregate of numerous grains,
each grain being a crystallite (monocrystal) with a single crystal symmetry of its struc-
ture and elastic properties. In general, in a macroscopic sample of the polycrystalline
aggregate, which is free of initial stress and is in the so-called natural state with respect
to its plastic deformation history (i.e., is in the state before its �rst plastic deformation),
the grains are randomly oriented resulting in isotropic symmetry of the overall (e�ective)
elastic properties of the sample. Anisotropy of the e�ective elastic properties and residual
stress in bodies, however, usually arises from forming processes being accompanied by
plastic and often nonuniform deformation. Such processes leave the crystallites in certain
preferred orientations called the texture and subjects the body to a state of residual
stress. The texture and residual stress induce anisotropy of the e�ective elastic proper-
ties, and consequently, cause variations in the speeds at which ultrasonic waves propagate
through the sample, the variations depending on the directions of wave propagation and
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polarization. In this context, it is natural to de�ne the e�ective elastic coe�cients (e.g.,
sti�ness moduli) of a such prestressed inhomogeneous body in a well-known manner as co-
e�cients in linearized equations of motion governing the propagation of small-amplitude
elastic waves in this body, the governing equations being assumed to be of the same
mathematical form as the equations governing the propagation of the waves in a bulk
prestressed monocrystal with the same symmetry of the elastic properties as that of the
inhomogeneous polycrystalline body under consideration. Making use of this de�nition,
we arrive at the acoustoelastic dependencies which raise the possibility of using ultrason-
ics as a nondestructive technique for measurements of residual stress and evaluating some
e�ective sti�ness moduli of the bulk sample as well as for estimating the texture and the
e�ective sti�ness moduli of a single crystallite in the body. In this context, the proba-
bility density function of the crystallite orientation in such a body with non randomly
oriented grains, which describes the texture, is called herein also the texture. The aim
of the paper is to present the proposal of a procedure which allows us to evaluate initial
(residual) stress and some e�ective sti�ness moduli of the bulk sample as well as enable
us to estimate the texture and the e�ective sti�ness moduli of the single crystallite from
the variations of the velocity of ultrasonic waves propagating through a bulk sample of
a prestressed polycrystalline aggregate, which has been plasticly deformed.

The rudiments of the acoustoelastic theory, which is employed in constructing the
procedure, have been developed in Refs. [1, 2]. Many practical suggestions utilized in
the present paper have arisen from studying Refs. [3 � 5] or have their origin in these
works. Proceeding in this direction, we become able to evaluate both e�ective sti�ness
moduli of the prestressed sample of the polycrystalline aggregate under consideration
and the initial plane stress in that from measurements of the propagation velocities of
ultrasonic waves. The second part of the problem to be solved is preparing a procedure
of estimating from the same ultrasonic measurements both the texture and the e�ective
sti�ness moduli of a single crystallite in the body under consideration. The rudiments
of an information theory approach are developed in this work within the framework
of inversion of the Voigt [6] concept of evaluating the e�ective sti�ness moduli of a
polycrystalline aggregate. It is well known that the essential step of utilizing the Voigt
averaging procedure is calculation of the orientational volume average of functions of
single crystal elastic sti�ness moduli. Here the calculation of the orientational volume
average denotes averaging over all crystallites in the bulk sample through the probability
density function of the crystallite orientation (i.e., weighting by the probability density
function). Therefore, the assumption that the Voigt concept of evaluating the e�ective
sti�ness moduli of the polycrystalline aggregate under consideration is equivalent to that
based on the propagation equations and measurements of ultrasonic velocities, raises
the possibility of formulating a set of integral equations with the probability density
function of the crystallite orientation as an unknown function. In this context, the inver-
sion of the Voigt procedure of evaluating the e�ective sti�ness moduli of a prestressed
polycrystalline aggregate we de�ne as seeking the answer to the following question: for
what probability density function of the crystallite orientation (texture) and for what
values of the e�ective sti�ness moduli of a single crystallite do the velocities of plane
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ultrasonic waves propagating in the polycrystalline aggregate take the measured values?
Formulated in such a way, the problem is ambiguous and is insoluble by using determin-
istic formalism. To overcome these di�culties, we make use of the probability density
function of the crystallite orientation in the form implied by Jaynes [7] principle of min-
imum prejudice and make choice of the values of the e�ective sti�ness moduli of a single
crystallite in accordance with the minimum di�erence criterion, following Refs. [8, 9],
respectively.

The paper is organized in the following manner. Within the framework of the formu-
lation of the problem, basic equations, de�nitions, notations and concepts on acoustoelas-
ticity are introduced in Sec. 2, the scope of the compendium being limited to that needed
for formulating and solving the problem for the cases of plane initial stress di�erent from
zero and equal to zero. In Sec. 3, the theory and relevant expressions for constructing al-
gorithms for these two cases are summarized, together with pointing out the di�erences
between the algorithms. Controlling on line the convergence of iteration procedures and
checking the exactness of numerical calculations are described in Sec. 4. Finally, numer-
ical results obtained for steel polycrystalline aggregate with texture approximating the
orthorhombic one are discussed in Sec. 5.

2. Formulation of the problem

Now a brief outline is given of the theoretical preliminaries of the proposed ultrasonic
method that enable us to determine simultaneously the texture, stress and material ef-
fective parameters of a textured and prestressed polycrystalline aggregate. The solid
bulk samples are assumed to be composed of a large number of cubic crystallites with
the highest symmetry. In this paper, only such orientation statistics of the crystallites
is considered which contributes to the orthorhombic symmetry of the e�ective dynamic
properties of a solid bulk specimen of the polycrystalline material under examination. To
discuss the orientation of a crystallite and describe all the vector and tensor quantities
involved in the problem under analysis, we introduce two orthogonal reference systems.
A Euler orthogonal reference system 0x1x2x3 with the axes 0x1, 0x2, and 0x3 is supposed
to be suitably chosen, for example, in the case of a rolled plate, 0x1 could coincide with
the rolling direction, the axes 0x2 and 0x3 being transverse to the rolling direction and
normal to the rolling plane, respectively. Then the planes x1x2, x2x3 and x3x1 are the
planes of mirror symmetry connected with the orthorhombic symmetry of the solid bulk
sample. The unit vectors along the directions of the axes 0x1, 0x2, and 0x3 are denoted
by e1, e2 and e3, respectively. The other orthogonal reference system 0X1X2X3 with the
axes 0X1, 0X2, and 0X3 is supposed to be suitably chosen for a single cubic crystallite,
the axes being chosen in the crystallographic directions [100], [010] and [001], respec-
tively. The unit vectors along the directions of the axes 0X1, 0X2, and 0X3 are denoted
by E1, E2 and E3, respectively. In the subsequent considerations, the orientation of a
crystallite within the polycrystalline sample is described by giving the values of three
Eulerian angles, θ, ϕ and φ, of the OX1, OX2, and OX3 axes relative to the sample
axes, Ox1, Ox2, and Ox3. The notations θ (θ = cos−1(E3 · e3)), ϕ and φ stand for the
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angle of nutation, precession and proper rotation respectively. The texture will be de-
scribed by the probability density function of the crystallite orientation, p(ξ, ϕ, φ), where
ξ = cos(θ). Then p(ξ, ϕ, φ) dξ dϕ dφ expresses the probability of a crystallite having an
orientation described by the Euler angles θ (= cos−1 ξ), ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ +dξ)〉, 〈ϕ,ϕ+dϕ〉 and 〈φ, φ+dφ〉, respectively. The following consider-
ations are concerned with orthorhombic bulk samples that are under applied or residual
constant plane stress called the initial stress, σ0

ij (i, j = 1, 2, 3). It is assumed that the
two principal axes of the initial plane stress, σ0

ij , coincide with symmetry axes 0x1 and
0x2 of the orthorhombic material. Then the initial stress, σ0

ij , does not change the sym-
metry and the number of independent e�ective elastic constants of the bulk sample under
consideration. Generally, when a stress tensor σij is referred to the reference system with
the axes Ox1, Ox2, and Ox3 coinciding with the principal directions of the stress σij ,
then the shear stress components σ12 = σ21, σ13 = σ31 and σ23 = σ32 vanish. Then
for plane stress analysis, where the shear stress components σ0

