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The method of deriving the evolution equation, based on projecting is applied for
the evaluation of the sound velocity and the parameters of nonlinearity for real gases
and liquids. The method yields in a coupled system of interacting modes: leftwards and
rightwards acoustic and heat modes in the one-dimensional �ow problem. The general
form of the caloric equation of state allows to get the coe�cients of nonlinear equations in
the general form. As an example, the sound velocity and the nonlinear parameter B/A for
a variety of semi-ideal gases were calculated and the results compared with experimental
data.

Notations

x � space coordinate [m],
t � time [s],
ρ � density [kg/m3],
p � pressure [N/m2],
v � velocity [m/s],
T � absolute temperature [K],
e � internal energy per unit mass [J/kg],

ρ0, p0, v0, e0, T0 � unperturbed values,
ρ́, ṕ, v́, é, T́ � perturbations,

x∗, t∗, ρ∗, p∗, v∗ � dimensionless variables,
λ � characteristic scale of disturbance,
α � coe�cient responsible for amplitude of acoustic wave,

D1..D5 � dimensionless coe�cients in evolution equations,
E1..E5 � coe�cients in caloric equation of state,

c � linear sound velocity [m/s],
B/A, C/A � acoustic parameters of nonlinearity,

cv(p) � heat capacity under constant (volume) pressure per unit mass [J/kg·K],
R � the universal gas constant [J/mol·K],
µ � molar mass [kg/mol],

fosc � number of oscillation degrees of freedom of a gas molecule,
θi � characteristic temperature of oscillation [K],
γ � adiabatic gas constant (cp/cv).



352 A. PERELOMOVA, S. LEBLE and M. KU�MIREK-OCHRYMIUK

1. Introduction

The projecting method serves for deriving nonlinear evolution equations for the in-
teracting modes. Modes as basic types of motion of the concrete problem, to be de�ned
by this method as eigenvectors of the corresponding linear problem. The main physi-
cal idea hence is to �x relations between the perturbations of wave variables. For linear
�ows, the modes are independent and may be extracted from the overall perturbation
by operators projecting to the eigenspaces. The operators may be constructed by means
of the eigenvectors and are applied when either linear or nonlinear dynamics is con-
sidered. Acting projectors on the full nonlinear system of gas dynamic equations leads
to coupled nonlinear evolution equations which may be related with known evolution
equations.

Examples of acoustic-gravity waves in the atmosphere and electromagnetic waves are
studied in [1]. Nonlinear evolution equations for the bubbly liquid dynamics are derived
in [2], and the acoustics in the exponentially strati�ed atmosphere is investigated in [3]. In
the present paper, we apply the projecting technique for deriving the nonlinear evolution
equation for one progressive acoustic mode. The caloric and thermal equations of state are
incorporated in their general forms which allow to treat an arbitrary �uid. We, however,
go to the representation of the equations as multivariable Taylor series: these formulas are
convenient for practical purposes. Therefore the sound velocity, the nonlinear parameter
B/A and some nonlinear parameters of higher order (C/A, ...) depend on the coe�cients
of the Taylor series of the equations of state. A similar approach is developed in [4 � 6] on
a di�erent theoretical basis and applications. Beginning from the results in [4], the theory
allows to study the direct links of the acoustic parameters with the thermodynamic ones
and in turn the modeling of the intermolecular forces. Let also mention the developing
techniques and quality of the measurements of the nonlinear constants (see e.g. [7, 8]).
The results give hope of a progress in this di�cult problem of the condensed matter
physics.

Though a wide variety of gases and �uids may be treated in this way, we start from
the examples of semi-ideal gases which account for oscillatory degrees of freedom. The
motivation is simplicity, that help to explain the main ideas, as well as the existence of
explicit formulae for the state equations. One arrives at the sound velocity and the
nonlinear parameter B/A in an explicit form and it is easy to calculate both these
values over a wide range of equilibrium states of a gas. The important thing is the
existence of available experimental data with which the results of calculations could be
compared.

