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Bird sounds collected in the field usually include multiple birds of different species vocalizing at the same
time, and the overlapping bird sounds pose challenges for species recognition. Extracting effective acoustic
features is critical to multi-label bird species classification task. This work has extended an efficient transfer
learning technique for labelling and classifying multiple bird species from audio recordings, further laying the
foundation for conservation plans. A synthetic dataset was created by randomly mixing original single-species
bird audio recordings from the Cornell Macaulay Library. The final dataset consists of 28 000 audio clips, each
5 s long, containing overlapping vocalizations of two or three bird species among 11 different species. Several
pre-trained convolutional neural networks (CNNs), including InceptionV3, ResNet50, VGG16, and VGG19,
were evaluated for extracting deep features from audio signals represented as mel spectrograms. The long
short-term memory network (LSTM) was further employed to extract temporal features. A multi-label bird
species classification was investigated. The absolute matching rate, accuracy, recall, precision, and F1-score of
the InceptionV3+LSTM model for multi-label bird species classification are 98.25%, 99.32%, 99.41%, 99.90%,
and 99.57%, respectively, with the minimum Hamming loss of 0.0062. The results show that the proposed
method has excellent performance and can be used for multi-label bird species classification.
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1. Introduction

Field recordings of bird sounds typically contain
vocalizations from multiple bird species occurring si-
multaneously, known as the ‘dawn chorus’, a phe-
nomenon common in natural habitats. However, rel-
atively few studies have addressed the challenge of
multi-label bird species classification in these realis-
tic acoustic environments. Early studies primarily re-
lied on classical acoustic features and traditional ma-
chine learning approaches. For example, Briggs et al.
(2012) manually segmented overlapping bird sounds
recorded from the H.J. Andrews Experimental For-
est (548 audio clips, each containing 1–5 species) and
utilized multi-instance multi-label K-nearest neighbor
(MIML-KNN), achieving an accuracy of 96.1%. Leng
and Dat Tran (2014) combined spectral features,
MFCC, and linear predictive coding (LPC) extracted
from NIPS4B dataset (687 audio clips, containing mul-
tiple bird species per clip) and trained ensemble clas-

sifiers, obtaining an AUC of 91.74%. Liu (2016) in-
troduced a transfer learning feature mapping method
based on MFCC and Gaussian mixture models (GMM)
for multi-label bird sound classification. The method
was evaluated on NIPS4B and an artificial dataset
(constructed by mixing xeno-canto bird audio), achiev-
ing the Hamming loss of 0.1024.
With the advancement of deep learning, recent ap-

proaches have increasingly utilized convolutional neu-
ral networks (CNNs) to automatically learn acoustic
features. Sprengel et al. (2016) proposed a CNN ap-
proach trained on the BirdCLEF 2016 dataset, achiev-
ing a mean average precision (MAP) score of 0.686
for identifying the dominant bird species in audio
recordings, surpassing previous state-of-the-art results.
Bravo Sanchez et al. (2021) used the CNN frame-
work SincNet on NIPS4Bplus bird recordings, achiev-
ing an accuracy of 73.56%. Noumida and Rajan
(2022) proposed a hierarchical attention-based bidi-
rectional gated recurrent unit (BiGRU) model with
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MFCC, trained on the xeno-canto dataset, achieving
an F1-score of 0.85. Abdul Kareem and Rajan
(2023) fused MFCC-RNN and mel spectrogram-CNN
methods, obtaining an F1-score of 0.75 on the xeno-
canto dataset.
Although CNNs effectively extract local features

from spectrograms, they often neglect long-term tem-
poral dependencies in acoustic data. Integrating CNNs
with recurrent neural networks (RNNs), such as long
short-term memory (LSTM), addresses this limitation
by capturing sequential acoustic patterns (Sainath
et al., 2015; Nishikimi et al., 2021; Liu et al., 2021).
Transfer learning allows models to leverage the