12 = σ0
21, σ23 = σ32, and

σ13 = σ31 as well as the component σ33 vanish or are negligible small as compared with
{σ0

11, σ
0
22}, the only components of the initial stress, σ0

ij , present in the considerations
are {σ0

11, σ
0
22}.

To be enabled to determine simultaneously the texture and initial stress σ0
ij of a

polycrystalline aggregate from the measurements of the propagation velocities of ultra-
sonic waves in a sample of the material being acted on by an ultrasonic transducer, some
e�ective material parameters [10] must be known for characterizing both overall and
single-crystal e�ective elastic properties. The term e�ective properties of the bulk sample
under study is used to describe both the physical properties of the so-called equivalent
homogeneous medium that exhibits the same symmetry of the macroscopic mechanical
properties as the sample, and the so-called e�ective displacement response, u, of the
equivalent medium to the transducer loading. The e�ective displacement response is the
same as the averaged displacement response of the polycrystalline material to the same
loading, the averaging being carried out over a statistical ensemble of the bulk sam-
ples [8], i.e. over all crystallites through the function p(ξ, ϕ, φ). The e�ective dynamic
properties of the prestressed orthorhombic polycrystalline aggregate under study and its
single cubic crystallite (monocrystalline grain) are de�ned by the tensors of the e�ective
elastic sti�ness moduli, Ceff

ij and ceff
ij , respectively. Since it is assumed that the princi-

pal axes of the initial stress, σ0
ij , coincide with the symmetry axes 0x1 and 0x2 of the

orthorhombic material then the initial stress, σ0
ij , does not change the symmetry and

the number of independent e�ective elastic constants of the solid bulk sample. There-
fore, the non-vanishing independent e�ective elastic sti�ness moduli of the orthorhombic
polycrystalline bulk sample under consideration as well as those of a single cubic crys-
tallite of the macroscopic sample are {Ceff

11 , Ceff
22 , Ceff

33 , Ceff
44 , Ceff

55 , Ceff
66 , Ceff

12 , Ceff
13 , Ceff

23 } and
{ceff

11 , ceff
12 , ceff

44}, respectively.
Such residual plane stresses in steel may be induced by inhomogeneous plastic defor-

mation in some technological processes, e.g., when the steel is uniaxially rolled in cold
rolling process. Then, if the axis 0x1 of the reference system coincides with the rolling
direction, while the other axes 0x2 and 0x3 of the reference system are transverse to
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the rolling direction and normal to the rolling plane, respectively, the axes Ox1 and Ox2

coincide simultaneously with the principal directions of the residual stress. Consequently,
if the tensor σ0

ij of the residual stress is referred to the reference system with axes Ox1,
Ox2, and Ox3, then the shear stress components σ0

12 = σ0
21, σ0

13 = σ0
31, σ0

23 = σ0
32 vanish

and if moreover σ0
33 also vanishes (or at least is negligible small), the residual stress is

plane. Without going into detail, the process of inducing the residual stress in the steel
uniaxially rolled in cold rolling process σ0

ij may be explained after [11] as follows: The
friction between the plate surface and the rolls together with plastic �ow result in a com-
plex process with the dominant component in the form of material �ow process similar
to sausage �lling. Namely, the surfaces of the plate act as a skin, and the interior of the
plate is pressed in between towards the exit side of the roll gap, the interior being in the
state of compression. The compression causes also transverse material �ow in the roll gap,
the transverse �ow being much smaller than that in the rolling direction. In this way, in
the cold rolling mill, the plate becomes longer and thinner due to the plastic �ow. Since
all volume elements of the plate are stuck together, these length changes are absorbed
partially by elastic strains, which are accompanied by the residual stresses {σ0

11, σ
0
22}. In

turn, the residual stresses are stored in the material as dislocations in the atomic lattice.
If the temperature is su�ciently high, the dislocations are free to move becoming able
to release the residual stresses.

In the paper, for the sake of brevity and convenience, the following tensor quantities
are de�ned:

cij =
ceff
ij

ρ
, Cij =

Ceff
ij

ρ
, σ 0

11 =
σ0

11

ρ
, σ 0

22 =
σ0

22

ρ
. (1)

The quantities Cij and cij are used in describing the e�ective dynamic properties of the
polycrystalline aggregate under study and its single crystallite, respectively. ρ denotes
the e�ective density which is assumed in this paper to be equal to the density averaged
over the volume of a single bulk sample. In a prestressed solid, apart from the stress
σij accompanying the strain εkl due to, e.g., the propagation of ultrasonic waves, there
exists an additional initial stress σ0

ij which is accompanied by the initial strain ε0
kl, both

the initial quantities being assumed to be independent of time. As was mentioned, the
stress σ0

ij can be both applied and residual since there is no restriction that the resulting
deformations are elastic. Every Cijkl is highly dependent on both microstructure and the
initial stress σ0

ij . For a monocrystal Ceff
ijkl = ceff

ijkl = cijkl, when σ0
ij = 0.

Similar to the e�ective (average) density, ρ, the e�ective elastic moduli Ceff
ijkl are also

independent of the position vector x (space coordinates x1, x2, x3), but they are depen-
dent on the angular frequency ω of the loading ultrasonic transducer. In contrast, the
average (e�ective) displacement �eld resulting from the dynamic load with the angular
frequency ω is harmonically dependent on the position vector x = (x1, x2, x3) and time
t with the same frequency ω and, consequently, is also called the e�ective displacement
wave u.

In the Euler coordinate system 0x1x2x3, the equations of motion for small e�ective
elastic displacement, u, which accompanies the propagation of an ultrasonic displacement
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wave in the prestressed solid under consideration, can be written in the following form:
(
Cijkl + σ 0

jlδik

) ∂2uk

∂xj∂xl
=

∂2ui

∂t2
, i, j, k, l = 1, 2, 3, (2)

where δik is the Kronecker tensor. Equation (2) are written by utilizing some results of
Refs. [1, 2, 4, 5] under the assumption that both the material properties Cijkl and the
initial stress σ 0

ij vary only slightly over distances of the wavelength.
In this paper, we are interested only in the average displacement �eld, u = (u1, u2, u3),

in the form of a plane ultrasonic wave propagating in the direction of the unit vector
n = (n1, n2, n3) and polarized in the direction of the unit vector p = (p1, p2, p3). Through
the remainder of the paper, all equations, relations and formulae are written with locating
the vector and tensor quantities relative to the 0x1x2x3 reference system. Then, xi = x·ei,
ui = u · ei, ni = n · ei

.= cos(αi) and pi = p · ei
.= cos(βi), and the wave being of interest

for us may be described by the following equation:
u = pu0 exp [iknp(n · x− Vnpt)]

.= pu0 exp [iknp(n · x− ωt)] , (3)

where Vnp is the phase velocity of a wave propagating in the direction of the unit vector
n and polarized in the direction of the unit vector p, knp stands for the wave number,
knp = ω/Vnp and u0 denotes the displacement wave amplitude. The two sets of angles,
{αi} and {βi}, i = 1, 2, 3, de�ne the directions of the wave propagation and polarization,
respectively.