2. Basic equations

Let us repeat brie�y the ideas and results of the projecting method. We consider
an one-dimensional �uid �ow without thermal conduction and internal friction. A basic
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system thus represents conservation laws of momentum, energy and mass:
∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
= 0,

ρ
∂e

∂t
+ ρv

∂e

∂x
+ p

∂v

∂x
= 0, (2.1)

∂ρ

∂t
+

∂(ρv)
∂x

= 0.

We should complete (2.1) with the caloric equation of state e(p, ρ). Let é has the form of
the Taylor series of two variables:

ρ0é = E1ṕ +
E2p0

ρ0
ρ́ +

E3

p0
ṕ2 +

E4p0

ρ2
0

ρ́2 +
E5

ρ0

ṕρ́

+
E6

p0ρ0

ṕ2ρ́ +
E7

ρ2
0

ṕρ́2 +
E8

p2
0

ṕ3 +
E9

ρ3
0

p0ρ́
3 + . . . , (2.2)

E1, ..., E9 are dimensionless coe�cients. The system (2.1), (2.2) is valid for a wide variety
of �uids and we are not restricted to any special cases of internal energy on pressure and
density since we use the caloric e = e(p, ρ) equation of state in a general form.

The equivalent system (v∗, ṕ∗, ρ́∗, ŕ∗, t́∗) in dimensionless variables:
v = αcv∗, ṕ = αc2ρ0ṕ∗, ρ́ = αρ0ρ́∗, x = λx∗, t = t∗λ/c, (2.3)

where c is the linear sound velocity, as follows from (2.1), (2.2)

c =

√
p0(1− E2)

ρ0E1
,

λ means the characteristic scale of disturbance along x and α is the coe�cient responsible
to the amplitude of the acoustic wave, may be written in the matrix form (asterisks for
dimensionless variables will be later omitted):

∂

∂t
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,
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where the symbols D1..D5 denote dimensionless coe�cients in following forms:

D1 =
1

E1

(
−1 + 2

1− E2

E1
E3 + E5

)
,
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1

1− E2

(
1 + E2 + 2E4 +

1− E2

E1
E5

)
,
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(
1− 3E9 − 2E4 − E7(1− E2)

E1
+

E5

E1
(1 + E2 + 2E4) +

E2
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E2
1

)
,
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(1− E2)

E3
1

(
4E2

3(1− E2)
E1

− E6E1 + 2E3E5 − 3E8(1− E2)− 2E3

)
,

D5 =
1

E2
1

(
4E5E3(1− E2)

E1
+ 2E3(1 + E2)− 2E6(1− E2)− 2E1E7 − E1E5

+E2
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)
.

The second-order nonlinearity column Ψ̃ will contribute to the B/A parameter, and the
third-order one ˜̃

Ψ will yield in C/A.

3. Projecting technique

For a linear �ow, we may �nd a solution as the sum of plane waves, every plane
wave being a solution of the linearized system (2.1), (2.2). Let us introduce plane waves
∼ exp(iωt − ikx) with amplitudes Vk, Pk and Rk. The eigenvalues of the correspond-
ing system of equations for Fourier transformed components in the linear problem, are
determined from the equation: ∣∣∣∣∣∣

iω −ik 0
−ik iω 0
−ik 0 iω

∣∣∣∣∣∣
= 0.

The solution of this equation serve as dispersion relations for the right- and left-
progressive and stationary components. Eigenvectors in the k-presentation look as:

Ψ1,2 =



±1
1
1


Rk1,2 , Ψ3 =




0
0
1


 Rk3 .

