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Acoustic scattering due to a point source by a penetrable �nite plane introducing the
Kutta-Joukowski condition is studied. This investigation is important in the sense that
point source is regarded as fundamental radiating device. Mathematical problem which
is solved is an approximate model for a noise barrier which is not perfectly rigid and
therefore transmits sound. Approximate boundary condition depends upon the thickness
and material constants which constitute the �nite plane. The problem is solved using
integral transforms, the Wiener-Hopf technique and asymptotic methods. It is found that
the di�racted �eld is sum of the �elds produced by the two edges of the �nite plane and
an interaction �eld. It is once again found that the �eld produced by the Kutta-Joukowski
condition will be substantially larger than the �eld produced in its absence when the
source is near the edge. Finally, physical interpretation of the result is discussed.

1. Introduction

In recent years, noise reduction by means of barriers is a common method of reducing
noise pollution in heavily built up areas [1, 2]. Tra�c noise from motorways, railways
and airports, and other outdoor noises from heavy construction machinery or stationery
installations, such as large transformers or plants, can be shielded by a barrier which
intercepts the line of sight from source to receiver. Noise in open plan o�ces can also be
reduced by means of barrier partitions. In most of the calculations with noise barriers,
the �eld in the shadow region of the barrier is assumed to be solely due to di�raction
at the edge. This assumption supposes that the barrier is perfectly rigid and therefore,
does not transmit sound. However, the barriers used for practical purpose are usually
made of wood or plastic and will consequently transmit some of the noise through the
barriers. Yeh [3] considered the problem of di�raction by a penetrable parabolic cylinder
and obtained the solution in the complicated form of in�nite series of parabolic cylinder
functions. Another approximate approach for parabolic cylinder coordinates was used
by Shmoys [4] to present the results in terms of Fresnel integrals. Pistol'kors [5]
used the Kirchho�-Huygens integral equation approach to solve the general problem
of di�raction by a penetrable strip. Later on, Khrebet [6] extended this analysis to
a dielectric half plane. The approximate boundary condition used by Pistol'kors [5]
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and Khrebet [6] was only good in describing a perfectly penetrable half plane, i.e. no
loss within the material which comprises the half plane. For a smooth transition from
a perfectly penetrable half plane to a non penetrable half plane, Rawlins [7] used an
alternative boundary condition and calculated the di�racted �eld due to a line source
incidence. Asghar and Hayat [8] also discussed the di�raction of a line source near an
absorbing strip. In another paper, Asghar and Hayat [9] studied the acoustic scattering
from the coupling of soft and locally reacting half planes. Morerecently, Asghar et al.
[10] examined the di�raction of an acoustic wave by a slit in an in�nite, plane, porous
barrier.

In 1970, it was shown by Ffowcs Williams and Hall [11] that the aerodynamic
sound scattered by a sharp edge is proportional in intensity to the �fth power of the �ow
velocity and inversely to the cube of the distance of the source from the edge. Thus, the
edge is likely to be the dominant sound source, especially when the source is very close
to the edge. Their �ndings were however based upon the assumption of a potential �ow
near the sharp edge with velocity becoming in�nite there. Instead of that if one wishes
to prescribe that the velocity is �nite, there are two possible points of view. One way
is to abandon lighthill's theory and use linearized Navier-Stokes equation with source
term as employed by Alblas [12]. Before discussing the second option, it is better to
introduce the Kutta-Joukowski condition. Jones [13] introduced the wake condition to
examine the e�ect of the Kutta-Joukowski condition at the edge of the half-plane. He
calculated the �eld scattered from a line source parallel to a semi-in�nite rigid plane
attached to a wake. This problem was further extended to the point source excitation by
Balasubramanyam [14] and to the di�raction of a cylindrical pulse by Rienstra [15].

The aim of the present paper is to analyze the di�raction of a spherical wave by a
penetrable �nite plane introducing the wake condition to examine the e�ect of the Kutta-
Joukowski condition. This is important in the sense that point sources are regarded as
better substitutes for real sources. The barrier is modelled as a rigid material �lled with
narrow pores, normal to the plane of the barrier, that provide sound damping. However,
the barrier is thin enough that sound transmission takes place. The integral transforms
and the Wiener-Hopf technique [16] are employed to obtain the integral representation
of the di�racted �eld. These integrals are normally di�cult to handle because of the
presence of branch points and are only amenable to solution using asymptotic approx-
imations. The analytic solution of these integrals is thus obtained using the steepest
descent method [17].

2. Problem formulation

We consider the scattering of an acoustic wave due to a point source by a penetrable
�nite plane. A �nite penetrable plane is assumed to occupy y = 0, −l ≤ x ≤ 0. The
penetrable plane is assumed to be of negligible thickness and satisfying the penetrable
boundary conditions on both sides of its surface. The geometry of the problem is shown
in the Fig. 1. We consider a point source to be located at the position (x0, y0, z0) and the
time dependence is taken to be of harmonic nature e−iωt (ω is the low angular frequency).
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Fig. 1. Geometry of the problem.