We seek a simple particular solution to Eqs. (2) in the form given by Eq. (3). On this
basis, if we put the expression given by Eq. (3) in Eqs. (2), we can infer for each pair
of the propagation and polarization directions (n and p) that Eqs. (2) may be solved.
Moreover, the satisfaction of Eqs. (2) not only requires that, for a given polarization
direction p, the phase velocity Vnp depends on the propagation direction n, material
parameters Cijkl and initial stress σ 0

ij but also determines the form taken by the function
Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
. Going into detail let us remind that on substituting the plane

wave solution (3) into Eqs. (2), one obtains the so-called Christo�el equations for an
anisotropic material under the initial plane stress σ 0

ij . If the plane stress tensor σ 0
ij is

referred to the orthogonal reference system 0x1x2x3 with axes Ox1 and Ox2 coinciding
with the principal directions of the stress σ 0

ij , then, for the case under consideration, the
Christo�el equations referred to the same reference system 0x1x2x3 may be expressed in
the following form:[

Cijklninl +
(
σ 0

ilninl − V 2
np

)
δjk

]
pk = 0 ⇔ Ajkpk = 0, i, j, k, l = 1, 2, 3, (4)

where
A11 =

(
C11 + σ 0

11

)
(n1)2 +

(
C66 + σ 0

22

)
(n2)2 + C55(n3)2 − V 2

np ,

A22 =
(
C66 + σ 0

11

)
(n1)2 +

(
C22 + σ 0

22

)
(n2)2 + C44(n3)2 − V 2

np ,

A33 =
(
C55 + σ 0

11

)
(n1)2 +

(
C44 + σ 0

22

)
(n2)2 + C33(n3)2 − V 2

np ,
(5)

A12 = A21 =
(
C66 + C12

)
n1n2 ,

A13 = A31 =
(
C55 + C13

)
n1n3 ,

A23 = A32 =
(
C44 + C23

)
n2n3 .
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If the system of Eqs. (4) is to have a solution di�erent from the trivial one: every pk = 0,
then, in accordance with Cramer's rule, the determinant constructed from the coe�-
cients of the Aij given by Eqs. (5) must vanish. Thus we arrived at the following secular
equation:

|Aij | = 0 (6)

which enables us to establish the above mentioned dependence of the phase velocity
Vnp on n, Cijkl, and σ 0

ij . Equation (6) is an equation of the third degree in Vnp and
therefore has three roots. Therefore, for any pair of unit vectors n = (n1, n2, n3) and
p = (p1, p2, p3) we arrive at the system of Eqs. (4) � (6) and obtain three functions
Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
, after utilizing Cardan's solution of the cubic equation. For

an ultrasonic wave given by Eq. (3) and for a vector p, each of the three relationships
de�nes such a form of the dependence Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
, which ensure that the

wave given by Eq. (3) satis�es Eqs. (2).
It is obvious that the knowledge of the three relationships, Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
,

enables us to construct, in the �rst step, an algorithm for computing some moduli Cijkl

and initial stress components σ 0
ij from the measurements of phase velocities Vnp. This

step is based on �nding the solution with respect to Cijkl of the Christo�el equation
(6) and consists in applying the method proposed and developed by A.D. Degtyar
and S.I. Rokhlin [5] for evaluating some Ceff

ijkl and σ0
ij from the nondestructive mea-

surements of the respective ultrasonic velocities Vnp in the polycrystalline material under
examination. On �nding from Vnp the respective Ceff

ijkl of an orthorhombic polycrystalline
made of cubic crystals with the highest symmetry, we are able to estimate, in the second
step, the texture (i. e., to �nd the estimate of the function p(ξ, ϕ, φ)) and all the three
independent e�ective sti�ness moduli, c11, c12 and c44, of a cubic crystallite. This step
consists in applying the approach proposed and developed by Lewandowski [8, 9] and
is based on utilization an algorithm which can be constructed by inverting the Voigt
[6] scheme of calculating Cijkl. Here let us remind, that the Voigt scheme consists in
averaging some functions of θ, ϕ, φ, c11, c12, and c44 with p(ξ, ϕ, φ) as the weight func-
tion to obtain the respective e�ective sti�ness moduli, Cijkl. Therefore, in the situation
where Cijkl can be evaluated from the measurements of Vnp by utilizing Eqs. (4), (6),
the function p(ξ, ϕ, φ) may be estimated together with c11, c12, and c44, by inverting the
Voigt [6] scheme of calculating Cijkl. However, the problem formulated in such a way is
not unambiguous and the lack of uniqueness must be overcome by employing a suitable
additional condition. For this reason, Lewandowski [8, 9] proposed to introduce the
Jaynes' [7] principle of the maximum prejudice as a suitable additional condition and,
consequently, has developed the method of estimating the function p(ξ, ϕ, φ) by inverting
in the maximum-entropy approximation the Voigt averaging procedure.

Although the method proposed and developed by A.D. Degtyar and S.I. Rokhlin
[5] seems to be the most promising nondestructive way of evaluating Cijkl and σ 0

ij , great
di�culty is encountered in analysis when one wishes to utilize this method for a case
described by Eqs. (4) � (6) in the full form. In consequence of that, in this case all the
quantities, which are to be calculated from the ultrasonic measurements, are involved in
an algorithm describing relationships between them, the relationships being nonlinear and
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of great complexity. Evidently, when the initial stress, σ 0
ij , is not plane and its principal

axes do not coincide with the symmetry and reference axes 0x1, 0x2 and 0x3, to which
is referred the tensor of the stress σ0

ij , the situation is still more complex. However, in
the situation where we con�ne ourselves to consider a case described by Eqs. (4) � (6)
with respectively chosen Vnp, Eqs. (4) � (6) are to be used in more or less reduced form
inducing in this way simpli�cation of the algorithm. An example is presented below of
such choice of a set of ultrasonic velocities Vnp which not only enables us to evaluate
σ 0

ij as well as some of moduli Cijkl, c11, c12 and c44, but also gives the possibility of
estimating the function p(ξ, ϕ, φ).