knowledge learned from large-scale datasets and tasks,
significantly reducing training parameters and acceler-
ating learning processes (Weiss et al., 2016). Trans-
fer learning is very helpful when there is insufficient
data to fully train a model, such as recognizing un-
common bird species (Huang, Basanta, 2021). Gu-
nawan et al. (2021) applied a transfer learning tech-
nique to avoid overfitting when classifying endangered
species, such as the small footed owl in Indonesia.
Deep CNN models, including VGG (Simonyan, Zis-
serman, 2014), ResNet (He et al., 2016), and In-
ception networks (Szegedy et al., 2016; 2017), have
shown superior performance on image classification
tasks, making them ideal candidates for transfer learn-
ing. Sevilla and Glotin (2017) successfully adapted
the Inception-v4 network to bird sound classification,
achieving the highest accuracy 71.4% on the Bird-
CLEF 2017 dataset. Transfer learning has also proven
effective in various multi-label classification tasks, in-
cluding autonomous driving (Li et al., 2021), natu-
ral language sentiment analysis (Tao, Fang, 2020),
and transformer-based models across multiple domains
(Gómez-Gómez et al., 2023).
In this study, inspired by previous works, we utilize

transfer learning models including VGG16, VGG19,
InceptionV3, and ResNet50 to extract deep acous-
tic features from mel spectrograms of bird sounds.
An LSTM network is integrated to capture temporal
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Fig. 1. VGG16 network structure diagram (based on (Simonyan, Zisserman, 2014)).

dependencies across frames. We specifically focus on
multi-label classification tasks involving simultaneous
vocalizations of two or three bird species, using syn-
thetic datasets created from Cornell’s Macaulay Li-
brary recordings (28 000 audio clips, each lasting 5 s).
The feature extraction capability, classification accu-
racy, and generalization performance of these inte-
grated models are comprehensively analyzed.

2. Method

2.1. Transfer learning models

The core idea of transfer learning is to leverage
knowledge from the source domain to improve perfor-
mance in a related target task. In this study, we utilize
four pre-trained convolutional neural network architec-
tures – VGG16, VGG19, InceptionV3, and ResNet50
– originally trained on the ImageNet dataset (Deng
et al., 2009). Each architecture has distinct character-
istics that influence its performance on multi-label bird
species classification tasks.

2.1.1. Classification model based on pre-trained
network VGG16/VGG19

VGG is a classic image classification network based
on the ImageNet database. Its characteristic is to use
a convolutional layer with a smaller kernel (3× 3) in-
stead of a convolutional layer with a larger kernel.
On the one hand, it can reduce parameters, and on
the other hand, it is equivalent to performing more
nonlinear mapping, increasing the network’s expressive
power (Simonyan, Zisserman, 2014). The VGG16
pre-trained network framework is shown in Fig. 1.
The VGG19 model adds three additional convolu-
tional layers on top of VGG16: one 3× 3× 256 and two
3× 3× 512. VGG19 has a deeper network than VGG16,
and increasing the depth can effectively improve per-
formance. The part before the fully connected layer is
commonly referred to as the feature extraction layer.
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2.1.2. Classification model based on pre-trained
network InceptionV3

The method of increasing the number of convolu-
tional layers to enhance the learning ability of the net-
work is not always feasible, because after the network
reaches a certain depth, increasing the number of net-
work layers will cause the problem of random gradient
disappearance and explosion, and also lead to a de-
crease in accuracy. Moreover, complex networks can
also bring high computational costs. The Inception
module decomposes large convolutions into multiple
small convolutions, where multiple small convolution
kernels simultaneously convolve the image and aggre-
gate information at different scales, as shown in Fig. 2
(Szegedy et al. 2016). This can significantly reduce
network parameters without losing features. The key
to the InceptionV3 network is to use Inception mod-
ules and two asymmetric decomposition structures to
construct different types of Inception module groups.

Filter concat

Base

3 × 3

3 × 3

1 × 1 1 × 1 1 × 1

3 × 3 3 × 1

Pool

Fig. 2. Each 5×5 convolution in the Inception
module is replaced by two 3 × 3 convolutions

(based on (Szegedy et al., 2016)).

2.1.3. Classification model based on pre-trained
network ResNet50

In response to the problem of gradient disappear-
ance, He et al. (2016) proposed a residual structure
that not only solves the gradient problem, but also
improves its feature expression ability with the in-
crease of network layers, thereby improving classifi-
cation performance. Figure 3 shows a residual struc-
ture in ResNet50, which includes cross layer connec-
tions that allow input to be directly passed across lay-
ers and then added to the convolutional result. This
helps the model converge towards the equal mapping

Table 2. CNN networks comparison.