Therefore, returning to the (x, t) representation connections for the speci�c variables
appear and we write it down as:

v1,2 = ±ρ1,2, p1,2 = ρ1,2, v3 = 0, p3 = 0. (3.6)

In this way we de�ned the components of the right, left and stationary modes of a wave
in the linear model. From these relations (3.6) the projectors follow immediately:

P1 =
1
2




1 1 0
1 1 0
1 1 0


, P2 =

1
2




1 −1 0
−1 1 0
−1 1 0


, P3 =




0 0 0
0 0 0
0 −1 1


. (3.7)
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The matrices (3.7) have general properties of orthogonal projectors:

P1 + P2 + P3 = Ĩ ,

P1P2 = P2P3 = P3P1 = 0̃, P1P1 = P1, etc.,

where the Ĩ and 0̃ projectors separate the chosen mode from the overall �eld in a unique
way: Ψ1 : P1Ψ = Ψ1, P2Ψ = Ψ2, P3Ψ = Ψ3. Projectors P1, P2, P3 do commute both with
L and ∂/∂t, that allows to generate the equations of modes interaction acting by Pi on
the basic system (2.4).

4. Nonlinear coupled evolution equations

In the nonlinear problem we preserve the same notations for the modes. We consider
(now approximately de�ned) rightwards, leftwards and stationary modes of the nonlinear
problem with the eigenvectors Ψ1, Ψ2 and Ψ3 as it was accepted in the linear model
and assume that the relation equations (3.6) also holds. Thus, the de�ned modes are
strictly directed and stationary in the linear limit and form a system of coupled nonlinear
equations when the projectors act on both sides of (2.4). Marking these modes by indices
1, 2, 3 correspondingly for the quasi-rightwards, leftwards and stationary one, we get
�nally the system:

Pn
∂

∂t
Ψ + PnLΨ − PnΨ̃ − Pn

˜̃
Ψ + O(α3) = 0, (4.8)

or another one (for density only):

∂ρn

∂t
+ cn

∂ρn

∂x
+

α

2

3∑

i,m=1

Y n
imρi

∂ρm

∂x

+
α2

2

3∑

i,m=1

T In

imρiρm
∂ρ1

∂x
+

α2

2

3∑

i,m=1

T IIn

imρiρm
∂ρ2

∂x
+ O(α3) = 0, (4.9)

where

cn =





1 for n = 1
−1 for n = 2

0 for n = 3





and the matrices of constants the Y , T I and T II for the �rst mode are:
∣∣∣∣∣∣∣∣

Y 1
i,m m = 1 m = 2 m = 3

i = 1 −D1 −D2 + 1 D1 + D2 − 1 0
i = 2 −D1 −D2 − 3 D1 + D2 − 1 0
i = 3 −D2 − 1 D2 − 1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

T I1
i,m m = 1 m = 2 m = 3

i = 1 −D3 −D4 −D5 + 1 −D3 −D4 −D5 + 1 −D3 + 1
i = 2 −D3 −D4 −D5 + 1 −D3 −D4 −D5 + 1 −D3 + 1
i = 3 −D3 −D5 + 1 −D3 −D5 + 1 −D3 + 1

∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣

T II1
i,m m = 1 m = 2 m = 3

i = 1 D3 + D4 + D5 + 1 D3 + D4 + D5 + 1 D3 + 1
i = 2 D3 + D4 + D5 + 1 D3 + D4 + D5 + 1 D3 + 1
i = 3 D3 + D5 + 1 D3 + D5 + 1 D3 + 1

∣∣∣∣∣∣∣∣
The other matrices look similarly. There are also equivalent equations for pressure and
velocity.