Throughout the remainder of this paper, the procedure is outlined, which enable
us to evaluate some Cijkl, σ 0

ij , c11, c12 and c44, and to estimate the function p(ξ, ϕ, φ)
in the maximum-entropy approximation. In these considerations are involved ultrasonic
plane- and linearly-polarized waves that propagate in polycrystalline aggregates with
orthorhombic symmetry, the aggregates being composed of crystals of the cubic class
with the highest symmetry. The experimental tools for the investigations discussed in
this paper are con�ned to the measurements of the propagation velocities Vij (i = 1, 2, 3)
of ultrasonic plane waves propagating and polarized in the directions of the Cartesian
reference axes 0xi and 0xj , respectively, the reference axes being simultaneously the
axes of the symmetry of the material bulk sample and the principal axes of the initial
plane stress σ0

ij . Moreover, the bulk sample is made of steel by rolling and the axis
0x1 coincides with the rolling direction, the other axes 0x2 and 0x3 being transverse to
the rolling direction and normal to the rolling plane, respectively. Then the axes Ox1,
Ox2, and Ox3 coincide both with the symmetry axes of the material bulk sample (plate)
and with the principal directions of the plane initial stress σ0

ij . Consequently, the shear
components of the initial stress, σ0

12 = v0
21, σ0

13 = σ0
31 and σ0

23 = σ0
32, vanish, and two

principal stress components, σ0
11 and σ0

22, are the only nonzero initial stress components.

3. Algorithm for numerical calculations

In accordance with the earlier assumption, let us insert into Eqs. (4), (5) the ultrasonic
velocities only in the form of the propagation velocities Vij (i = 1, 2, 3) of ultrasonic plane
waves propagating and polarized in the directions of the Cartesian reference axes 0xi and
0xj , respectively, the reference axes being simultaneously the axes of the symmetry of
the orthorhombic material bulk sample and the principal axes of the initial plane stress
σ0

ij . This situation reduces Eqs. (4), (5) to the following simple relationships:

C11 = V 2
11 − σ 0

11 , C22 = V 2
22 − σ 0

22 , C33 = V 2
33 ,

(7)
C44 = V 2

23 − σ 0
22 = V 2

32 , C55 = V 2
13 − σ 0

11 = V 2
31 , C66 = V 2

12 − σ 0
11 .

Hence,

σ 0
22 = V 2

23 − V 2
32 , σ 0

11 = V 2
13 − V 2

31 , C11 = V 2
11 + V 2

31 + V 2
31 − V 2

13 , (8)

an so on.
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Therefore, if the values of the eight ultrasonic velocities V11, V22, V33, V12, V13, V23,
V31, V32 (see Table 1) are known, the two principal stress components, σ0

11 and σ0
22, as well

as the e�ective material parameters C11, C22, C33, C44, C55, and C66 can be evaluated
immediately from Eqs. (7), (8) but the values of the other e�ective material parameters
(C12, C13, C23, C22 and C66) remain unattainable.

Table 1.

Input data [105 cm s−1]

N V11 V22 V33 V12 V13 V23 V31 V32

1 5.93552 5.91855 5.87884 3.15212 3.22559 3.25662 3.22559 3.25662
2 5.93553 5.91855 5.87883 3.15214 3.22560 3.25661 3.22557 3.25659
3 5.93553 5.91855 5.87883 3.15217 3.22561 3.25659 3.22555 3.25656
4 5.93553 5.91857 5.87883 3.15237 3.22574 3.25644 3.22545 3.25630
5 5.93552 5.91860 5.87883 3.15262 3.22589 3.25624 3.22531 3.25596
6 5.93552 5.91862 5.87883 3.15288 3.22602 3.25605 3.22515 3.25563
7 5.93553 5.91864 5.87883 3.15312 3.22617 3.25586 3.22501 3.25530
8 5.93552 5.91877 5.87883 3.15465 3.22704 3.25472 3.22414 3.25332
9 5.93836 5.91999 5.87883 3.15796 3.23111 3.25280 3.22269 3.25000

Among the material parameters C11, C22, C33, C44, C55, and C66 involved in Eqs. (7),
(8) only C33 can not be presented in the form of Cii = V 2

jk−σ 0
mm (i = 1, 4, 5; j, k = 1, 2, 3;

m = 1, 2), but is of the form Cii = V 2
jk only. Therefore, from all the material parameters

Cii involved in Eqs. (7) � (8) only C33 represents an entirely textural contribution to the
material anisotropy, the other Cii contributing to the material anisotropy due to the
texture (preferred orientation of the grains) together with the initial stress σ0

ij . However,
in the situation where the initial stress is negligibly small or is absent, i.e., in the limiting
case σ0

ij → 0, Eqs. (7) � (8) becomes a part of the system of equations describing the case
when only the texture contributes considerably to the anisotropy of physical properties.
This limiting case was discussed by Lewandowski in Ref. [9] where the full system of
equations was outlined with utilizing some Sayers's [3] results as well as some ultrasonic
velocities were employed to predict either the texture p(ξ, ϕ, φ) in the maximum-entropy
approximation and the values of some e�ective macroscopic parameters Cij and the
e�ective parameters c11, c12, and c44 of a single crystallite.

In the present paper similarly as in Ref. [9], we solve the problem of estimating the
texture p(ξ, ϕ, φ) in the maximum-entropy approximation con�ning ourselves to invert-
ing the averaging procedure of Voigt [6] only. The Voigt procedure will be explained
here as expressed by Eqs. (9), (10). The reason of con�ning ourselves in both papers to
considering the case when the texture p(ξ, ϕ, φ) is estimated in the maximum-entropy
approximation with using the Voigt averaging procedure only is as follows: Earlier in
Ref. [8], Lewandowski compared the results of seeking the maximum-entropy estimate
of the function p(ξ, ϕ, φ) for orthorhombic texture by employing in the long-wavelength
approximation, the results being obtained with inverting successively the averaging pro-
cedures of Voigt [6], Reuss [12] and Hill [13]. Moreover, the results were obtained
under the assumptions that three respectively chosen velocities, Vij , had been measured
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and the single-crystal material parameters, c11, c12, c44 and ρ were known and did not
vary (ideal polycrystalline aggregate approximation) with varying texture (due to plas-
tic deformation). After �nding the function p(ξ, ϕ, φ) from the three known ultrasonic
velocities, the other six velocities, Vij (i = 1, 2, 3), were successively determined for each
applied averaging procedure in the following two ways: from the orthorhombic symmetry
conditions and by employing the maximum-entropy estimate of the function p(ξ, ϕ, φ).
Next the results of calculating these velocities from both the symmetry conditions and
the function p(ξ, ϕ, φ) were successively compared with each other in pairs, for each
applied averaging procedure, to verify the proposed method of �nding the maximum-
entropy estimate of the function p(ξ, ϕ, φ) from the ultrasonic measurements. In these
tests, only the velocities in each pair, in which one of the velocities was deduced from
the analysis with inverting the Voigt averaging procedure, �tted the same values. This
agreement in values in velocity pairs shows that the analysis with inverting the Voigt
averaging procedure yields such a maximum-entropy function, p(ξ, ϕ, φ), which implies
the same anisotropy of the dynamic (and propagation) properties of the polycrystalline
aggregate under consideration as that deduced from the observed ultrasonic velocities
by employing the othorhombic-symmetry rules. In other words, if the three respective
velocities, Vij , �t the measurements performed on an ideal polycrystalline aggregate with
orthorhombic symmetry of the e�ective dynamic properties and if the maximum-entropy
estimate of the function p(ξ, ϕ, φ) is deduced from this three Vij by the analysis with
inverting the Voigt averaging procedure, then the values of the other six velocities, Vij ,
of ultrasonic waves propagating and polarized along the principal directions, which are
calculated from the function p(ξ, ϕ, φ), also �t the respective measurements performed
on the same material. As was mentioned above, in the present, paper similarly as in Ref.
[9], this conclusion is the reason to con�ne ourselves to considering only the case when
the maximum-entropy estimate of function p(ξ, ϕ, φ) is deduced by inverting the Voigt
averaging procedure. In Ref. [9] was presented an approach which enables us to determine
simultaneously for the limiting case σ0

ij → 0 the e�ective sti�ness dynamic moduli of a
single grain in orthorhombically deformed steel, ceff

11 , ceff
12 and ceff

44 , some e�ective (overall)
sti�ness dynamic moduli, Ceff

ij , of the bulk sample under examination and its p(ξ, ϕ, φ),
all the quantities being estimated from the measurements of ultrasonic velocities.