CNN networks Depth (layers) Parameters, complexity Feature extraction strategy

VGG16/19 16/19 High parameters, high computational com-
plexity

Small 3× 3 convolutions, captures fine-grained
local features

InceptionV3 48 Moderate parameters, efficient computation
due to parallel modules

Multi-scale feature extraction via parallel con-
volutions (Inception modules)

ResNet50 50 High parameters but efficient training Deep residual structure enabling hierarchical
feature abstraction

Fig. 3. Residual structure diagram (He et al., 2016).

direction, ensuring that the final accuracy is not af-
fected by the depth of the model. Table 1 shows the
ResNet50 model structure and network parameters.

Table 1. Model training parameter statistics.

Models
LSTM
input
size

LSTM
trainable
parameters

FC
parameters

Total
trainable
parameters

VGG16/VGG19 3 584 3 933 184 2 827 3 936 011

InceptionV3 16 384 17 040 384 2 827 17 043 211

ResNet50 14 336 14 943 232 2 827 14 946 059

We chose these models due to their distinct ad-
vantages: VGG models provide strong representational
power, InceptionV3 excels at multi-scale feature ex-
traction with fewer parameters, and ResNet50 effec-
tively manages training of very deep networks. A com-
parative analysis of these models is summarized in Ta-
ble 2.

2.2. Pre-trained convolutional neural network fused
with LSTM

The feature sequence extracted by the pre-trained
CNN cannot be directly fed into the LSTM network.
Taking the VGG16 model as an example, the final
extracted feature map has dimensions of 7× 7× 512
(H ×W ×C). The original mel spectrogram of size
224× 224 is compressed spatially to 7× 7, and the num-
ber of channels deepens from 3 (original RGB chan-
nels) to 512. Through convolution and pooling oper-
ations, the spatial structural information in the mel
spectrogram is transformed into deep feature represen-
tations, where each channel corresponds to a particular
response pattern, such as edges, textures, and colors.
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Fig. 4. Feature sequence obtained from pre-trained VGG16 input with LSTM.

To make these features suitable for temporal mod-
eling by LSTM, the feature maps are reshaped based
on the spatial dimension (e.g., width dimension) into
a sequential format. Specifically, we expand the feature
maps along the width dimension (W ) into a feature se-
quence of size 7× 3584, where 7 corresponds to the
number of time steps, and 3584 (i.e., 7× 512) rep-
resents the features at each time step. Figure 4 il-
lustrates the detailed procedure of feeding these fea-
ture sequences input into the LSTM network. Sim-
ilarly, for other pre-trained CNN architectures, the
extracted feature map dimensions differ slightly: In-
ceptionV3 produces a feature sequence of 8× 8× 2048,
and ResNet50 yields a feature sequence of 7× 7× 2048.
These feature maps are processed in the same way as
described above to prepare sequential data suitable for
input into the LSTM network.
The number of neurons in the output layer of the

LSTM network is 11 for classifying bird species. Sig-
moid is used as the activation function for the output
layer, ensuring that each neuron outputs a probability
of 1. When the probability value is greater than 0.5,
the predicted value output by the neuron is 1, indicat-
ing that the bird species corresponding to the neuron
exists in the audio sample. The fusion model also adds
a batch normalization (BN) layer to avoid gradient dis-
appearance. Dropout layers are introduced to reduce
overfitting by randomly dropping units during train-
ing, thereby improving the generalization performance
of the network. The parameters in the feature extrac-
tion modules of VGG16, VGG19, InceptionV3, and
ResNet50 are frozen, and the remaining parts of the
network are trained using our dataset in this work. To
help assess model complexity, we provide the number
of trainable parameters (excluding frozen CNN layers)
for each configuration, as shown in Table 1.

