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Microphones are sensors common to a variety of the Internet of Things (IoT) and healthcare applications.
Many examples have proved that microphones can be useful in detecting, e.g., abnormal breathing rates. There
are already applications that serve this purpose, e.g., respiratory acoustic monitoring, ResApp, etc. Breath
signal was studied using a range of technologies and sensors, including the most common: radar, accelerometer,
wearables, and so on. The majority of these sensors are attached to the body of a monitored person. However,
the emergence of COVID-19 has drawn particular attention to the importance of using non-contact technologies
for monitoring breath signals and other vital signs. This paper presents a comprehensive review of microphone-
based non-contact vital sign monitoring, including the methodologies and concepts, while identifying new

research gaps and opportunities for the future studies.
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Acronyms

CIR — channel impulse response,
DOA - direction of arrival
DYCTNN — dynamic convolution-transformer neural network,
FFT — fast Fourier transform,
FMCW - frequency-modulated continuous wave,
FPGA — field-programmable gate array,

IDRes — identity-based respiration monitoring system for dig-

ital twins enabled healthcare,
IoT — Internet of Things,

MEMS — microelectromechanical microphone,
NCVS — non-contact vital signs,
RIP — respiratory inductance plethysmography,
RMSE - root-mean-square error,
SNR - signal-to-noise ratio,
STFT — short time Fourier transform,
TDOA - time difference of arrival.

1. Introduction

The vulnerability of today’s healthcare system was
evident during COVID-19 pandemic, a serious global
concern in which the number of patients outweighed
available equipment. It was a common practice that

the respiratory apparatus, known as ventilators, was
shared between two patients (GARZOTTO et al., 2020).
According to (BRANSON, RODRIQUEZ, 2023; TSsAI
et al., 2022), the use of ventilators increased by 30 %
in case of adults and 15 % in case of children following
COVID-19. This indicated that persons with normal
breathing problems have been neglected during this
period. This group of people includes both the younger
and older generations.

The application of digital processing to a micro-
phone signal makes it suitable for various research ap-
plications. Microphones, commonly used for record-
ing audio, have now evolved into sophisticated non-
contact monitoring sensors. By using advanced sig-
nal processing techniques, microphones can be used
to sense and analyze vital signs such as heart rate
and respiration rate without making contact with the
body of the target. This new approach offers numer-
ous advantages over traditional methods, resulting in
microphone-based non-contact monitoring systems be-
ing a promising technology for remote health moni-
toring and wellness applications.

A microphone is a transducer that converts sound
waves to electrical signals. It detects slight changes
in air pressure induced by sound and generates an
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electrical signal representing the acoustic sound wave-
form. This electrical signal can subsequently be ampli-
fied, processed, recorded, or transmitted for numerous
purposes such as telecommunications, audio record-
ing, active noise control and speech recognition. Mi-
crophones vary in kind, design, and technology, but
they always work on the principle of converting acous-
tic energy (sound pressure) into electrical energy. Com-
mon types of microphone include dynamic, condenser,
ribbon, piezoelectric microphones and microelectrome-
chanical microphone (MEMS); each comes with differ-
ent properties that make it best suited for different
applications.

Numerous studies have been conducted in the area
of contact and non-contact vital signal monitoring.
Among the research results, a few include thermal
imaging cameras (SAVAZZI et al., 2020), photoplethys-
mography (PPG) (RyU et al., 2021; ARTEMYEV et al.,
2020; BOCCIGNONE et al., 2023; HASHIM et al., 2023;
KHONG, MARIAPPAN, 2019), doppler radar (ISLAM
et al., 2019; JOSHI et al., 2023; EDANAMI et al., 2022;
ZHANG et al., 2023a; WAHYU et al., 2022; MERCURI
et al., 2018), microwave sensors (KATOH et al., 2023;
CELIK et al, 2011; DEI et al, 2009), and acous-
tic sensors (OKAMOTO et al., 2023; X1A0, YU, 2021;
L1vU et al., 2022; JAHANSHAHI et al., 2018; SMITHARD
et al., 2017). Other popular choices are video cam-
eras (HUANG et al, 2021; SABOKROU et al., 2021;
ARTEMYEV et al., 2020; HSU et al., 2020; SHOKOUH-
MAND et al., 2022) and fiber cable (XU et al., 2020;
2021; LIANG et al., 2023; ZHAO et al., 2023; Lvyu
et al., 2022). However, using microphones for non-
contact recording offers several advantages, including
robustness, the ability to capture detailed informa-
tion (KRANJEC et al., 2014; FANG et al., 2016) and
their sensitivity across a wide range of coverage, mak-
ing them adaptable to different scenarios. Microphones
are also useful for making respiratory sounds acces-
sible via phones, laptops, and other portable devices

(MASSARONI et al., 2021), although this approach has
its own drawbacks. This review focuses on microphones
for non-contact vital sign monitoring and it is di-
vided into sections discussing various methods that
have been developed in this field. These methods in-
clude beamforming techniques, smartphone-based so-
lutions, hardware and artificial intelligence (AI) based
approaches.

2. Microphone

The advent of the Internet of Things (IoT) has
made the use of microphones more relevant, increasing
their usefulness by 17 % per year (BECKMANN, 2017).
This may be a result of microphones changing from just
a device for voice reception to their adaptation to mo-
bile applications. Modern applications of microphones
include mobile phones and tablets, cameras, wearables,
bluetooth speakers, and security cameras. They can
act as a sensor for detecting the respiration or heart
rate of humans. Different microphones are being used
in sound analysis due to their unique capabilities and
features (BALGEMANN et al., 2023). Moreover, some
of them are equipped with a digital signal processor
that enables them to modify the audio signal based
on the distance and direction to the sound source. The
pulse-density modulated microphone has been recently
gaining attention due to its ability to delivering au-
dio to digital processors, but its high-order decima-
tion filter for pulse code modulation increases the cost
and power consumption when used as a beamformer
(IPENZA, MASIERO, 2018). Table 1 shows a summary
of microphone applications found in the literature.

