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A system of in-plane periodic perfectly conducting strips is considered embedded in an
preexisting electric �eld which, in applications, can result from propagation of an elastic
wave in a piezoelectric material supporting strips on its surface. The spatial spectrum
of charge distribution in the plane of strips is of our primary interest. In spite of the
functional dependence between the spectrum and the spatial distribution of charge by
means of the Fourier transform, its direct application leads to a considerable numerical
error caused by poor numerical representation of the singular �eld at the strip edges.
Carrying out the analysis in the spectral domain instead of direct evaluation of the spatial
charge distribution overcomes this di�culty.

1. Introduction

A system of parallel conducting strips residing on a piezoelectric substrate surface
interacts weakly with a Rayleigh wave [1]. When supplied with alternate voltages, the
strips excite the wave in the media [2]. In a reciprocal phenomenon, strips detect the
propagating wave by collecting electric charge. In this paper a periodic system of groups
of strips is considered and evaluation of the spatial spectrum of electric charge distribution
on the plane of strips is the main task of the analysis. The strips in one group can have
arbitrary width and spacing, and the period of group of strips is also arbitrary. The
introduced periodicity allows one to exploit the convenient fast Fourier transform in
computations.

As mentioned above, there are two distinct sources of the charge distribution on
strips: the �rst are voltages set on the strips by external time-harmonic voltage source of
angular frequency ω (sometimes, the strip charge is set, like on an isolated strip of total
charge zero), and the second is the incident Rayleigh wave propagating with velocity
vR accompanied by the electric �eld on the plane of strips. Neglecting weak mechanical
interactions, the �eld is governed by electrostatic theory. Strips modify the �eld distribu-
tion that otherwise would be a spatial-harmonic function of spatial frequency ω/vR. This
is the �incident� wave of the title �electrostatic� scattering phenomenon by strips. The
former problem of the supplied strips has been already discussed in literature [3]. Here,
we extend the method of the analysis developed there to solve the scattering problem.
For readers' convenience, the method is presented shortly in the following sections.
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2. Functions of partial solution

There are two complementary identities involving Legendre polynomials Pn [4]

D(ϑ) =
∞∑

n=−∞
Pn(cos ∆)ei(n+1/2)ϑ =





√
2√

cos ϑ−cos∆
, 0 ≤ ϑ < ∆,

0, ∆ < ϑ < π,
(1)

iE(ϑ) =
∞∑

n=−∞
SnPn(cos ∆)ei(n+1/2)ϑ =





0, 0 ≤ ϑ < ∆,

iSϑ

√
2√

cos ∆−cosϑ
, ∆ < ϑ < π,

where Sν = 1 for ν ≥ 0 and −1 otherwise. Here, D is real or zero, and iE is imaginary
or zero, in alternate domains. Both functions on left are well de�ned for either positive
and negative ϑ. Replacing ϑ by Kx, −∞ < x < ∞, Eqs. (1) describe the periodic �eld
distribution over x; the strip width is 2w = 2∆/K and period Λ = 2π/K; K is the strip
wavenumber.

Corollary 1. D(x) and E(x) are respectively the normal electric induction above
the plane of strips, and electric tangential �eld in the plane of strips, resulting from the
charge distribution on strips.

Indeed, D(x) = 0 between strips, and E(x) = 0 on strips as required, and we only
need to show that the pair (D,E) belongs to the class of �eld vanishing at y →∞ when
extended to the whole space (x, y). Given the electric potential ϕ(x, y) = exp(irx −√

r2|y|), Re{
√

r2} > 0, satisfying the Laplace equation ∇2ϕ = 0, the tangential electric
�eld on y = 0 plane is E = −jrϕ from the de�nition E = −∇ϕ. For a medium of
unitary dielectric permittivity ε = 1 applied here, the normal induction at y = +0 is
D = εEy =

√
r2ϕ, yielding

iE = Dr/
√

r2 = SrD. (2)

This is exactly the relation between each harmonic component of D and iE in Eqs. (1)
of the same wave number (n + 1/2)K; Pn is their amplitude.