3. Experimental settings

3.1. Dataset construction

Bird sound recordings of 11 bird species used for
this work are collected from the Macaulay Library at

Cornell University1. Table 3 shows the selected origi-
nal audio of each bird. These recordings are in MP3
format, with a sampling frequency of 44 100Hz and
a bit rate of 128 000 bps. Each recording is annotated
as a single species of bird vocalization. To create multi-
label bird species samples, we randomly selected au-
dio segments from the original single-species recordings
and combined them digitally using audio mixing soft-
ware ‘Adobe Audition’. Before mixing, the audio seg-
ments were normalized to the same volume level to pre-
vent any single recording from dominating due to vol-
ume differences. Each resulting 5-second segment con-
tains clearly annotated overlapping vocalizations from
either 2 or 3 different bird species. The detailed infor-
mation is shown in Table 4.
Figures 5 and 6 represent mel spectrograms of syl-

lable overlapping for 2 and 3 bird species, respectively.
The mel spectrograms were constructed using the Li-
brosa library with a sample rate of 44 100Hz, the FFT
window length (n fft) of 1024 samples, a hop length of
512 samples (50% overlap), and 128 mel filter banks.
A visual inspection reveals that as the number of over-
lapping bird species increases, the spectral complexity
and signal interference also become more pronounced.
For instance, in Figs. 5a and 5c, the individual vocal
patterns of each species are relatively separable, often
occurring in distinct frequency bands or time inter-
vals. However, in Figs. 6b and 6c, the spectrograms
show significantly denser and more continuous activ-
ity across both frequency and time, making it more
difficult to visually or algorithmically disentangle indi-
vidual species. This suggests that classification tasks
involving three or more overlapping bird species are
inherently more challenging due to increased spectral
overlap, which can obscure characteristic frequency
patterns and temporal features.
The labels of each audio segment are manually re-

viewed and verified to ensure the presence of corre-
sponding bird sounds. The ratio of training set to test-
ing set is divided into 3:1.

1Specifically retrieved via the search interface at:
https://search.macaulaylibrary.org/catalog

https://search.macaulaylibrary.org/catalog
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Table 3. Audio file information of 11 bird species.

Bird species
Number

of downloaded
audio files

Audio file name

Downy Woodpecker 12 ML107289, ML433684551, ML320270011, ML216529601, ML288560951, ML89889581,
ML259178751, ML94232, ML282354581, ML249048571, ML218533941, ML539363

Northern Flicker 9 ML60535251, ML47981841, ML6891, ML84808, ML224667, ML176938031, ML6802,
ML63072, ML299493831

Black-capped Chickadee 10 ML381756441, ML202239, ML227931651, ML228999, ML359860121, ML244530591,
ML442275881, ML315584611, ML9334271, ML217850561

White-breasted Nuthatch 9 ML51757711, ML196990751, ML304498191, ML105313481, ML313785451, ML120214,
ML169318341, ML88195851, ML245567141

Northern Cardinal 7 ML101113031, ML94284, ML94286, ML94285, ML325248201, ML434987071,
ML24184651

House Finch 9 ML369617771, ML44967, ML110958961, ML331732541, ML161496541, ML22938,
ML56843, ML22941, ML12932

Pine Siskin 5 ML156434831, ML22902731, ML176160, ML89549511, ML219631251

Western Backyard Birds 6 ML481585181, ML203884811, ML425203981, ML279795071, ML2425203911,
ML168880461

Steller’s Jay 8 ML35291431, ML202130641, ML44859, ML410551461, ML42204, ML119017701,
ML192457, ML90747421

Evening Grosbeak 5 ML148939381, ML160442941, ML129191951, ML77259, ML227584

Blue Jay 13 ML166281501, ML177463211, ML345934681, ML107392, ML264268971,
ML260458751, ML421603721, ML539887, ML219634, ML13448, ML359246651,
ML223790721, ML20432

Table 4. Detailed information of multi-label dataset.

Category Number of training samples Number of test samples In total

2 11 550 3 850 15 400

3 9 450 3 150 12 600

Total 21 000 7 000 28 000
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Fig. 5. Mel spectrogram of mixed audio of syllables overlapping between two species of birds: a) Black capped Chickadee–
Blue Jay; b) Pine Siskin–Steller’s Jay; c) Downy Woodpecker–House Finch; d) Northern Flicker–White-breasted Nuthatch.
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Fig. 6. Mel spectrogram of mixed audio of syllables overlapping between three species of birds: a) Black capped Chickadee–
White-breasted Nuthatch–Blue Jay; b) Downy Woodpecker–Northern Flicker–White-breasted Nuthatch; c) Western Back-

yard Birds–Steller’s Jay–Evening Grosbeak; d) White-breasted Nuthatch–Northern Cardinal–Pine Siskin.