2.1. Types of microphones used in audio signal
analysis

2.1.1. Dynamic microphones

Dynamic microphones have the advantage of pro-
viding balanced sound recording. They are also durable,

Table 1. Applications of microphones from the literature.

Paper Microphone type Placement Contact/Non-contact
(DovyLE, 2019) Electret Attached to trachea, lungs Contact
(VALIPOUR, ABBASI-KESBI, 2017) Capacitor Chest region Contact
(KAVSAOUGLU, SEHIRLI, 2023) Stethoscope Chest region Contact
(ZHANG et al., 2023b) MEMS - Non-contact
(SHIH et al., 2019) Smartphone Mouth/Chest Contact

(LOMAURO et al., 2022) -

Chest wall and lungs -

(DAFNA et al., 2015)

Rode NTG-1 directional

Non-contact

(IsLAM et al., 2021) Wearable and smartphone Chest region Contact
(CHAUHAN et al., 2017) Smartphone and wearable Contact
(KHODAIE et al., 2021) MEMS Mouth region Contact

(KHATKHATE et al., 2022) Pressure sensors Ribcage Contact

(FANG et al., 2023)

Circular microphone array

Non-contact

(XU et al., 2022)

Smartphone

Non-contact

(X1E et al., 2020)

Modelling of chest region

Contact
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portable, and capable of producing high-quality sound.
These microphones work on the principle of electro-
magnetic induction, the movement of a wire in a mag-
netic field creates an electromotive force (EMF) in the
wire, which forces the current to flow. When sound
waves hit the diaphragm, it moves either the magnet
or the coil, creating a small current that can capture
sounds from up to one meter away.

2.1.2. Condenser microphone

This kind of microphone functions as a capacitor
consisting of two plates near each other, one of which
acts as the diaphragm. When sound reaches the di-
aphragm, it vibrates, generating changes in capaci-
tance, resulting in an electrical representation of the
acoustic signal. Condenser microphones have a stan-
dard diaphragm diameter: large and small; the small
having the advantage of being more compact and sen-
sitive to picking up higher frequency sound (PreSonus,
2022). Its high fidelity, excellent frequency response,
low noise levels, and sensitivity make it appropriate
for acoustic research (TODOROVIC et al., 2015).

2.1.3. Electret microphone

An electret microphone is a type of condenser mi-
crophone that eliminates the need for a high-voltage
power supply by using a permanently charged material
called an electret. Like most microphones, it consists
of a diaphragm placed near a metal backplate, form-
ing a capacitor. When sound waves impinge on the di-
aphragm, it vibrates and changes the capacitance, gen-

erating an electrical signal corresponding to the sound.
They are commonly used in devices such as mobile
phones, hearing aids, and voice recorders because they
are compact, less expensive, and they require a small
power source for their in-built preamplifier (Open Mu-
sic Lab, 2022).

2.1.4. Microelectromechanical microphone

The MEMS microphone operates by using a tiny
mechanical system etched onto a silicon chip to con-
vert sound waves into electrical signals. It is made
of a flexible diaphragm and a fixed backplate which
forms a variable capacitor. The capacitance of the ca-
pacitor changes as sound waves hit the diaphragm, and
this change/variation is then converted into an elec-
trical signal by an integrated circuit. MEMS micro-
phones are gradually replacing electret microphones
due to their smaller size and greater suitability for
smartphones. They have the advantage of picking up
signals equally from all directions, making these micro-
phone omnidirectional. They are also tiny in size and
consume low amount of power. This implies they can
be used to determine the direction of sound in a mi-
crophone array (WANG et al., 2020). However, when
MEMS microphone recordings are converted to elec-
trical signals, some noise is introduced (ROSE, 2022).
The audio data used in smartphones is generated dig-
itally as a result of current movement in a very small
mechanical sound diaphragm. MEMS microphones are
employed in mobile devices because of its tiny footprint
and good performance (PICCHIO et al., 2019).

Table 2. Comparison of non-contact health monitoring technologies.

with existing devices,
non-invasive, versatile,
low power consumption

for breath sounds

Technology Strengths Weaknesses Applications References
Microphone-based | Low cost, high accuracy Sensitive to noise, Respiratory monitoring, FUKUDA et al., 2018;
in detecting physiological | privacy concerns, heartbeat detection, AARTS, 2019;
sounds, easy integration limited range 0.5 m—1m speech recognition GENOVA, 1997;

SHARMA et al., 2019

Radar-based

Accurate for motion
detection, capable

of detecting chest
movements for breathing
rate monitoring,
non-contact, works

in the dark

Expensive hardware,
limited in detecting
internal physiological
sounds, consumes more
power than other methods,
long range between

10 m and 50 m

Breathing rate monitoring,
heart rate monitoring,
motion detection

SAKAMOTO, YAMASHITA,
2019; ZAKRZEWSKI, 2015;
Lv et al., 2021

Infrared sensors

Effective for detecting
body temperature changes,
non-contact, can detect
presence or absence based
on heat signatures, variable
power consumption

Requires line-of-sight,
affected by ambient
temperature variations,
limited to surface-level
observations, calibration
needed, range between
0.1m to4m