Combining D and E yields the complex function
√

2/
√

cos Kx− cos ∆

De(x; ∆) = D(x) + iE(x) =
∞∑

n=−∞
(1 + Sn)Pn(cos ∆)e−i(n+1/2)Kx, (3)

the domain of which spans an entire x-axis, provided that the square-root values are
chosen according to Eqs. (1). It takes real or imaginary values in alternating domains of
real x. Considering one period only, x ∈ (−Λ/2, Λ/2), De is real and di�erent from zero
if |x| < w, and imaginary in the domain w < |x| < Λ/2.
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For convenience, the function describing the periodic system (the superscript 1 indi-
cating one strip per period) is rewritten in the form (∆1 = Kw1)

De(1)(x) = De(x− x1; ∆1) =
∞∑

m=−∞
(1 + Sm)F (1)

m ei(m+1/2)Kx,

D =
∑

n

F (1)
n ei(n+1/2)Kx 6= 0 if cos K(x− x1) > cos ∆1,

(4)
iE =

∑
n

SnF (1)
n ei(n+1/2)Kx 6= 0 if cos ∆1 > cos K(x− x1),

F (1)
m = e−i(m+1/2)Kx1Pm(cos ∆1), F

(1)
−m−1 = F (1)∗

m ,

where asterisk means a complex conjugate value (note: P−n−1 = Pn).
For two strips per period, the function of interest is

De(2)(x) = De(1)(x)De(x− x2;∆2)

=
∞∑

k=−∞

∞∑
m=−∞

(1+Sk)(1+Sm)Pk(cos ∆2)ei(k+1/2)K(x−x2)F (1)
m ei(m+1/2)Kx, (5)

that takes real or imaginary values in alternating domains of x: it is real in the domains
where both the multiplied functions are either real or imaginary, and it is imaginary
in the domains where one of the multiplied functions is real and the other imaginary.
Explicitly,

De(2)(x) =
∞∑

n=−∞
(1 + Sn)F (2)

n einKx,

F (2)
n = 2e−inKx2

∑
0≤m<n
n≤m<0

Pm−n(cos ∆2)F (1)
m ei(m+1/2)Kx2 , (6)

Re(De(2)) =
∑

n

F (2)
n einKx, iIm(De(2)) =

∑
n

SnF (2)
n einKx.

Note that the �nite summation domain involved in the expression for F (2) is empty if
n = 0, what means that F

(2)
0 = 0. Moreover, replacing n by −n, one obtains that

F
(2)
−n = F (2)∗

n , F
(2)
0 = 0. (7)

Similarly are de�ned the harmonic functions for more strips, with corresponding prop-
erty that F

(N)
−n−1 = 0 if n ∈ N = [N1, N2]; explicitly for N = 3

De(3)(x) =
∞∑

n=−∞
(1 + Sn)F (3)

n ei(n+1/2)Kx,

F (3)
n = 2e−i(n+1/2)Kx3

∑
0≤m≤n
n<m<0

Pn−m(cos ∆3)F (2)
m eimKx3 ,

F
(3)
−n−1 = F (3)∗

n , F−1,0 = 0.
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Generally, for odd (N = 2k + 1) and even (N = 2k) number of strips:

F
(2k+1)
−n−1 = F (2k+1)∗

n , and F (2k+1)
n = 0 if − k − 1 < n < k,

(8)
F

(2k)
−n = F (2k)∗

n , and F (2k)
n = 0 if − k < n < k.

It is convenient to make the expressions for D and iE similar for both cases of odd or
even number of strips N ; it is su�cient to replace F

(N)
n by F̃

(N)
n = SnF

(N)
n if N is even.

Applying this and noticing that mod(N, 2) = 1 for N odd, otherwise 0, one may prove
the following

Corollary 2.
F̃ (2k+1)

n = F (2k+1)
n ; F̃ (2k)

n = SnF (2k)
n ,

D =
∞∑

n=−∞
F̃ (N)

n ei(n+ν)Kx, ν = mod(N, 2)/2, and (9)

iE =
∞∑

n=−∞
SnF̃ (N)

n ei(n+ν)Kx,

have alternate support, corresponding to electric conditions on the plane of strips: normal
electric induction D vanishes between the strips and tangential �eld E vanishes on the
strips.

Consider the periodic harmonic function

De(N)(x)αmeimKx =
∞∑

n=−∞
αm(1 + Sn−m)F̃ (N)

n−mei(n+ν)Kx,

(10)
ν = mod(N, 2)/2,

where αm is arbitrary and m is an integer. This is a harmonic expansion of
αm2N/2 exp(imKx)√

[cos K(x− x1)− cos ∆1] · · · [cos K(x− xN )− cos∆N ]
. (11)

Theorem 1.