The algorithm of the presented numerical analysis starts with Eqs. (7), (8) which
de�ne some e�ective macroscopic parameters, Cij, as functions of Vij and σ 0

i,j , c11, c12,
c44. Let us remind that, the Voigt procedure of averaging the single-crystal elastic moduli,
c11, c12, c44, enables us to evaluate the e�ective elastic moduli, Ceff

ij , of a bulk sample
of the considered polycrystalline aggregate, the evaluation being performed under the
assumption of the uniformity of strains εij across the crystallite boundaries, i.e., under
assumption that all grains are subjected to the same strain. This assumption arrives us
at the following equations enabling us to calculate Cij = ceff

ij /ρ:

Cijkl = 〈Tmnpq〉(cmnpq/ρ), Tmnpq = timtjntkptlq ,
(9)

〈Tmnpq〉 =

1∫

−1

dξ

2π∫

0

dϕ

2π∫

0

dφ Tmnpqp(ξ, ϕ, φ),
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where tim denote components of the transformation matrix t(ξ, ϕ, φ) which appears in
the following rule of the coordinate transformation from Xj to xi:

xi = tjiXj . (10)

The solutions of the Christo�el equations for an orthorhombically textured solid,
which are obtained with applying the Voigt approximation (averaging procedure) to the
calculation of the e�ective sti�ness moduli of an ideal polycrystalline aggregate, are listed
in Ref. [3] as formulae (10) � (21). It should perhaps be stressed that the values of the
dynamic sti�ness moduli c11, c12, c44 and density ρ of a single grain (crystal), were
considered in [3, 8] for a deformed and textured steel as being equal to the values of c11,
c12, c44 and ρ, which had been determined for a single-crystal of pure Fe with using a
statical method. It is not to be expected that such an approximation, which can be called
the long-wavelength and ideal Fe crystal approximation, would be always acceptable for
steel, which is a polycrystalline aggregate of Fe with impurities and structure defects.

Herein is presented the next stage of the modi�cation of seeking a complex solution to
the problem of �nding simultaneously ceff

11 , ceff
12 and ceff

44 , some e�ective sti�ness dynamic
moduli Ceff

ij of a prestressed orthorhombic polycrystalline aggregate, the initial stress
σ0

ij , and p(ξ, ϕ, φ) from the measurements of ultrasonic velocities. In the present paper,
we are estimating numerically the solution to this problem in the situation where the
stress σ0

ij increases from zero to a �nite value. We do that in the two following ways:
�rst, in the limiting case σ0

ij → 0, by utilizing the approximation of small initial plane
stress developed in Ref. [8, 9] and secondly, by making the use of Eqs. (7), (8) when σ0

ij is
di�erent from zero. While sketching out the main points of the enlarged numerical anal-
ysis of these problems, which is based on Eqs. (7), (8), only the concepts, de�nitions and
equations required for following the considerations will be reiterated herein after [8, 9].

Therefore, analysing the �rst case when the initial stress σ0
ij → 0, we utilize the

approach proposed in Ref. [9] in seeking p(ξ, ϕ, φ) as well as ceff
11 , ceff

12 , ceff
44 , and some moduli

Ceff
ij . Let us remind that in this approach [9], using [3, formulae (10) � (21)], which had

been deduced from the de�nitions given by Eqs. (9), we arrived at the following equations
[9, Eqs. (5) � (10)], after algebraic manipulation:

〈r1(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

11

)
, c = c11 − c12 − 2c44 , (11)

〈r2(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

22

)
, (12)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (13)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

23 − c44

)
, (14)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

31 − c44

)
, (15)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
V 2

12 − c44

)
, (16)

where
r4 = r3 + r2 − r1 , r5 = 2(r1 − r2) + r4 , r6 = 2r1 − r5 , (17)
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r1 = l21l
2
2 + l21l

2
3 + l22l

2
3 , r2 = m2

1m
2
2 + m2

1m
2
3 + m2

2m
2
3 ,

(18)
r3 = n2

1n
2
2 + n2

1n
2
3 + n2

2n
2
3 ,

li = Ei · e1 , mi = Ei · e2 , ni = Ei · e3 .

The abbreviations 〈rq〉, q = 1, 2, ..., 6, in Eqs. (11) � (16) denote averaging the functions
rq(θ, ϕ, φ) of a single-crystal orientation de�ned earlier, the averaging being performed
over all the crystallites in the sample, i.e. 〈rq(θ, ϕ, φ)〉 is rq(θ, ϕ, φ) weighted by p(θ, ϕ, φ):

〈rq(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

rq(ξ, ϕ, φ)p(ξ, ϕ, φ)dξ dϕ dφ. (19)

The probability density function p(ξ, ϕ, φ) ful�ls the normalization condition

〈p(ξ, ϕ, φ)〉 .=

2π∫

0

2π∫

0

1∫

−1

p(ξ, ϕ, φ)dξ dϕ dφ = 1. (20)

It should perhaps be emphasized that each left-hand side of the six equations (5) �
(10) is of the form of an expectation value of one of the six known functions, rq(ξ, ϕ, φ),
of a single-crystal orientation. From these six functions, only three functions rq(ξ, ϕ, φ)
are linearly independent of each other. Each right-hand side of the six equations (5) �
(10) is of the form of a known function of an ultrasonic velocity, Vij , and single-crystal
e�ective material parameters c11, c12, c44 de�ned by Eqs. (1). It can be easily seen from
Eqs. (11) � (16) that each of such three velocities Vij , which satis�es the rule that each of
the numbers 1, 2 and 3 appear as subscripts i and/or j at no more than two velocities
(e.g., V11, V33, and V31) is involved in a formula determining the value of only one
expectation value, 〈rq(ξ, ϕ, φ)〉, the three expectation values being linearly independent
of each other. For this reason, the measurements of V11, V33, and V31 were in Ref. [8]
su�cient for the probability density function p(ξ, ϕ, φ) to be fully estimated for aggregates
with orthorhombic symmetry with known c11, c12, c44, and σ0

ij = 0. Essentially, then the
probability density function p(ξ, ϕ, φ) implied by the Jaynes' [7] principle of maximum
Shannon entropy is given in terms used in Eqs. (11) � (16) by the following expression:

p(ξ, ϕ, φ) =
1
Z

exp [−L1r1(ξ, ϕ, φ)− L3r3(ξ, ϕ, φ)− L5r5(ξ, ϕ, φ)] , (21)

where the partition function Z and the Lagrangian multipliers L1, L3 and L5 are to be
determined from Eqs. (11), (13), (15) and the normalization condition (20).