3.2. Objective evaluation

Unlike single label classification tasks, a sample in
a multi-label classification task can have multiple la-
bels. Firstly, without considering partially correct eval-
uation metrics, the sample can only be predicted cor-
rectly if the predicted label is exactly the same as the
true label (Paniri et al., 2020). This evaluation met-
ric is called the exact match ratio (Zhang et al., 2016)
and the calculation formula is as follows:

Exact match ratio = 1

n

n

∑
i=1

I(Ŷi = Yi), (1)

where I is the indicator function. When Yi is com-
pletely equivalent to Ŷi, I is 1, otherwise it is 0; Ŷi is the
predicted label set for sample i, Yi is the ground truth
label set; n represents the total number of samples. It
can be seen that this evaluation metric is very strict
for the classification model. In addition, only some la-
bels that are correctly predicted can also be used to
evaluate the performance of classification models. The
commonly used performance metrics include accuracy,
recall, precision, and F1-score (Godbole, Sarawagi,
2004). Accuracy is defined as the proportion of cor-
rectly predicted labels to the union of predicted and
true labels for each sample, averaged across all sam-
ples:

Accuracy = 1

n

n

∑
i=1

∣Yi ∪ Ŷi∣
∣Yi ∩ Ŷi∣

, (2)

where ∣Yi∪Ŷi∣ is number of correctly predicted labels for
sample i, ∣Yi∩Ŷi∣ is total number of unique labels in the
prediction and true labels for sample i. Recall measures
the proportion of correctly predicted labels out of all
true labels for each sample, averaged over all samples:

Recall = 1

n

n

∑
i=1

∣Yi ∩ Ŷi∣
∣Yi∣ , (3)

where ∣Yi∣ is total number of true labels for sample i.
Precision is defined as the proportion of correctly pre-
dicted labels out of all predicted labels for each sample,
averaged over all samples:

Precision = 1

n

n

∑
i=1

∣Yi ∩ Ŷi∣
∣Ŷi∣

, (4)

where ∣Ŷi∣ is total number of labels predicted for sam-
ple i. The F1-score for each sample is the harmonic
mean of precision and recall, averaged across all sam-
ples:

F1 − score = 1

n

n

∑
i=1

2 × Precisioni ×Recalli
Precisioni +Recalli . (5)

In addition, performance metrics also include the Ham-
ming loss (Sorower, 2010). The Hamming loss evalu-
ates the fraction of labels that are incorrectly predicted
across all samples:

Hamming loss = 1

kn

n

∑
i=1

k

∑
j=1

I(yij ≠ ŷij), (6)
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where k is the total number of labels, yij is the true
value of the j-th label for sample i, and ŷij is the pre-
dicted value of the j-th label for a sample i. The smaller
the value of the Hamming loss, the better the perfor-
mance of the classification model.

3.3. Implementation details

The hardware environment for experiments is
a server with Inter I9-7920X CPU and NVIDIA GTX
RTX1080Ti GPU, and the operating system is Ubuntu
16.04. All experimental models are built based on
the PyTorch deep learning framework, with the Py-
Torch version number 1.9.1. During the training pro-
cess, MultiLabelSoftMarginLoss (Cheng et al., 2021)
is used as the loss function, and the stochastic gradient
descent (SDG) is used to update the network param-
eters. Momentum is set to 0.9, the learning rate is set
to e-4, epoch is set to 300, and batch size is set to 32.