D = αm

∞∑
n=−∞

F̃
(N)
n−mei(n+ν)Kx,

(12)
iE = αm

∞∑
n=−∞

Sn−mF̃
(N)
n−mei(n+ν)Kx,

are respectively the normal electric induction above the plane of strips and the tangential
electric �eld resulting from strips' charges, if m ∈ M = [M1,M2]. The domains M for
odd and even N are explicitly :

−(N − 1)/2 ≤ m ≤ (N − 1)/2, for odd N, or
(13)−N/2 ≤ m ≤ N/2− 1, for even N,

there are N such coe�cients αm altogether.
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P r o o f. Following Corollary 2, these functions satisfy conditions on the plane of
strips. Thus we only need to prove that they are components of the �eld that vanish at
y →∞. In the above domain of m, Sn−m 6= Sn only when simultaneously αmF̃

(N)
n−m = 0

on the strength of Corollary 2. That means that Sn−m can be replaced by Sn in Eqs. (12).
The rest of proof exploits Eq. (2) like in Corollary 1 (here, F̃ (N) is the �eld harmonic
amplitude).

Remark. xl and ∆l determine the l-th strip edges and the corresponding square-root
singularities of (11). It is evident that there are multiple ways of evaluation of De(N) by
applying di�erent xl,∆l yielding singularities of (11) at the same x but not necessarily
belonging to the same strip. These di�erent choices may a�ect the numerical accuracy or
the computation time, or both; the matter is not discussed here. It is also evident that
De(k)De(l) = De(k+l).

It results from (1 + Sn) = 0 if n < 0 that the discrete spectrum of De(N) in Eq. (10)
has a semi�nite support. This can be nicely exploited in evaluation of harmonic spectra of
subsequent De(l) (that is, evaluation of F

(l)
n ) using the FFT algorithm like in a numerical

code presented in the paper [5].

3. Given strip voltages or charges

Kirchho�'s laws, when applied to the system of interconnected strips, result in a
number of conditions for strip voltages Vi, i = 1, ..., N (N is the number of strips in
one period Λ), and/or currents Ii = iω2Qi �owing to strips, where 2Q is the total strip
charge. There are su�cient number of conditions to solve the problem accounting for
that the external voltage source sets the voltage di�erences Uij = Vi− Vj between strips
rather than their absolute potentials Vi (both the source ports are connected to di�erent
strips in the system). An equivalent physical requirement is that the total charge on strips
vanishes, meaning the system electric neutrality. Below, strips' charges and potentials are
evaluated; they are necessary in formulation of N − 1 circuit equations resulting from
Kirchho�'s laws.

An arbitrary electric �eld satisfying the �radiation� condition at in�nity (vanishing
at in�nity) is constructed by superposition

De(x) =
∑

m∈M

∞∑
n=−∞

αm(1 + Sn−m)F̃ (N)
n−mei(n+ν)Kx, (14)

with unknown αm which will be evaluated from the circuit equations; m ∈ M following
Theorem 1. The electric charge 2Q(x) on the plane of strips and electric potential V (x)
on this plane are integrals of 2D and −E, explicitly

Q(x) = − i

K

∑

m∈M

∞∑
−∞

αmF̃
(N)
n−m

n + ν
ei(n+ν)Kx,

(15)
V (x) =

1
K

∑

m∈M

∞∑
−∞

Sn−m
αmF̃

(N)
n−m

n + ν
ei(n+ν)Kx,
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using informal notation that αmFn−m/n = 0 at n = 0 provided that α−N/2 = 0 is already
assumed if N is even, and because of vanishing Fn according to Eq. (8). This, in fact,
is the necessary and su�cient condition for the system electric neutrality. Indeed, for
even number of strips, the electric �eld is Λ-periodic, and such is Q(x). It is easily seen
from Eqs. (15) that the total charge on strips over one period is Q(Λ/2)−Q(−Λ/2) = 0
provided that Q is �nite. For odd number of strips, the �eld (14) satis�es the neutrality
condition automatically because Q(x + Λ) = −Q(x), thus the average charge over 2Λ

period in this case vanishes.
Let the strips' centers be placed at ẋi, i = 1, ..., k, and the spacings' centers between

strips be at xi, assuming that x0 = −Λ/2 and xk+1 = Λ/2 are points on both sides of
the discussed group of strips, outside the strips. Thus