In Ref. [9], which concerns non-prestressed (σ0
ij = 0) aggregates with orthorhombic

symmetry, the system of equations (11) � (18) was used for estimating in the maximum
entropy approximation the probability density function p(ξ, ϕ, φ), unknown material pa-
rameters c11, c12, c44, and some Cij . The problem was solved in two steps for the case
when the same three ultrasonic velocities V11, V33, V31 and additionally one of the veloc-
ities V22, V23 and V12 are known. In the �rst step, the analytical form of the probability
density function p(ξ, ϕ, φ) was deduced from the observables V11, V33 and V31 by utiliz-
ing the Jaynes' [7] principle of maximum Shannon entropy. Consequently, the analytical
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form of p(ξ, ϕ, φ) in [9] also is given by Eq. (21) but with the partition function Z and
the Lagrangian multipliers L1, L3 and L5, which are to be found in the second step to-
gether with the material parameters c11, c12 and c44, from the seven equations (11) � (16),
(20) with employing the orthorhombic symmetry rules and the values of the ultrasonic
velocities V11, V33, V31, and an additional one, say, V23. Since the system of equations
(11) � (16), (20) for the quantities Z, L1, L3, L5, c11, c12 and c44, which results from
formulating the variational problem for the conditional maximum of missing information
and inverting the Voigt averaging procedure, describes very complicated dependencies of
these quantities on each other, a direct solution of the task is not available and a tedious
numerical method is required to be used. A more detailed description of the operations
of the program evaluating Z, L1, L3, L5, c11, c12 and c44 was presented in Ref. [9]. To
avoid making the paper even longer, any detailed description of the numerical method
will not be reiterated herein after [9], although it should be stressed that the approach
proposed in Ref. [9] is considered here as a suitable one only in the case when the initial
stress, σ0

ij , is small, i.e., in accordance with Eqs. (8), when

DABS
((

V 2
ij − V 2

ji

)
/DMIN1

(
V 2

ij , V
2
ji

)) ¿ 1, i, j = 1, 2, 3, i 6= j. (22)

The nomenclature introduced in Eq. (22) is as follows: DABS denotes the FORTRAN
77 intrisinc function that returns the absolute value of its argument, DMIN1 is another
FORTRAN 77 intrisinc function which returns the minimum value in the argument list.
The smaller are the components of the initial stress, σ0

ij , the better is the approximation
of the texture of a prestressed polycrystalline obtained by using the approach proposed
in Ref. [9].

In this paper, the proposed method of estimating the textural contribution to the
orthorhombic acoustic anisotropy of prestressed polycrystalline aggregates (σ0

ij 6= 0) is
based on Eqs. (7), (8). On inserting Eqs. (9), (10) into Eqs. (7), (8), we arrive at the
following system of equations, after employing [3, formulae (10) � (21)] and algebraic
manipulation:

〈r1(ξ, ϕ, φ)〉 =
1
2c

(c11 −H11) , H11 = V 2
11 + V 2

31 − V 2
13 , (23)

〈r2(ξ, ϕ, φ)〉 =
1
2c

(c11 −H22) , H22 = V 2
22 + V 2

32 − V 2
23 , (24)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (25)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

32 − c44

)
, (26)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

31 − c44

)
, (27)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
H2

12 − c44

)
, H12 = V 2

12 + V 2
31 − V 2

13 . (28)

Equations (23) � (28), (20) are the reliable basis for the maximum-entropy estimate of
the orthorhombic texture of the prestressed polycrystalline aggregate from the measure-
ments of the propagation velocities Vij (i, j = 1, 2, 3) of the ultrasonic plane and linearly
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polarized waves. This method consists in �nding in two stages the maximum-entropy es-
timation of the probability density function p(ξ, ϕ, φ). Similarly to Eqs. (11) � (16), each
left-hand side of Eqs. (23) � (28) is of the form of the expectation value of one of the func-
tions ri(ξ, ϕ, φ), i = 1 to 6, weighted with p(ξ, ϕ, φ), and each right-hand side of these
equations is of the form of a known function of some quantities belonging to the set of the
following �ve quantities: an ultrasonic velocity, Vij , three material parameters c11, c12,
c44 and the two (σ0

11 and σ0
22) non vanishing components of the initial plane stress, σ0

ij .
From the system of Eqs. (23) � (28), (20), it can immediately be seen which of the nine
ultrasonic velocities Vij (i, j = 1, 2, 3) should be known from the measurements for each
situation under consideration. On performing the respective measurements, the two (σ0

11

and σ0
22) non-vanishing components of the initial plane stress can be evaluated directly

from Eqs. (8). The analytical form of the function p(ξ, ϕ, φ) can be determined from a
system of three equations obtained by reducing the system of six equations (23) � (28)
to that with three functions ri(ξ, ϕ, φ), which are linearly independent of each other.
Then the analytical form of p(ξ, ϕ, φ) can be determined from such a system of three
equations by inverting in the maximum-entropy approximation the Voigt averaging pro-
cedure, which was assumed to be suitable for calculating the expectation values involved
in Eqs. (23) � (28). For example, if r1(ξ, ϕ, φ), r3(ξ, ϕ, φ), and r5(ξ, ϕ, φ) are chosen as
the three independent of each other functions ri(ξ, ϕ, φ), then the analytical form of
the function p(ξ, ϕ, φ) is again given by Eq. (21). While the probability density function
p(ξ, ϕ, φ) implied by the observables V11, V33 and V31 and by the Jaynes' [7] principle of
maximum Shannon entropy is also of the form given by Eq. (21) as in Ref. [9], now the
partition function Z and the Lagrangian multipliers L1, L3 and L5 are to be determined
together with the unknown material parameters c11, c12 and c44 from Eqs. (23) � (28),
(20), some of them being more complicated than their analogues in Ref. [9]. The increase
in the complexity is due to the dependence of each of the seven unknown quantities Z,
L1, L3, L5, c11, c12 and c44 on both the texture p(ξ, ϕ, φ) and the initial plane stress
σ0

ij = {σ0
11, σ

0
22} 6= 0.

4. Results of numerical analysis

In the subsequent numerical analysis, we seek the function p(ξ, ϕ, φ), material param-
eters c11, c12, c44, and some Cij for a rolled steel plate. It is assumed that the values of
the ultrasonic velocities presented in Table 1 were obtained from experiments. Moreover,
it is assumed that the set of the values in each row was obtained in the same of the nine
groups of measurements, each measurement of any group being performed on the same
sample in the same state of the initial plane stress σ0

ij . In accordance with Eqs. (7), (8),
the values given in any row of Table 1 enable us to evaluate immediately the initial plane
stress σ0

ij = {σ0
11, σ

0
22} 6= 0 and some material parameters, C11, C22, C33, C44, C55,

and C66 of the prestressed body. After algebraic manipulation, the values given in any
row of Table 1 lead us directly to that given in Table 2 in the row of the same number
where the Input data are presented in the form suitable for inserting into Eqs. (23) � (28)
in order to perform further calculations, with utilizing also Eq. (20). These calculations
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are performed for the case when r1(ξ, ϕ, φ), r3(ξ, ϕ, φ), and r5(ξ, ϕ, φ) are chosen as the
three independent of each other functions ri(ξ, ϕ, φ), i.e., when the analytical form of the
function p(ξ, ϕ, φ) is given by Eq. (21). On inserting the values given in the respective row
of Table 2 into Eqs. (23) � (28) and enclosing Eq. (20), we arrive at a system of nonlinear

Table 2.