Body temperature
monitoring, motion
detection, sleep studies

THUNDAT et al., 2000;
FRADEN, 2014;
YANG et al., 2022

Ultrasonic

Good for distance
measurement and obstacle
detection, non-contact,
safe to use, non-invasive,
low power consumption

Limited resolution for
detecting fine physiological
details, requires direct
path for sound waves,
affected by material
properties, range between
0.3m to over 10 m

Fall detection, obstruction
detection, motion
monitoring

HoCTOR et al., 2008;
BARANY, 1993;
Toa, WHITEHEAD, 2019
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2.2. Comparison of non-contact health monitoring
technologies

A microphone-based non-contact monitoring sys-
tem is a better alternative to other non-contact moni-
toring methods such as radar, infrared and ultrasonic
sensor. It is capable of monitoring breath signal, heart-
beat detection and identifying vocal patterns. These
capabilities are possible due to its ability to leverage
on the properties of sound waves to monitor physio-
logical features. Table 2 outlines the advantages and
disadvantages of these methods.

2.83. Microphone array

A microphone array (MA) is an arrangement of
several microphones positioned to gather signal from
different spatial locations. The main goal of MA is
a robust representation of the signal. It works on the
principle of sound propagation that several inputs are
able to either attenuate or enhance by processing sig-
nals from specific directions even in the presence of
noise (DEY, ASHOUR, 2018; LEVY et al., 2010; DocLO
et al., 2015). MAs are essential in non-contact measure-
ment of signals, leveraging on the combined power and
sensitivity of the connected microphones. The spatial
arrangement of MA consists of several configurations
which include linear arrays, circular arrays or spherical
arrays, depending on the purpose an array is intended
(ALEXANDRIDIS, MOUCHTARIS, 2017). The configura-
tions also determine the spacing between the connected
microphones (DEY, ASHOUR, 2018). Exemplary array
arrangements are shown in Fig. 1. In this configura-
tion, the microphone may be replaced with a smart-
phone or a beamforming method. The difference be-
tween a single microphone and an array arrangement is
that a single microphone cannot provide the direction
of a sound source and reduction of reverberation with-
out the need for post-processing. An array arrange-
ment, on the other hand, can improve the speech sig-
nal quality using the received radiation pattern from
the direction of a desired signal, thus improving the
signal-to-noise ratio (SNR) (DEY, ASHOUR, 2018).

Two important terms associated with array ar-
rangement is beamforming and the direction of arriv-
al (DOA). Beamforming is the procedure of estimat-

a) b)

ing DOA and can be defined as a process of changing
the phase and amplitude of signals received by an ar-
ray of sensors (in this case microphones). The goal of
beamforming is to enhance the signals from one direc-
tion while suppressing the other directions, to make
the received signal specific to a direction. There are
two major types of beamforming: data-dependent and
data-independent. Data dependent methods usually
change parameters based on the received signal ex-
ample are adaptive or optimal, phase-shift frequency
beamforming. Data-independent (or fixed) beamform-
ing have fixed parameters; examples include delay-
and-sum, filter-and-sum, subband, and minimum vari-
ance distortionless response beamforming (Mathworks,
n.d.). The DOA, on the other hand, is a process of de-
termining the direction (for example, in degrees) in
which a received signal was transmitted. The degree
of accuracy of the estimated DOA is affected by the
performance of beamforming, thereby making beam-
forming and DOA interdependent on each other.

3. Principles of microphone-based monitoring

Microphone-based health monitoring systems uti-
lize the body’s natural sounds (signals), such as breath-
ing, heartbeats, and coughing, to obtain vital physio-
logical data. By detecting these acoustic signals, these
systems can constantly and non-invasively monitor an
individual’s health, as a suitable alternative to contact-
based devices. Microphones are sensitive to the vibra-
tions caused by physiological events like airflow during
respiration, heart valve closures, or even vocal cord
vibrations. The vital signals monitored by the micro-
phones include heart rate, respiratory rate, snoring and
coughing.

3.1. Signal processing techniques

The accuracy and effectiveness of a microphone
in monitoring vital signs depend largely on the pa-
rameters of the microphone itself and possibly on
the preamplifier working with it. These factors should
be well supported by the signal processing method
adopted. Recorded information contains noise and
other unnecessary data, necessitating the use of filter-
ing techniques to extract important signals.

c) d)

Fig. 1. Different array arrangements: a) linear array; b) spiral array; ¢) circular array; d) planar array.
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8.1.1. Noise filtering and amplification

A significant challenges in microphone-based mon-
itoring is the capture of background noise (LLORCA-
BOFI et al., 2024; PAUL et al., 2023). This noise can
degrade the quality of the acquired signal, making it
difficult to the isolate desired signal. Noise can be ad-
dressed using numerous filtering techniques. For exam-
ple, band-pass filter can clearly separate breath signals
from noise, as the frequency of the breath signal is be-
tween 100Hz and 1000 Hz while heart sound ranges
between 20 Hz to 200 Hz (HAN et al., 2023). Other fil-
tering methods such as low pass and high pass filters
can also be applied to recover a desired signal. Amplifi-
cation is essential for enhancing low-amplitude signals,
such as shallow breath signal.