Uij = V (ẋi)− V (ẋj), Qi = Q(xi)−Q(xi−1), i = 1, ..., k, (16)

depend on unknown αm. There are N − 1 unknowns if N is even (α−N/2 = 0 has been
already set), or N unknowns if N is odd, what follows from (13). Taking into account that
there are N−1 circuit equations resulting from the circuit theory, the system of equations
for even number of strips is complete and can be solved, while the system of odd number
of strips requires one additional equation. This can be the condition that the group of
strips is electrically neutral over the period Λ: Q(Λ/2)−Q(−Λ/2) = 0 (they are neutral
automatically over 2Λ so that this is a new and independent condition; however, one
can apply any other independent condition, by setting strip voltages directly in this case
instead of voltage di�erences between strips, for instance). This completes the system of
equations in this case, too.

Summarizing, the system of equations resulting from the circuit theory
∑
m

Almαm = Bl, (17)

where Bl are known Uij or Qi, and the matrix [Alm] describes the strip interconnections,
can be solved for αm, which substituted into Eqs. (15), allows us to evaluate the other
circuit quantities (strip currents and voltages), and the main objective of this analysis
that is the Fourier coe�cients Dn

D(x) =
∞∑
−∞

Dnei(n+ν)Kx, Dn = αmF̃
(N)
n−m, (18)

of the discrete spatial spectrum of charge distribution. The computationally most di�cult
task is met in evaluation of the sums (15) which are not fast convergent (numerical hint:
evaluation of

∞∑
1

Fn−m exp i(n + ν)Kxi su�ces).

4. The “scattering” problem

It is convenient to consider the preexisting �eld (DI , EI) exp ipx, p 6= 0, on the plane of
strips like an incident wave �eld in the theory of scattering of waves: while the �scattered�
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�eld resulting from the induced strip charges obeying the �radiation condition� vanish
at in�nity, the preexisting or �incident� �eld does the opposite, grows at in�nity. This
results in the di�erent relations between the electric �eld harmonic components at the
plane of strips (D at y = +0, above the plane) in both cases: Eq. (2) for the �scattered�
�eld resulting from the strips' charges, and

iEI = −SpD
I , (19)

for the �incident� �eld, that is for the preexisting �eld.
In the �scattering� problem considered here, both DI and EI are known, and the full

�eld being the sum of incident and scattered �elds

{D,E} = {DI , EI}+ {Ds, Es} (20)

must obey the conditions on strips: not only the normal induction D(x) must vanish
between the strips and tangential �eld E must vanish on the strips, but also the resulting
strips' voltages and charges must obey Eq. (17) resulting from the circuit theory.

The �rst condition is satis�ed by expanding D and iE into the series like (12), ac-
counting for the Theorem 1, that is replacing (n + ν)K by nK + r, where r = νK is the
reduced wave number of the incident �eld

p = IK + r, 0 ≤ r < K, (21)

and I is integer. (Within the presented theory, the wavenumber of the incident wave can
take only the values allowed by the spectrum of general solution (14). Thus r must take
value either 0 or K/2, that is r = νK.) Explicitly,

D =
∑
m,n

αmF̃n−mei(nK+r)x,

(22)
iE =

∑
m,n

αmSn−mF̃n−mei(nK+r)x,

with summation over n ∈ (−∞,∞) and over m as discussed below.
Applying Eq. (2) to harmonic components of the scattered �eld evaluated from Eq. (20)

and using Eq. (19), results in

∑
m

(1− Sn−m)F̃n−mαm = 2DIδnI , (23)

for each n ∈ −∞,∞ separately, where δ is Kronecker delta. The matrix of this system
of equation has a very speci�c triangular form presented below for n ∈ [n− < 0, n+ > 0]
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and m ∈ [m−
1 < 0,m+

2 > 0]

[(1− Sn−m)F̃n−m] =




•n−,m−
1

0 · · · 0 0

· · ·
· · · •
• · · · • 0 · · · 0
•−1,m−

1
· · · • •−1,m−

2
0 · · · 0 0 0 0 0

0 0 0 0 0 · · · 0 0,m+
1
• · · · • 0,m+

2
•

• · · · · · ·
0 0 · · · 0 • •
0 0 · · · 0 n+,m+

2
•




(24)

as can be proved by inspection, where the pairs of indices (n, m) are presented for sig-
ni�cant elements discussed below. Only the components marked by bullets are di�erent
from zero.