4. Result

4.1. Classification results of different transfer
learning models

The results of multi-label bird species classification
under different transfer learning models are shown in
Table 5. According to Table 5, the InceptionV3 model
has the best classification performance, with exact
match ratio, accuracy, recall, precision, and F1-score
of 93.04%, 97.30%, 97.50%, 99.75%, and 98.30%, re-
spectively, and the Hamming loss of 0.026. The Incep-
tionV3 model uses decomposition convolution, which
decomposes large convolution factors into small convo-
lutions and asymmetric convolutions, effectively reduc-
ing parameters and avoiding overfitting. The Inception
modules use multiple branches to extract high-order
features with different levels of abstraction, enriching
the network’s expressive power (Szegedy et al., 2016).
The absolute matching rate of the VGG19 model is
4.23% lower than that of the VGG16 model, which
proves that blindly adding convolutional layers will not
improve the classification performance and will lead to
overfitting of the model. The exact match ratio, accu-
racy, recall, precision, and F1-score of the ResNet50

Table 5. Multi-label bird species classification results
of four transfer learning models.

VGG16 VGG19 InceptionV3 ResNet50

Exact match
ratio [%]

87.87 83.64 93.04 85.62

Accuracy [%] 95.20 93.63 97.30 94.40

Recall [%] 95.69 94.41 97.50 95.22

Precision [%] 99.41 99.00 99.75 99.02

F1-socre [%] 96.97 95.97 98.30 96.46

Hamming loss 0.045 0.059 0.026 0.051

model are 85.62%, 94.40%, 95.22%, 99.02%, and
96.46%, respectively, with the Hamming loss of 0.051.
The classification performance of the ResNet50 model
is better than VGG19, but inferior to VGG16, indi-
cating that the residual structure has to some extent
alleviated the overfitting phenomenon of the model.
The CNN structure affects the results of multi-label
bird sounds classification.
Figures 7 and 8, respectively, depict the variation

curves of exact match ratio and the Hamming loss for
four pre-trained models. As shown in Fig. 7, the exact
match ratio of ResNet50 did not significantly improve
after the 50th epoch, while the exact match ratio of In-
ceptionV3 continued to increase, approaching satura-
tion approximately after the 100th epoch. From Fig. 8,
it can be seen that after the 50th epoch, the Ham-
ming loss of InceptionV3 is significantly lower than
VGG16, VGG19, and ResNet50. Overall, the VGG16
and VGG19 models are not suitable for multi-label
bird species classification.
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Fig. 7. Exact match ratio curves of four transfer learning
models.
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Fig. 8. Hamming loss curves of four transfer learning
models.

4.2. Classification results of four transfer learning
models fused with LSTM

Table 6 shows the classification results of four
transfer learning models fused with LSTM. Compar-
ing Tables 5 and 6, it can be seen that after fus-
ing LSTM, the classification performance of VGG16,
VGG19, InceptionV3, and ResNet50 has all improved
significantly. The exact match ratio of ResNet50 in-
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creased the most, by 12.89%, VGG19 by 6.42%, Incep-
tionV3 by 5.21%, and VGG16 by 3.73%. The LSTM
network can learn the time series characteristics in fea-
ture sequences, and the time series of vocalizations
of different bird species vary. InceptionV3+LSTM has
the best classification performance among all models,
with exact match ratio, accuracy, recall, precision, and
F1-score of 98.25%, 99.32%, 99.42%, 99.90%, and
99.57%, respectively. Moreover, the Hamming loss also
reaches a minimum of 0.0062. The Hamming loss of
InceptionV3+LSTM is reduced by 0.0198 compared
to InceptionV3, indicating that the prediction error
and missing error of multi labels are minimized. This
is because the CNN-LSTM model can learn compli-
cated patterns from data more rapidly and correctly
than the CNN model alone. However, the precision of
InceptionV3+LSTM is slightly lower by 0.05% than
ResNet50+LSTM. The exact match ratio, accuracy, re-
call, precision, and F1-score of the ResNet50+LSTM
model are 6.55%, 2.46%, 1.99%, 0.52%, and 1.52%
higher than those of VGG16+LSTM, respectively.
This indicates that the feature sequence obtained by
ResNet50 contains more time series characteristics.
The classification performance of VGG19 fusion LSTM
network has been improved, but it is still lower than
the other three transfer learning models.

Table 6. Multi-label bird species classification results
of four transfer learning models fused with LSTM.