8.1.2. Adaptive filtering

Adaptive filtering is a signal processing technique
commonly used in noise cancellation, system identifi-
cation, channel equalization and control systems. The
major difference between an adaptive filter and other
types of filters is its ability to dynamically adjust its
coefficients in response to changes in the signal envi-
ronment (ARENAS-GARCIA et al., 2021). This dynamic
adjustment makes it suitable for processing a non-
stationary signal, such as the breath signal. One com-
mon example of a adaptive filter is the adaptive line en-
hancement (ALE). ALE uses adaptive filters with dual
roles: predicting the narrowband component of a noisy
signal and enhancing them while eliminating broad-
band noise. ALE assumes that the narrowband signal
is either sinusoidal or periodic, allowing it to exploit
the time correlation in the narrowband signal to dis-
tinguish between the original or desired signal from the
uncorrelation broadband noise. To improve the qual-
ity of the desired signal, ALE uses the previous in-
put to separate the narrowband components from the
broadband noise. The basic components of ALE in-
clude the input signal, the delay lines, the adaptive
filter, and the computed error signal. The use of ALE
in microphone-based, non-contact health monitoring
is important, as one of the challenges associated with
microphones is their tendency to pick up background
noise along with the desired signal. ALE can be applied
to solve this problem (ATKINS et al., 2021).

8.1.8. Time-domain and frequency-domain analysis

Signal features can be extracted using either
time-domain or frequency-domain analysis. The time
domain describes changes in a signal amplitude with
respect to time and is useful for detecting breath cy-
cles or heartbeats. On the other hand, frequency do-
main analysis, examines the signal energy’s distribu-
tion across a range of frequencies, which helps iden-
tifying specific physiological signals characterized by
specific frequencies (RANGAYYAN, 2015). A common

example used in frequency domain analysis is the fast
Fourier transform (FFT), which coverts a time domain
to the frequency domain for more detailed analysis
of its frequency components (HENRY, 2023). Further-
more, the time-frequency distribution (TFD) combines
both time and frequency domain information, provid-
ing a more comprehensive analysis when both time and
frequency domain information are needed simultane-
ously.

8.1.4. Machine learning and Al integration

Recent advancements in microphone-based non-
contact health monitoring system focus on integrat-
ing machine learning (ML) and AI These algorithms
enable the model to identify, classify and interpret
physiological signals. For example, deep learning mod-
els such as convolutional neural network (CNN) and
long short term memory (LSTM) networks are used to
distinguish normal and abnormal breath or heartbeat
patterns (L1, QIAN, 2024; ROSELINE et al., 2024). Ad-
ditionally, these algorithms can handle large datasets
and learn from previously collected physiological sig-
nals, improving accuracy. Numerous ML- and Al-based
methods have been used for the identification and clas-
sification of different types of coughs, wheezes or heart
signals (FERRANTE et al., 2020; ORLANDIC et al., 2021;
PRAMONO et al., 2019; RENJINI et al., 2021). In a case
when microphone records patient’s respiratory signal,
the raw data serves as an input to the Al-powered sys-
tem, which filters out (remove) noises, identifies key
features, and classifies the data based on the trained
model. This facilitates real time diagnosis of diseases
associated with breath and heartbeat signals.

8.1.5. Pattern recognition and feature extraction

Pattern recognition plays a crucial role in identi-
fying acoustic signal. The algorithm detect repetitive
patterns in the signal, such as peaks in the amplitude
or the periodicity of heartbeats and breathing cycles.
The wavelet transform is a commonly used feature ex-
traction method, and it decomposes complex signals
into simpler components, allowing unique characteris-
tics that may indicate the presence or absence of dis-
eases to be clearly identified (TAGHAVIRASHIDIZADEH
et al., 2022).

4. Beamforming based methods

Beamforming can be defined as the process of com-
bining multiple signals from microphones in an array
to amplify sound in a specific direction. Beamforming
can be combined with other approaches, such as radar
systems and cameras, to locate targets (X10NG et al.,
2023; WANG et al., 2023). To detect a signal in a spe-
cific direction, the beamformer controls the phase and
amplitude at the transmission end. In non-contact vital
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sign monitoring, beamformers ensure accuracy mea-
surement of vital sounds and allow monitoring of mul-
tiple subjects at the same time. Frequent body move-
menta and noise are among the main factors hindering
beamforming. This section reviews literature that has
adopted beamforming.

A dynamic convolution-transformer neural network
(DYCTNN) for sound source localization using func-
tional beamforming was proposed by ZHANG et al.
(2024). Dynamic convolution and self-attention tech-
niques were used to capture the spatial distribution
of sound sources. The model was trained and tested
using a dataset generated via acoustic simulation on
a 2m x 2m plane with a 60-channel spiral microphone
array and one to five monopole sources producing
sound fields at various frequencies. XIONG et al. (2023)
utilized beamforming by combining a phased array of
an antenna and a double-phase shifter (DPS) to ad-
just the magnitude and phase of the transmitted sig-
nal. Beamforming allowed for simultaneous monitoring
of numerous people with minimal target interference.
Actuators were utilised to simulate human chest move-
ment, while an omni-antenna was employed to generate
and receive signals. This method worked well; however,
adding antennas make this system too complex.

SUN et al. (2022) used a phase-shifting technique
for transmitting beam formation and digital beam-
forming for optimal spatial filtering at the receiving
end. The method utilized a frequency-modulated con-
tinuous wave (FMCW) radar with 9 transmitting and
16 receiving channels. Digital beamforming was de-
signed to obtain optimal spatial filtering at the re-
ceiving end, enhancing the capability of multi-person
detection. The arctangent demodulation method was
used for phase estimation, and phase unwrapping
was thereafter applied to address phase ambiguity. The
proposed method was able to detect targets within the
range of 1.8m to 12m. HALL et al. (2015) developed
the phased array non-contact vital sign (NCVS) sen-
sor system with an autonomous beam steering algo-
rithm, implemented in LabVIEW. The selected phased
array arrangements were tested, and data samples
were gathered to assess the performance of the au-
tonomous beam steering algorithm. The results showed
that heart rate measurement accuracy was approxi-
mately 95 % within 5bpm, and the automatic beam

()
()

al
O g
J——
i

steering algorithm achieved an accuracy of 94.36 %
within 5 bpm with a 2.82 bpm standard deviation.