The system (4.9) allows to calculate all possible interactions of modes. One may
specify a class of initial (boundary) conditions, de�ne the dominant modes and later
solve the system approximately. Here we are interested in the evolution equation for
one progressive (say, rightwards) mode. Physically it means, that this mode is dominant
initially: ρ1 À ρ2, ρ1 À ρ3, and we account self-interaction only in the evolution equation
for this mode:

∂ρ1

∂t
+ c1

∂ρ1

∂x
+ ερ1

∂ρ1

∂x
+ δρ2

1

∂ρ1

∂x
= 0, (4.10)

where ε = α
2 (−D1 −D2 + 1), and δ = α2

2 (−D3 −D4 −D5 + 1). The parameters B/A,
C/A are well known nonlinear parameters of the nonlinear acoustics equation:

p = p0 + A
ρ− ρ0

ρ0
+

B

2
(ρ− ρ0)2

ρ2
0

+
C

6
(ρ− ρ0)3

ρ3
0

+
(

∂p

∂s

) ∣∣∣∣
ρ,s=s0

(s− s0) + . . .

where s is entropy. For our accounting the last expression is neglected � we assume an
adiabatic process. The coe�cients A, B, C can be expressed as:

A =
1− E2

E1
p0, B = −(D1 + D2 + 1)

1− E2

E1
p0 ,

C = ((D1 + D2 + 1)(D1 + 2)− 2(D3 + D4 + D5))
1− E2

E1
p0 .

5. Semi-ideal gases: theory and experiment

We stress once more that the system (2.1) + (2.2) and the subsequent formula for
the operators are suitable for gases and liquids treated by the general caloric equation of
state. The case of ideal gas is considered with coe�cients:

E1 = E4 = E7 =
1

γ − 1
, E2 = E5 = E9 = − 1

γ − 1
, E3 = E6 = E8 = 0.

and: B/A = γ− 1, C/A = (γ− 1)(γ− 2). To �nd some corresponding coe�cients for the
semi-ideal gas, we have to accept the energy of oscillation in the molecules((1) ) [9]:

cv,sid = cv,id + cosc + ∆crot + ∆cel . (5.11)

We use the Einstein�Planck formula for the vibrational speci�c heat:

cosc = R

fosc∑

i=1

(
θi

T

)2
eθi/T

(
eθi/T − 1

)2 . (5.12)

(1) We neglect electron excitations energy because it concerns very high temperatures, and we omit
the energy of rotation � it is signi�cant for very low temperatures and light gases only.
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Using the above formula, we get the equation for the internal energy for semi-ideal
gases [9]:

e = eid +
R

µ

fosc∑

i=1

θi

eθi/T − 1
, eid =

p

ρ

1
(γ − 1)

, (5.13)

where c, e, µ, fosc mean respectively: molar heat, internal energy per unit mass, molar
mass and number of oscillation degrees of freedom of a gas molecule. θi it is characteristic
temperature of oscillation (T � absolute temperature) and γ � adiabatic gas constant
(cp/cv, in classical theory we take γ = 5/3 for a monoatomic ideal gas, 1.4 for a diatomic
one and 4/3 for other gases).

Below, we present a comparison of the values founded for a few gases treated �rst as
ideal ones and then as semi-ideal ones. To calculate the sound velocity c and B/A values
we use the following formulas:

c =

√
RT0

(1− E2)
E1

,
B

A
= −D1 −D2 − 1, (5.14)

where the coe�cients E1..E5, which have been used (see (2.2)), have the general forms:

E1 =
∂e

∂p

∣∣∣∣
p0,ρ0
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∂e

∂ρ

∣∣∣∣
p0,ρ0

ρ2
0

p0
, E3 =

1
2

∂2e

∂p2

∣∣∣∣
p0,ρ0

ρ0p0,

E4 =
1
2

∂2e

∂ρ2

∣∣∣∣
p0,ρ0

ρ3
0

p0
, E5 =

∂2e

∂ρp

∣∣∣∣
p0ρ0

ρ2
0

(5.15)

and for the concrete semi-ideal gas model with account of oscillation degrees of freedom
(the model described above):

E1 = −E2 =
1

γ − 1
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fosc∑
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(
θi

T0

)2

eθi/T0

(
eθi/T0 − 1
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−2− θi
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+ 2
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eθi/T0

(
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)

,
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1

γ − 1
− 1

2

fosc∑

i

(
θi

T0

)3

eθi/T0

(
eθi/T0 − 1

)−2
(

1− 2eθi/T0

(
eθi/T0 − 1

)−1
)

,

E5 = − 1
γ − 1

+
fosc∑

i

(
θi

T0

)2

eθi/T0

(
eθi/T0 − 1

)−2
(

1 +
θi

T0
+

θi

T0

(
eθi/T0 − 1

)−1
)

.