Indeed, triangular form results from 1−Sn−m = 0 if n ≥ m, that is if either m > n < 0
or m ≤ n ≥ 0. The vertical strip of zeros results from F̃n = 0 if n ∈ N , see Corollary 2.
Detailed analysis shows that

m−
1 = −1−M2 − n−, m−

2 = −M2 − 2,

m+
1 = 1−M1, m+

2 = 1−M1 + n+,
(25)

with M1,2 de�ned in Theorem 1, Eq. (13). For n = −1, all elements with m > m−
2

vanish; similarly for n ≤ −1, all elements with m > −1 − n + m−
2 vanish. Analogously,

all elements vanish if n = 0 and m < m+
1 , as well as if n ≥ 0 and m < n + m+

1 , because
either 1 − Sn−m = 0, or F̃n−m = 0. It is clearly seen from Eqs. (24), (25) that none of
αm, m ∈M, are involved in Eqs. (23) governing the scattered �eld.

Let I < 0, thus we apply n− = I and account only for equations (23) with I ≤ n < 0,
allowing m ∈ [m−

1 ,m−
2 ]. The resulting system can be solved sequentially starting from

αm−
1

up to the last αm−
2
. Similarly, if I = n+ ≥ 0: accounted for are equations with

0 ≤ n < I and m+
1 ≤ m ≤ m+

2 , and the system is solved starting from αm+
2
. Accounting

for more equations (23), with n− < I < 0 or n+ > I ≥ 0, with αm from a wider domain
of m, is super�uous and results only in αm = 0 for all m outside the domain speci�ed
above. Summarizing the solution to Eq. (23), the scattered �eld at y = 0 is

Ds(x) =
∑
m

αm

∞∑
n=−∞

F̃n−mei(nK+r)x,

(26)
iEs(x) =

∑
m

αm

∞∑
n=−∞

Sn−mF̃n−mei(nK+r)x,
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with summation extended over all αm evaluated above, which after integration, yields
Qs(x) and V s(x) like in Eqs. (15) but with (n + ν)K replaced by nK + r

Qs(x) = −i
∑
m

∞∑
−∞

αmF̃ (k)

nK + r
ei(nK+r)x,

(27)
V s(x) =

∑
m

∞∑
−∞

Sn−m
αmF̃ (k)

nK + r
ei(nK+r)x.

Now, the strip charges and potentials can be evaluated like in Eq. (16).
The solution (27) has exactly the form of (14), and superposition of properly chosen

solutions from Sec. 3 with the above scattered �eld can satisfy Eq. (17) resulting from
circuit theory. This superposed solution includes αm, m ∈ M, and these are evaluated
from Eq. (23). The superposed domain of m is then [−1 − N2 − I, M2] for I < 0, or
[M1, 1−N1 + I], for I ≥ 0.

The above mentioned �properly chosen� αm, m ∈M are the solution to Eq. (17) with
its right-hand side modi�ed by the earlier evaluated V s

ij and Qs
i resulting from Eqs. (27)

(with speci�c r as assumed above). The case r = 0 needs further discussion, however,
concerning integration of the superposed �elds, (27) and (15). Naturally, to make the
integration possible, the superposed �elds resulting in n = 0-harmonic component must
be set to zero, yielding the condition of

∑
m

αmF̃n−m = 0 if n = 0. It can be satis�ed
by proper choice of α−N/2 (the same α−N/2 that was set to zero in Sec. 3). This is the
condition of the strip electric neutrality, modi�ed here by the charge generated by the
incident �eld, or rather by the charge resulting from normal induction of preexisting �eld.
Like in Sec. 3, this additional condition (17) makes the system complete, and all αm can
be evaluated. Substitution into Eqs. (22) (with all the αm accounted for) yield the spatial
spectrum of electric charge at the plane of strips.

5. Conclusions

The applied systems of strips, the interdigital transducers of Rayleigh waves, may have
tens or even hundreds of strips, and evaluation of Fourier integrals must, practically, be
based on the fast Fourier transform (FFT). This requires discretization of V (r), Q(r) in a
grid of equally spaced ri = i∆r over the domain (0,K). This corresponds to the analysis
of spatial periodic system of groups of strips, with period Λ = 1/∆r. This practical
necessity is respected in the above analysis from the beginning. Moreover, while for �nite
(aperiodic) system of strips the Bessel functions (which are the Fourier transforms of
(w2 − x2)−1/2 [5]) would be involved in the analysis and subsequent computations, in
the present theory the Legendre polynomials Pn take their place, which are easier for
computation.
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