WANG et al. (2023) introduced the dualforming-
based method that combined both spatial and fre-
quency domain beamforming to improve the signal-
to-noise ratio (SNR) across multiple subject locations.
The multiple subtle signal classification (MUS2IC) ap-
proach was used to separate subjects with subtle move-
ments from static objects. Empirical mode decompo-
sition (EMD) was used to extract heartbeat patterns
by decomposing the cardiac frequency response (CFR)
streams into separate intrinsic mode functions (IMFs).
The method measured heart rate within a 10 m range,
allowing the monitoring of heartbeats of six subjects at
the same time. TASHEV and ACERO (2006) presented
a post-processing a microphone array’s beamformer
output. The algorithm estimated the spatial proba-
bility of sound source presence and applied a spatio-
temporal filter. Experimental results showed that the
directivity index improved up to 8 dB and jammer sup-
pression up to 17 dB at the angle of 40° from the sound
source.

5. Microphone sensor based method

A microphone can detect vital signals in both con-
tact and non-contact modes. The latter produces less
noise since the sensors are not in direct contact with
the subject’s body. This section explores various stud-
ies conducted in this area. A simple diagram of the
microphone-based method is shown in Fig. 2.

CHEN et al. (2015) presented a microphone posi-
tion calibration approach to distribution microphone
arrays, combining an acoustic energy decay model with
the time difference of arrival (TDOA) method. The
method first estimates the coarse distance between
the microphone and the sound source, followed by
TDOA to find the accurate distance within a specific
range near the coarse distance. The microphone’s
position is determined using the least mean square
error estimate approach, which yields high positioning
accuracy, steady calibration performance, and low
processing complexity. QIAN et al. (2018) employed
FMCW sonar to send a chirp signal and calculated the
spectrogram of the baseband signal to extract vital
signals such as breath rate, heart rate, and individual

Application | _| Respiratory
of signal rate, heart rate

processing determination
methods

Signal acquisition stage

Fig. 2. Typical diagrammatic representation of vital signs monitoring system setup using microphone.
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heartbeat from the acoustic signal phase. The method
downsampled the FMCW signal to baseband and con-
tinually monitored the signal phase in the spatial bin
containing vital motions. The use of dual microphone
enhanced the performance of the system.

VALIPOUR and ABBASI-KESBI (2017) monitored
heartbeat and respiration rate using a phonocardio-
gram based miniature wireless acoustic sensor with
two capacitor microphones, a microprocessor, and
a transceiver operating at 2.54 GHz in the industrial,
scientific, and medical (ISM) band. The sensor was
placed on the volunteer’s chest, and ECG signals were
acquired. The findings showed root-mean-square er-
rors (RMSEs) of less than 2.27 bpm for heartbeat and
0.92 bpm for respiration rate, with standard deviation
of less than 1.26 for heartbeat and 0.63 for respira-
tion rate. Overall, the developed approach is contact-
based. TRAN et al. (2014) used a hybrid hardware-
software technique to detect an infant’s vital signs, us-
ing an infrared non-contact temperature sensor and
a microphone-based breathing sensor. The system was
designed in a hardware description language (HDL)
and implemented on an field-programmable gate array
(FPGA) board. The developed device identified the in-
fant’s vital signs when tested on the Altera DE2-115
FPGA board.

TANIGUCHI et al. (2023) presented a vital sign mon-
itoring system for dogs based on the MEMS micro-
phone and the Raspberry Pi wireless system. To ex-
tract the heart rate, they first removed the DC off-
set from the obtained data, then transformed it us-
ing the short time Fourier transform (STFT), and fi-
nally applied the fifth-order Butterworth bandpass fil-
ter. The filtered data was then normalised, and the
heart rate was calculated by counting amplitude peaks
within a specific time frame. The heart rate extrac-
tion technique includes calculating the number of data
points and amplitude thresholds, as well as comput-
ing the distance between peaks. The heart rates ac-
quired during the surgery were monitorable every sec-
ond, with an average heart rate of 110 bpm.

DAFNA et al. (2015) proposed a non-contact
microphone-based polysomnography (PSG) to mea-
sure breathing noises and estimate breath rate dur-
ing sleeping. Adaptive noise reduction techniques was
used to suppress background noise and non-periodic
spectrum components were filtered out by a periodicity
augmentation module. The BR module was the final
stage, and it estimated BR based on the filtered signal.
The system was tested on 204 individuals who partic-
ipated in an in-laboratory in the study. The Pearson
correlation coefficient between the two techniques was
R =0.97, showing a strong relationship. An epoch-by-
epoch BR comparison revealed a mean relative error of
2.44 % and Pearson correlation of 0.68, demonstrating
good agreement between the audio-based BR estima-
tion and the gold-standard respiratory belts.