For calculating C/A we need the next coe�cients: E6, ..., E9, which are higher order
derrivatives of e.

The results of calculations are presented in Table 1.
Now, we can notice that for any monoatomic gases (for example He) we have the

ideal gas model without oscillations, and for the diatomic ones (N2, CO) there is a very
small di�erence in the sound velocities (about 10−2 m/s). Next, for some poliatomic gases
(CO2, CH4) the di�erence is noticeable, especially for CO2, even for the low temperatures.
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Table 1. (2)

Gas Model of ideal gas Model of semi-ideal gas Experimental data
B/A c [m/s] B/A c [m/s] B/Aa c [m/s]b

He 0.67 972.9 0.67 972.9 0.66 971c

N2 0.40 336.9 0.40 336.9 0.40 334.0
CO 0.40 337.0 0.40 337.0 0.40 336d (338)
CO2 0.33 262.2 0.24 255.0 0.31 256.7
CH4 0.33 434.7 0.29 431.3 0.30 430

a All values are taken as γ − 1 from [9].
b All values are taken from [10].
c The experimental value is taken from [11].
d The �rst value is taken from [9].

It is necessary to add that the experimental data are taken from various sources, so we are
sure of the temperature measurements only (273K), but data on pressure are often not
available and we often do not know the other measurement parameters. (For example: c

value in the case of the gas CO.)
For an ideal gas B/A ≡ γ−1 [12], but it must be stressed that for a semi-ideal gas and

real gases cv is a function of temperature and a new γ′ has a new thermodynamic sense.
The experimental data of γ for monoatomic gases are almost the same as the theoretical
values, but for poliatomic gases the experimental values are lower than theoretical ones,
which results from the classical approach to the ideal gas [13]. Some experimental data
of γ, taken from other sources, for example [14], would be more close to our theoretical
values:

B/ACO2 = 0.28, B/ACH4 = 0.26,

but they describe some gases under somewhat di�erent measurement conditions. How-
ever, �nding various experimental data, we can notice the temperature and pressure
sensibility of the γ parameter.

Below we present also diagrams of the temperature dependence of c and B/A for
some gases:

Fig. 1. Comparison of theoretical values of sound velocities for CO2 gas.

(2) All values in Table 1 are obtained for T = 273.15K.
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Fig. 2. Di�erence of theoretical sound velocities: cid − csid for N2, CO and CO2 gases.

a)

b)

Fig. 3. Temperature dependence of theoretical values of B/A for: a) diatomic gases CO and N2 and
b) polyatomic ones: CO2 and CH4.
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6. Conclusions

A comparison of the theoretical values of the sound velocity and the nonlinear pa-
rameter B/A for an ideal and semi-ideal gas demonstrate that both of the approaches
give di�erent results for the considered gases. For some polyatomic gases (CO2, CH4)
the theoretical values of c at 0◦C, are in the semi-ideal model of gas closer to the exper-
imental ones. In the case of the B/A parameter, we have a less clear situation, but one
can notice that for the mentioned polyatomic gases the ideal gas model is valid.

The method presented in this paper was applied for deriving the evolution equation
for one progressive acoustic mode only, though its application is considerably extensive.
After adding some thermoconducting and viscous expressions to the basic system of
equations, and adding a thermic equation of state, we could get some new projectors for
a thermoviscous �ow. Also the formula of the equation of state written in the general
form allows to apply the method to di�erent liquids.
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