VGG16
+LSTM

VGG19
+LSTM

InceptionV3
+LSTM

ResNet50
+LSTM

Exact match
ratio [%]

91.60 90.06 98.25 98.15

Accuracy [%] 96.78 96.21 99.32 99.24

Recall [%] 97.28 96.79 99.41 99.27

Precision [%] 99.43 99.32 99.90 99.95

F1-score [%] 97.99 97.62 99.57 99.51

Hamming loss 0.029 0.034 0.0062 0.0073

Figures 9 and 10, respectively, depict the ex-
act match ratio and the Hamming loss variation
curves of four transfer learning models fused with
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Fig. 9. Exact match ratio curves of four transfer learning
models fused with LSTM.
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Fig. 10. Hamming loss curves of four transfer learning
models fused with LSTM.

LSTM. As shown in Fig. 9, the exact match ratio of
the VGG16+LSTM and VGG19+LSTM classification
models is significantly lower than InceptionV3+LSTM
and ResNet50+LSTM. Before the 70th epoch, the ex-
act match ratio of ResNet50+LSTM was slightly higher
than InceptionV3+LSTM. After the 70th epoch, there
was no significant difference between the two fusion
models. As shown in Fig. 10, before the 200th epoch,
InceptionV3+LSTM had the higher Hamming loss
than ResNet50+LSTM. After the 200th epoch, there
was no significant difference between the two fusion
models. Considering the performance of the model and
computing resources, we chose InceptionV3+LSTM as
the multi-label bird species classification model.

4.3. Classification confusion matrices
of InceptionV3+LSTM

To further analyze the performance of the
InceptionV3+LSTM model in multi-label bird species
classification, we present the confusion matrices for
each label in Table 7. These confusion matrices provide
a detailed view of the model’s prediction accuracy for
each individual label. For label 0, the high number of
true positives (1332) and true negatives (5661) indi-
cates that the model performs well in identifying this
label. However, label 2 has a relatively higher number
of false positives (8) and false negatives (11) compared
to other labels, which may suggest that this label is
more challenging for the model to classify accurately.
Label 4 has a moderate number of false positives (4)
but a higher number of false negatives (23), indicating
that the model may have difficulty in correctly identi-
fying this label.
Overall, the confusion matrices demonstrate that

the InceptionV3+LSTM model has a high accuracy
in classifying most labels, with only a few exceptions
where misclassifications occur. This suggests that the
model is capable of effectively learning the features and
temporal patterns in the bird sound data, leading to
accurate multi-label classification results.
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Table 7. Confusion matrix for different labels.

Confusion matrix for label 0

Label 0: real
Predict

0 1

0 5661 5

1 2 1332

Confusion matrix for label 1

Label 1: real
Predict

0 1

0 5082 3

1 2 1913

Confusion matrix for label 2

Label 2: real
Predict

0 1

0 5154 8

1 11 1827

Confusion matrix for label 3

Label 3: real
Predict

0 1

0 5284 0

1 4 1712

Confusion matrix for label 4

Label 4: real
Predict

0 1

0 5318 4

1 23 1655

Confusion matrix for label 5

Label 5: real
Predict

0 1

0 5379 0

1 16 1605

Confusion matrix for label 6

Label 6: real
Predict

0 1

0 5440 0

1 6 1554

Confusion matrix for label 7

Label 7: real
Predict

0 1

0 5543 0

1 0 1457

Confusion matrix for label 8

Label 8: real
Predict

0 1

0 5620 0

1 13 1367

Confusion matrix for label 9

Label 9: real
Predict

0 1

0 5647 0

1 20 1333

5. Discussion

Table 8 shows a comparison of the relevant studies
with the present study in terms of method and perfor-