Input data [cm2s−2]

No H11 · 10−11 V 2
33 · 10−11 V 2

31 · 10−11 H22 · 10−11 V 2
32 · 10−11 H12 · 10−11

1 3.52304 3.45607 1.04044 3.50293 1.06056 0.993586
2 3.52303 3.45607 1.04043 3.50292 1.06054 0.993581
3 3.52301 3.45607 1.04042 3.50291 1.06052 0.993579
4 3.52286 3.45607 1.04035 3.50286 1.06035 0.993559
5 3.52267 3.45607 1.04026 3.50280 1.06013 0.993530
6 3.52248 3.45607 1.04016 3.50273 1.05991 0.993501
7 3.52230 3.45607 1.04007 3.50267 1.05970 0.993471
8 3.52117 3.45607 1.03951 3.50227 1.05841 0.993309
9 3.51930 3.45607 1.03857 3.50162 1.05625 0.993019

Table 3. Some results of numerical calculations.

σ11 · 10−6
No L1, L3, L5 σ22/σ11 Qc qmin · 107

[cm2s−2]
L1 = −2.235763183772

1 L3 = 1.0979886139440 0.0 � 0.100859 3.184
L5 = 0.5487668886877

L1 = −2.235960972127
2 L3 = 1.0983295503730 1.87084 0.4874 0.100992 4.879

L5 = 0.5488253145014

L1 = −2.236795947828
3 L3 = 1.0988891388090 3.74168 0.4874 0.101234 4.879

L5 = 0.5491093285845

L1 = −2.234641453048
4 L3 = 1.1000725429550 18.7084 0.4874 0.101991 4.892

L5 = 0.5496786820460

L1 = −2.232686689108
5 L3 = 1.1023022949130 37.4169 0.4873 0.103102 2.746

L5 = 0.5505769647418

L1 = −2.229401607267
6 L3 = 1.1030163310740 56.1252 0.4873 0.103932 4.894

L5 = 0.5511099378546

L1 = −2.225893773403
7 L3 = 1.1043245324470 74.8337 0.4872 0.104756 4.871

L5 = 0.5515539359085

L1 = −2.207377222687
8 L3 = 1.111587495000 187.84 0.4870 0.110156 4.875

L5 = 0.5551990370096

L1 = −2.149780065096
9 L3 = 1.104165497590 374.168 0.4866 0.114811 4.880

L5 = 0.5570847777796
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equations of great complexity that are regarded by us as a reliable basis for evaluating
numerically the partition function Z, the Lagrangian multipliers L1, L3, and L5 together
with the single-crystal e�ective material parameters c11, c12 and c44. Some of the results
obtained by utilizing this algorithm are presented in Table 3, the others are presented
in the forms of the diagrams in Figs. 1 � 10. All the numerical results are obtained for
polycrystalline aggregate being under plane initial stress {σ0

11, σ
0
22} with the components

σ0
11 ≥ 0, σ0

22 ' 0.487σ0
11 having successively the value of zero and eight di�erent positive

values.
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Fig. 1. Ceff
11 /ρ, Ceff

22 /ρ, and Ceff
33 /ρ plotted against σ0

11/ρ. On the horizontal (normalized initial stress
σ0
11/ρ) axis is set log scaling.

Solving the problem numerically, we have been encouraging in trying to do that by
the implicit function theorem, which gives us only the hope, not certainty of satisfying
seven nonlinear Eqs. (23) � (28), (20) in seven unknowns, Z, L1, L3, L5, c11, c12 and c44,
simultaneously. However, a set of nonlinear equations may have no (real) solutions at all
or, contrariwise, it may have more than one solution, as it happens in each of the nine
examples under consideration. In such nonlinear problems, solution �nding invariably
proceeds by iteration. Starting from some trial values of L1, L3, and L5, a useful algorithm
will improve the solution until some predetermined convergence criterions are satis�ed,
the solution being a set {Z,L1, L3, L5, c11, c12, c44}. In order to have some check of the
actual accuracy of calculation and the rate of convergence, a parameter Gm has been
de�ned, the parameter Gm being a modi�cation of that given in Ref. [9]:

Gm = DMAX1 (G11, G22, G33, G12, G31, G32), (29)
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where

Gαβ = DABS
[(

H
(input)
αβ −H

(deduced)
αβ

)
/DABS

(
H

(input)
αβ

)]
, αβ = 11, 12, 22,

Gγδ = DABS
[(

H
(input)
γδ −H

(deduced)
γδ

)
/DABS

(
H

(input)
γδ

)]
, (30)

H
(...)
γδ =

(
V

(...)
γδ

)2

, γδ = 31, 32, 33.

The superscripts (input) refers to the values of the quantities Hαβ , Hγδ and V 2
γδ, which

are given in the respective row of Table 2. As was mentioned, these values, which are
the basis for determining (in the approximation of maximum Shannon entropy) the un-
knowns Z, L1, L3, L5 (i.e., the function p(ξ, ϕ, φ)) as well as c11, c12, c44, are regarded
as experimental data (observables) obtained for the sample subjected to the initial plane
stress σ0

ij . Similarly, the superscripts (deduced) refer to the values of the quantities Hαβ

and Hγδ which are deduced from Eqs. (23) � (28), (20), after inserting both the prob-
ability density function p(ξ, ϕ, φ) and the parameters c11, c12, c44 calculated from the
observables in the former step. DMAX1 is the FORTRAN 77 intrisinc function, which
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returns the maximum value in the argument list. The values of Gm for every set of input
data, at which the respective iteration has been ended, are denoted by qmin and are listed
in the sixth column of Table 3.

As was mentioned, each of the nine tasks of �nding the unknowns Z, L1, L3, L5,
c11, c12 and c44 from Eqs. (23) � (28), (20) has more than one solution. This raises
the need to provide a constructive criterion for making choice between numerous sets
{Z, L1, L3, L5, c11, c12, c44} satisfying Eqs. (23) � (28), (20). Following Ref. [9], we make
use herein of the criterion of the minimum value of the di�erence Qc

Qc = DMAX1(Gc11, Gc12, Gc44), (31)

where

Gcij = DABS
[(

cij − c 0
ij

)
/c 0

ij

]
,

(32)
c 0
ij = c0

ij/ρ0, ij = 11, 12, 44.

The values of the elastic sti�ness moduli c0
11, c0

12, c0
44 and density ρ0 of a single cubic

crystal of the polycrystalline material (or a material as similar to that as possible) in the
natural state (before deformation) are assumed to be known. Similarly as in Ref. [9], it is
assumed that such a natural material for the rolled steel may be approximated by BCC
Fe, which is characterized by the following values of c 0

11, c 0
12, and c 0

44:

c0
11 = 2.5982d + 07(m/s)2,

c0
12 = 1.6857d + 07(m/s)2, (33)

c0
44 = 1.5843d + 07(m/s)2.