WANG et al. (2021) presented a low-cost, contact-
less heartbeat monitoring device based on a commod-
ity speaker and a microphone array. Acoustic impulses
are transmitted by a speaker and received by a micro-
phone array to estimate the human heartbeat. Passive
beamforming and frequency domain filtering were used
to improve the quality of the signal accuracy. A wide-
band time-delay approach was also used to predict
the DOA of the target-reflected signal. The prototype
monitors heart rate at a distance of 1.7 m, with an esti-
mation error of 0.5 bpm. A wearable microphone sensor
based on the adaptive windowing technique was em-
ployed by ZHANG et al. (2024) to estimate heart rate.
The method used a spectrogram to derive an initial es-
timate and calculate the optimal window length based
on frequency resolution and physiological constraints.
A one-step autoregressive model was used to correct
estimates, thereby improving the heart rate measure-
ment accuracy by +2.8bpm. The developed method
was tested on a group of 26 healthy subjects. ASHRAF
and MoussavI (2024) designed a piezoelectric surface
microphone placed at the suprasternal notch to cap-
ture tracheal breathing sounds. This device produced
clear respiratory waveforms with minimal sensitivity to
ambient noise. A wearable accelerometer microphone
(GupTaA et al., 2021) captured lung sounds and chest-
wall motion to derive respiratory patterns in hospital-
ized patients with COPD, pneumonia, etc. These con-
tact sensors can measure both breath sounds and rate
with high fidelity, even amid patient motion or back-
ground noise; for example, the piezo sensor showed
negligible degradation across frequency bands when
noise was present.

6. Smartphone and contact based methods

Smartphone technology started in 1992 (Toccr,
2024), and it has surpassed expectations, particularly
in the development of applications that can run on
smartphones. A significant contributor to this success
is the microphone, which has helped acquisition of
data for various applications, including those focused
on vital sign monitoring. Smartphones are now capa-
ble of monitoring vital signs such as heart rate, res-
piratory rate, blood pressure, and blood oxygen satu-
ration, whether through contact-based or non-contact
methods. The section focuses on the literature that has
used microphones installed in smartphone for vital sign
monitoring.

KAvsAOGLU and SEHIRLI (2023) captured audio
signals from the heart and trachea, resulting in
a dataset for detecting inhalation and exhalation cir-
cumstances. Two methods were used to obtain these
signals: one involving heart sound and the other in-
volving trachea sounds. The audio signals were clas-
sified into inhalation and exhalation phases using
ML models. The highest accuracy and performance
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were achieved using a majority voting strategy with
k-nearest neighbour, random forest, and support vec-
tor machines. DOYLE (2019) used a flat adhesive acous-
tic sensor and the TASCAM DR-40 Digital Recorder
to record bioacoustic data. Recordings were taken from
multiple of locations, including the neck, external ear
canal, oxygen mask, as well as a leak-free microphone
attached to a laryngeal mask airway. Audacity, an
open-source digital audio editor and recording pro-
gramme, was used to analyse breath sounds and apply
digital filters.

LEE et al. (2023) used an array of MEMS mi-
crophones to record lung sound waves, which were
converted into acoustic images. The system’s perfor-
mance was assessed using waterbags to stimulate air-
way blockages, and its accuracy was compared to
that of digital stethoscopes. The proposed method
demonstrated better detection of lung conditions, with
a room square error of 0.28 and SNR of 7dB. Lo-
MAURO et al. (2022) introduced a semi-automatic, ro-
bust pre-processing for respiratory data analysis us-
ing functional data analysis (FDA) techniques. The
approach involved separating, detecting outliers based
on time-duration, amplitude, and shape, and cluster-
ing breaths using K-medoids for different breathing
patterns. The proposed methodology showed an error
rate of less than 5 % for minimum detection and outlier
removal.

CHAUHAN et al. (2017) developed a framework
that combines smartphone acoustic sensors to iden-
tify breathing phases and estimate biomarkers. Breath-
ing data was collected from pulmonary patients and
healthy individuals using Samsung Galaxy Note 8
smartphones, chest bands, and spirometers. The sys-
tem achieved 77.33% accuracy and over 90% accu-
racy in estimating respiratory rate and other biomark-
ers. SHIH et al. (2019) developed a real-time breath-
ing detection algorithm with low latency, running on
a smartphone. To train and evaluate the developed
system over 2.76 million breathing sounds from 43
participants was captured, and the system achieved
75.5% accuracy in detecting breathing phases using
a combination of attention-based LSTM models and
CNN-based extraction modules. WANG et al. (2018)
used a correlation-based frequency-modulated contin-
uous wave (C-FMCW) approach for monitoring hu-
man breathing via audio signals. The common speaker
and microphone components found in most homes were
used. The system accurately identified subjects’ res-
piration in a variety of environments, including dif-
ferent rooms and subject sleep positions. KHODAIE
et al. (2021) developed a system that records respira-
tory sounds from the upper airways using microphones
implanted in a breathing mask. The study discovered
a strong correlation (coefficient of 0.9) between acous-
tic features of respiratory sounds and respiratory met-
rics such as the peak flow and average flow.

FANG et al. (2023) proposed the identity-based res-
piration monitoring system for digital twins enabled
healthcare (IDRes). The respiration rate was estimated
by tracing the changes in the phase of the sonar sig-
nal and detecting the doppler frequency shift to cap-
ture chest motion characteristics. Experimental results
showed 93.3 % recognition accuracy and the mean de-
tection error of 0.49 bpm.

XU et al. (2020) proposed the BreathListener,
a system that monitors breathing in driving scenar-
ios using audio devices on smartphones. The method
captured fine-grained breathing waveforms in driv-
ing scenarios. The device used the energy spectrum
density (ESD) of acoustic waves to record breath-
ing processes in driving conditions. BreathListener
used background removal and variational mode de-
composition (VMD) to remove interference from driv-
ing settings while extracting the breathing pattern
from the ESD signals. The retrieved breathing pat-
tern was then translated into the Hilbert spectrum,
and the fine-grained breathing waveform was gener-
ated using a deep learning architecture, based on gen-
erative adversarial networks. CHARA et al. (2023) de-
veloped an FMCW-based acoustic system on a smart-
phone by emitting and receiving high-frequency chirps,
the phone tracks tiny chest displacements. In trials this
approach achieved extremely high accuracy — a median
breathing-rate error below 0.15 breaths per minutes
across various conditions. A smartphone-based contact
method. PHOKELA et al. (2020) used a headset micro-
phone under the nose to record nasal airflow sounds:
it achieved respiration-rate errors less than 10 % even
in noisy environments, demonstrating feasibility for
home use.