mance. In multi-label bird species classification tasks,
syllable overlap can limit manual feature extraction
(Liu, 2016; Briggs et al., 2012; Noumida, Rajan,
2022; Leng, Dan Tran, 2014; Abdul Kareem, Ra-
jan, 2023), because syllable segmentation is a crucial
step. The accuracy of any classifier that relies on seg-
mentation is sensitive to the quality of the segmenta-
tion (Fagerlund, 2004). A recent study has shown
that deep learning is an effective method for classi-
fying birds based on their sounds, such as processing
large amounts of audio data, which allows it to de-
tect subtle differences between bird sounds (Michaud
et al., 2023). Researchers usually increase the number
of convolutional layers to extract more detailed fea-
tures from the audio raw waveform (Bravo Sanchez
et al., 2021) and mel spectrograms (Abdul Kareem,
Rajan, 2023). These methods result in more training
parameters and the need for sufficient data to train
model parameters. To reduce the number of trainable
parameters and address the issue of data availability
for the deep convolutional network to be effectively
trained, a transfer learning approach is adopted in this
study. For multi-label bird species classification, we
employed the ImageNet-trained InceptionV3 convolu-
tion network. However, the CNN model ignores the
temporal dependence of bird sounds. The pre-trained
InceptionV3 is further fused with LSTM to extract
time series characteristics from the feature sequence.
Table 7 demonstrates that the proposed multi-label
bird species classification method based on pre-trained
InceptionV3 fused with LSTM has excellent perfor-
mance.
The experimental results demonstrate the superi-

ority of the InceptionV3+LSTM model in multi-label
bird species classification, particularly in challenging
cases involving overlapping syllables from two or three
bird species. This confirms that combining convolu-
tional feature extraction with temporal modeling via
LSTM yields significant benefits over CNNs alone.
However, despite the strong performance, the pro-

posed method relies on a large number of parameters
and pre-trained models trained on image datasets (Im-
ageNet), which may not optimally capture the charac-
teristics of audio spectrograms. Furthermore, although
we simulate overlapping bird calls, the synthetic na-
ture of the dataset may not fully capture the complex-
ities of real-world soundscapes such as environmental
noise or unpredictable call patterns.
Compared to previous studies listed in Table 8, our

method achieves state-of-the-art performance, yet di-
rect comparisons remain difficult due to the diversity
of datasets, label types, and evaluation metrics. Future
work could benefit from the establishment of standard-
ized multi-label bird audio benchmarks and the inte-
gration of more audio-specialized architectures, such
as attention-based transformers or audio foundation
models.
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Table 8. Comparative analysis with other methods.

Reference work Method Dataset Performance

Liu (2016) Based on MFCC feature transfer NIPS4B and xeno-canto Hamming loss 0.1024

Briggs et al. (2012) Spectral features with MIML-KNN H.J. Andrews Experimental
Forest

Accuracy 96.1%

Noumida, Rajan (2022) MFCC with BiGRU xeno-canto F1-score 0.85

Leng, Dat Tran (2014) Spectral features, MFCC
and LPC with ensemble model

NIPS4B AUC 91.74%

Bravo Sanchez et al. (2021) SincNet NIPS4Bplus Accuracy 73.56%,
AUC 74.85%,
Precision 74.81%,
Recall 73.56%

Abdul Kareem, Rajan (2023) Fused the MFCC-RNN
and mel spectrogram-CNN

xeno-canto F1-score 0.75

Proposed method in this work Pre-trained InceptionV3
with LSTM

Cornell Macaulay Library Exact match ratio 98.25%,
Accuracy 99.32%,
Recall 99.42%,
Precision 99.90%,
F1-score 99.57%,
Hamming loss 0.0062

6. Conclusions

In recent years, research on multi-label bird sound
classification has been limited, particularly for realis-
tic scenarios where two or three bird species vocal-
ize simultaneously within the same audio segment.
Moreover, most existing works rely on researcher-
constructed datasets due to the lack of publicly
available multi-label bird datasets, which makes per-
formance comparison and method validation chal-
lenging. To address these issues, this study pro-
posed a multi-label bird species classification model
based on a transfer learning architecture fused with
LSTM. Specifically, our method focuses on the re-
alistic challenge of identifying two or three bird
species vocalizing simultaneously within the same
5-second audio clip. Traditional syllable segmenta-
tion methods often struggle in such overlapping sce-
narios. By applying pre-trained convolutional neural
networks to extract deep acoustic features from mel
spectrograms, and further integrating LSTM to cap-
ture temporal dependencies, the proposed model ef-
fectively addresses this challenge. Experimental re-
sults demonstrate that the InceptionV3+LSTM fusion
model achieves outstanding performance in multi-label
classification, with an exact match ratio of 98.25%,
accuracy of 99.32%, recall of 99.42%, precision of
99.90%, F1-score of 99.57%, and the minimum Ham-
ming loss of 0.0062.
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