Now we formulate the criterion of minimum di�erence as the proposal of choosing this
set of the values of Z, L1, L3, L5, c11, c12, and c44 satisfying Eqs. (23) � (28), (20),
which contains such values of the material parameters c11, c12, and c44 that lead to the
minimum value of the di�erence parameter Qc and simultaneously contains such values
of Z, L1, L3, L5 that lead to the probability density function p(ξ, ϕ, φ) achieving the
maximum value of Shannon entropy. In each of the nine rows of the �fth column of
Table 3, there is presented the value of the minimum di�erence Qc corresponding to
the solution {Z, L1, L3, L5, c11, c12, c44} of one of the nine examples under consideration.
The �rst example concerns the situation where the material is not prestressed (σ0

ij = 0).
The full set {Z, L1, L3, L5, c11, c12, c44} for each of the nine examples (rows of Table 1)
can be read in the following way: L1, L3, L5 can be found in the respective row of the
�rst column of Table 3, c11, c12, and c44 can be read out of Fig. 3 for each of the eight
(No = 2, 3, . . . , 9) prestressed states (σ0

ij 6= 0) of the material. Since log scaling is set
on the horizontal (normalized initial stress σ0

ij/ρ) axis of each of Figs. 1 � 3, then the
predicted values of material parameters C11, C22, C33, C44, C55, C66, c11, c12 and c44 of
the non-prestressed body can not be indicated in Figs. 1 � 3. These values, expressed in
[1011 cm2s−2] units are as follows: 3.52304, 3.50293, 3.45607, 1.06056, 1.04044, 0.993586,
2.65267, 1.82618, 1.45220.
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5. Discussion and conclusions

The data presented in the �rst column of Table 3 show the predicted changes in the
values of the Lagrangian multipliers L1, L3 and L5 with increasing stress components
σ0

11 ≥ 0, σ0
22 ≥ 0 in the case when σ0

22/σ0
11 ' 0.487. For given L1, L3 and L5, the

partition function Z and, consequently, the function p(ξ, ϕ, φ) can also be regarded as a
known quantity, since Z can be calculated immediately from the normalization condition
(20). Therefore, the data presented in the �rst column of Table 3 enable us to estimate
the in�uence of the increasing initial plane stress {σ0

11, σ
0
22} on the predicted texture of

the polycrystalline aggregate under consideration. In order to visualize this e�ect, the
quantities

nφ(φ2, φ1)
.=

φ2∫

φ1

2π∫

0

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (34)

nϕ(ϕ2, ϕ1)
.=

2π∫

0

ϕ2∫

ϕ1

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (35)

nθ(θ1, θ2)
.=

2π∫

0

2π∫

0

ξ1∫

ξ2

p(ξ, ϕ, φ) dξ dϕ dφ,

θ1 = arccos ξ1, θ2 = arccos ξ2, 0 ≤ θ1 ≤ θ2 ≤ π (36)

were calculated successively for L1, L3 and L5 corresponding to the �rst and ninth sets
{L1, L2, L3}, which are written in the �rst and ninth rows of the �rst column of Table 3.
The abbreviations, nφ(φ2, φ1), nϕ(ϕ2, ϕ1), and nθ(θ2, θ1) denote the fractions of the total
number of crystallites

(i) with the angle of proper rotation, φ, lying in the interval φ1 ≤ φ ≤ φ2;
(ii) with the angle of precession, ϕ, lying in the interval ϕ1 ≤ φ ≤ ϕ2, and
(iii) with the angle of nutation, θ, lying in the interval θ1 ≤ θ ≤ θ2, respectively.
In Figs. 4 and 5, examples of numerical calculations of nφ(φ2, φ1) and nϕ(ϕ2, ϕ1),

respectively, are presented for the case σ0
11 = σ0

22 with the whole domains [0◦, 360◦]
of the rotation angle φ and precession angle ϕ being divided into parts (subdomains) of
equal size, 18◦, with centres at φ = (φ1−φ2)/2 = 9◦, 27◦, 45◦, ..., 351◦ (Fig. 4) and at ϕ =
(ϕ1 +ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦ (Fig. 5). Similarly, in Fig. 6, an example of numerical
calculations of nθ(θ2, θ1) is presented for the same case σ0

11 = σ0
22 with the whole domain

[0◦, 180◦] of the nutation angle θ being divided into parts (subdomains) of equal size,
18◦, with centres at θ = (θ1 + θ2)/2 = 9◦, 27◦, 45◦, ..., 171◦. The crystallite fractions
nφ(φ2, φ1), nϕ(ϕ2, ϕ1), and nθ(θ2, θ1) were calculated separately for each subdomain and
the results of these calculations are presented in the form of bar graphs (histograms) in
Figs. 4 � 6. Results of numerical analysis show that the absolute values of the discrepancies
between the elements of the histogram pairs, which correspond to the same subdomain of
the same orientational angle φ, ϕ or θ but concern di�erent initial stresses σ0

11 = σ0
22 = 0

or σ0
11 6= 0, σ0

22/σ0
11 ' 0.487, increases with increasing σ0

11 (and σ0
22). In this analysis,
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σ 0
11 = 3.74 ·108 cm2s−2 and σ 0

22 ' 0.487 ·σ 0
11 were the maximum values of the normalized

plane stress {σ 0
11, σ

0
22} under consideration. In Figs. 7 � 9, the values are presented of the

relative discrepancies between elements of each of the three pairs of histograms nφ(φ2, φ1),
nϕ(ϕ2, ϕ1), and nθ(θ2, θ1), respectively, each of the histogram pairs being composed of
two histograms for the same orientation angle φ, ϕ or θ and for the two limiting stresses:
{σ0

11 = σ0
22 = 0} and {σ 0

11 = 3.74·108 cm2s−2, σ 0
22 ' 0.487·σ 0

11}. The relative discrepancy
is de�ned for an angle subdomain as the ratio of the discrepancy in the subdomain
between two histograms of the considered pair to the value of the histogram belonging
to the same pair and concerning the case {σ0

11 = σ0
22 = 0}. The values of the relative

discrepancies may be regarded as a measure of the e�ect of initial plane stress on the
texture predicted by using the approach proposed in this paper. From Figs. 7 � 9 it can
easily be seen that this e�ect for stress non greater than {σ 0

11 = 3.74 · 108 cm2s−2,
σ 0

22 ' 0.487·σ 0
11} is revealed by the relative discrepancies smaller than 0.007 and therefore

is negligibly small.
The increase of σ0

ij = {σ0
11, σ

0
22} 6= 0 also induces changes in the predicted normalized

moduli C11, C22, C33, C44, C55, C66, c11, c12 and c44, which can be seen from Figs. 1 � 3.
The maximum value of the relative changes in all the moduli (i.e., the changes in all the
moduli divided by the values of the respective moduli of non-prestressed material) are
smaller than 0.02, if σ 0

11 increases from zero to about 374 ·106 cm2s−2. For the steel of the
density ρ = 7.819 g cm−3, it denotes the changes in the value of σ0

11 lying in the interval
from zero to about 292MPa. This value is a typical one of residual stress in steel being
plastically deformed (e.g., rolled). Hence we can conclude that for rolled steel the changes
in the predicted values of the considered moduli, which are induced by the considered
residual stress, are negligibly small.
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