NEMCOVA et al. (2020) estimated the heart rate,
blood oxygen saturation (SpO2), and blood pressure
(BP) using smartphone sensors. HR and SpO2 were de-
termined by generating a photoplethysmogram (PPG)
from the camera data, while BP was measured by cal-
culating the pulse transit time value from the PPG
and recording a phonocardiogram (PCQG) via the mi-
crophone. The results showed mean absolute errors
(MAE) of 1.1 % for SpO2 and 1.4bpm for heart rate.
VINCENT et al. (2023) presented a multi-target blind
source separation technique based on a single sonar.
The use of the freqency hopping (FH) technique within
the ULCW (Ultra-CW) scheme helped to minimize the
effects of frequency-selective fading (FSF) and inter-
symbol interference (ISI) in the baseband, thereby
improving the accuracy of acoustic signal transmis-
sion. The combination of continuous wave (CW) and
FMCW signals in the ULCW scheme enhanced the
transmission of energy from the smartphone, enabling
accurate acoustic signal propagation over long dis-
tances. DOHENY et al. (2023) developed a method to
predict respiratory rate and exhale length from smart-
phone captured audio data. The method required cal-
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culation of the audio signal’s basic frequency and de-
tection of individual exhales with adaptive threshold-
ing. Exhale boundary timings were optimised with
adaptive physiological thresholds. The respiratory rate
was determined by identifying peaks and troughs in the
respiratory inductance plethysmography (RIP) signal,
and exhale durations were calculated as the time be-
tween each peak and the next dip in the RIP signal.
The RIP respiratory rate was utilised as the standard
against which the audio respiratory rate was measured.
The fundamental frequency of the respiration envelope
was found as the frequency corresponding to the first
peak in the harmonic product spectrum above 0.09 Hz.
Other active acoustic methods use smart speakers to
monitor breathing or heart rate, though these are
mostly prototypes or proof-of-concept. The advantage
of these non-contact methods is comfort and conve-
nience and suitability for home or telehealth. However,
they require a device (smartphone or speaker) close
to the subject and can be sensitive to environmental
noise or interference. Thick clothing, bedding, or a dis-
tance beyond 2 m—3 m can degrade signal, so practical
use often means limiting the scenario.

7. Hardware based methods

This section examines approaches that incorpo-
rated hardware components, whether handheld or not,
with the capability to determine the respiration rate
of subjects.

AL-ALl and LEE (2012) patented a physiologi-
cal acoustic monitoring system that collects physio-
logical data from an acoustic sensor and generates
respiration-related parameters in both real-time and
non-real time. The system processes data by down-
sampling to provide raw audio of breathing sounds,
and compresses it for futher analysis. WANG et al.
(2023) presented the MultiResp, a multi-user respira-
tion monitoring system that detects chest movement
using acoustic signals. The system captures acous-
tic signals reflected from participants’ chests, allow-
ing for robust respiration monitoring even when sub-
jects are facing away from the transceiver or blocked
by barriers. MultiResp extracted fine-grained breath
rate and phase differences between participants to dif-
ferentiate breath waves with similar rates and adjust
to dynamic variations in the number of monitored sub-
jects. However, MultiResp fails when the sound pres-
sure is less than 55 dB or when there is body movement
which causes significant alterations in the multipath
signals, causing erratic fluctuation of the channel im-
pulse response (CIR).

ABBASI-KESBI et al. (2018) presented a wireless
acoustic sensor that used a phonocardiogram to de-
tect heartbeat and respiratory rate. The system com-
prises a processor, transceiver, and two capacitor mi-
crophones for capturing heartbeat and respiration rate.

The technology also measures breathing rate with a ca-
pacitor microphone placed near the mouth. The wire-
less acoustic sensor demonstrated high accuracy in
predicting heartbeat and breathing rate, with RMSEs
of less then 2.27 beats/min and 0.92 breaths/min, and
standard deviations of less then 1.26 and 0.63, respec-
tively. The system’s sensitivity and specificity in recog-
nizing PCG sounds ranged for S1 to S4 at 98.1 % and
98.3 %, respectively, representing a 3 % improvement
over earlier work. This method accurately recorded
heart and respiration rate in a variety of circumstances,
including resting and breath-holding, with consistent
results across numerous volunteers.

WAN et al. (2023) introduced a continuous multi-
user respiratory tracking system designed for house-
hold settings using acoustic based commercial off-the-
shelf (COTS) sensors. The system employed multi-
stage algorithm to isolate and recombine respiration
data from different paths to calculate the respira-
tion rate of several moving persons. By utilizing fea-
tures from multiple dimensions to distinguish between
users in the same region, and applying Zadoff-Chu
(ZC) sequences with optimal auto-correlation, it dif-
ferentiates user pathways. The system transmits the
ZC sequence modulated by a sinusoidal carrier as
the transmitted sound signal, with its detection range
and bandwidth determined by the length of the ZC
sequence and frame length. The experimental results
showed that RespTracker’s two-stage algorithm can
differentiate the respiratory pattern of at least four
subjects over a three-meter distance.

8. Artificial intelligence based method

This section reviews studies that have adopted ML
techniques using a microphone as the primary sig-
nal acquisition method. Figure 3 illustrates ML-based
method.

XIE et al. (2023) utilised an autoencoder (AE)
neural network to quantify the residual between the
original and reconstructed signals, which can increase
the end-to-end (e2e) respiration monitoring accuracy
by a factor of 2.75 when compared to the baseline.
Their approach employed deep learning techniques,
combining an autoencoder neural network and a self-
supervised learning to quantify signal quality. The use
of radio frequency quality (RF-Q) further enhanced
respiration monitoring accuracy. However, large vol-
umes of training data are required for deep learning
algorithms and the need for manual labelling, as train-
ing datasets for DL techniques is typically not publicly
available.

Liu et al. (2021) proposed a reverberation aware
network (RAN) algorithm for improving the robust-
ness of DOA estimation. The algorithm used the beam
cross-correlation (BCC) as an input to a deep neu-
ral network (DNN), explicitly characterizing reverber-



10 Archives of Acoustics — Online First November 6, 2025

A 4
Breath ‘
—>| signal [ A
acquisition

Convolution

Feature extraction and classification

Max pooling

Convolutional neural network models

Output

Deep learning method

Breath
detection

Output

Convolution Max pooling  Convolution

Fig. 3. Machine learning based method.

ation in the captured speech signal. The classic beam-
forming algorithm was used to generate beamforming
outputs, the observed signals, which was then used as
a reference for reverberation identification. The filter-
sum (FS) beamforming algorithm was adopted for
beamforming processing. Numerical simulations were
based on virtual room environments generated with
a reverberation model, as well as practical experiments
under physical room environments, to evaluate the
performance of the proposed method. The impact of
different environments on the performance was eval-
uated by conducting experiments with different noise
levels and source distances. In addition to the afore-
mentioned research, some studies have also combined
two methods, such as beamforming with ML (ZHANG
et al., 2024) and smartphone with ML (KAVSAOGLU,
SEHIRLI, 2023; SHIH et al., 2019; XU et al., 2020).
Despite the promising application of ML in different
fields, this area is underexplored especially when us-
ing a microphone as the non-contact health monitoring
method.

9. Challenges and solution

Using microphones for signal acquisition in medi-
cal applications presents several challenges, with noise
and interference being the most significant. To address

these issues, some techniques have been proposed, in-
cluding the use of adaptive noise reduction algorithms
(ABED et al., 2022; THOMSEN, Du, 2020; MEYER et al.,
2020; WU et al., 2020; WANG, QIU, 2020), directional
microphones (FISCHER, PUDER, 2012; KANAMORI,
TERADA, 2016; NONGPIUR, 2018; PARK et al., 2020),
and the application of ML (JaiN, HEraA, 2019; SH-
10ZAWA et al., 2020; TAKENAKA, OzAWA, 2022). While
these three methods have been independently used
in the literature, this review suggests an integrated
method that combines these approaches. In this pro-
posed solution, adaptive noise reduction reduces in-
herent noise from recordings, directional microphones
capture signals from a single direction or a patient,
and ML processes the signals to minimize noise inter-
ference more effectively. Another challenge is the ur-
gency with which some respiratory data are required
to make informed decisions. High latency or process-
ing delays can be problematic, this issue can be ad-
dressed by using edge computing, which processes data
locally, or by employing optimized algorithms for real-
time data processing. These suggested methods can
significantly improve the responsiveness and reliability
of microphone-based non-contact monitoring systems
in medical applications. Apart from the above, other
challenges with microphone include privacy, data se-
curity and technical implementation. Although data
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privacy and security were not mentioned by some of
the articles reviewed. However, they remain one of the
challenges associated with the use of microphones and
other audio-based signal acquisition methods. Audio
recordings should be treated with utmost security, as
they reveal sensitive health information. ALQUDAIHI
et al. (2021) suggested that only numeric features
should be extracted from heart and respiratory sig-
nals and that data transmission should be anonymized
summaries. To further enhance data privacy and secu-
rity. ALQUDAIHI et al. (2021) also recommended im-
plementing blockchain-based audit logs or federated
learning techniques. Future directions could focus on
the development of specialized contact microphones
and the adoption of Al-based denoising and data en-
cryption algorithms to improve the reliability and se-
curity of microphone-based monitoring systems. More-
over, privacy-preserving hardware innovations, such as
MicPro proposed by X1A0 et al. (2023) alongside the
end-to-end encryption protocol used in some social me-
dia messaging applications — can address these issues
adequately. Overall, research into the suggested solu-
tions could enhance the performance of microphones
as vital sign monitoring systems.

10. Conclusion

This review has presented the potential of
microphone-based systems for non-contact sign mon-
itoring. The transition from simple acoustic sensors
to the adoption of intelligent health monitoring was
made possible by technologies such as beamforming,
ML, and smartphone integration. These systems have
evolved from simple signal-capturing devices to sophis-
ticated devices capable of detecting complex physiolog-
ical patterns. Non-contact health monitoring systems
can leverage these innovations, such as the integra-
tion of deep learning algorithms like CNN, RNN, or
LSTM (AcHARYA, Basu, 2020; THAKUR et al., 2022).
Although some research has been done in this area,
the accuracy and real-time application of ML-based
methods can be further improved through enhanced
data collection processes, hybrid deep learning models,
better feature extraction methods, and the use of mi-
crophone arrays instead of single microphones. Future
directions could also focus on leveraging smartphone-
based applications and cloud-based platforms to im-
prove access, accuracy, and reliability while address-
ing other challenges associated with microphone-based
systems.
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