Thus on suppressing the time harmonic factor the wave equation satis�ed by the total
velocity potential χt in presence of the point source is

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
χt = δ(x− x0)δ(y − y0)δ(z − z0), (2.1)

where
k =

ω

c
= k1 + ik2 (2.2)

is the free space wave number. In Eq. (2.2), k is complex and has a small positive imagi-
nary part which has been introduced to ensure the convergence (regularity) of the Fourier
transform integrals. The term k2 is otherwise set to zero. The boundary conditions sat-
is�ed by χt on y = 0±, −l ≤ x ≤ 0 are

± ∂

∂y
χt(x, 0±, z) + ikαχt(x, 0±, z) + ikβχt(x, 0∓, z) = 0, (2.3)

where the parameters α and β will be de�ned shortly. The 0± in Eq. (2.3) means that
the �eld term is to be evaluated as y → 0 through positive or negative values of y.

In order to satisfy the Kutta-Joukowski condition at the edge, Jones [13] introduced a
discontinuity in the �eld at 0 < x < ∞ and postulated the existence of a wake condition.
According to him, χt is discontinuous, while (∂χt/∂y) remains continuous for y = 0,
x > 0. The boundary conditions can thus be expressed as

∂

∂y
χt(x, y+, z) =

∂

∂y
χt(x, y−, z), (x < −l, x > 0, y = 0), (2.4)

χt(x, y+, z)− χt(x, y−, z) = a(z)eiµx, (x > 0, y = 0),
(2.5)

χt(x, y+, z)− χt(x, y−, z) = a(z)e−iµx, (x < −l, y = 0).

In Eq. (2.5), constant µ is regarded as known i.e.,

µ = k cos θ1, (2.6)

where 0 ≤ Re θ1 < π, Im θ1 > 0; eventually we shall be concerned primarily with the
case Re θ1 = 0, Im θ1 > 0.
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In Eq. (2.5), a(z) can be determined by means of a Kutta-Joukowski condition. We
note that a = 0 corresponds to a no wake situation. It is appropriate to split χt as

χt(x, y, z) = χ0(x, y, z) + χ(x, y, z), (2.7)

where χ0(x, y, z) is the incident wave which accounts for the inhomogeneous source term
and χ(x, y, z) is the solution of homogeneous wave equation (2.1) that corresponds to the
di�racted �eld.

In addition we insist that χ represents an outward travelling wave as r = (x2 + y2 +
z2)1/2 →∞.

3. The boundary condition

Figure 2 shows a porous barrier of thickness 2 h extending to in�nity in the ±x-
directions. The space is divided into three region. The regions V + and V − are those
above and below the barrier and are occupied by a gas having density ρ and sound speed
c. The region V0 is that occupied by the porous barrier. Following a formulation that
is identical to that given in Section I.B of Harris et al. [17], the velocity potential χs

scattered from this barrier is represented by

κs = −
∫

S

[χg (x′, x)∇χt(x′)− χt(x′)∇′χg (x′, x)] · n̂ dS(x′), x ∈ V + ∪ V −, (3.1)

where χt is the total potential given by Eq. (2.7) and χg the three-dimensional, free-
space Green's function. The surface S is comprised of the upper and lower surfaces of the
barrier, n̂ is a unit normal vector pointing out of the barrier and ∇′ indicates that the
gradient is taken with respect to the argument x′. The vector x indicates the observation
point and lies outside the barrier, while the vector x′ indicates the source point and lies
on the surface S.

Fig. 2. The geometry of the barrier.

Asking that the unit normal n̂ now point only in the positive y-direction, we de�ne
the discontinuities

[∇χt · n̂] = ∇χt(x, h, z) · n̂−∇χt(x,−h, z) · n̂, (3.2)
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and
[χt] = χt(x, h, z)− χt(x,−h, z). (3.3)

These are the sources of the scattered sound as can be seen by noting that, provided
the discontinuities in Eqs. (3.2) and (3.3) are no larger than O(1), then the integral
representation (3.1) can be approximated to O(kh) by evaluating the Green's terms at
y′ = 0. This leaves us with

χt(x) = −
∫ ∫

S

{χg(x′, 0, z′,x) [∇χt · n̂]− [χt]∇′χg · n̂} dx′dz′ + O(kh), (3.4)

where x lies outside the volume enclosed by S. Note that we have approximated a func-
tion that we know and whose length scale is set by the wavenumber k and not by the
wavenumber of the porous material. It is therefore the discontinuities, Eqs. (3.2) and
(3.3), that (2.3) must mimic.

Returning to the Rawlins boundary condition, we note that if we take the limit kh → 0
of the following:

[∇χt · n̂] = −ik(α + β)[χt(x, h, z) + χt(x,−h, z)], (3.5)
[χt] = − [ik(α− β)]−1 [∇χt(x, h, z) · n̂ +∇χt(x,−h, z) · n̂] , (3.6)

then by adding and subtracting Eqs. (3.5) and (3.6), we recover Eq. (2.3). Accordingly,
by estimating the discontinuities, Eqs. (3.2) and (3.3), we may use Eqs. (3.5) and (3.6) to
determine the parameters α and β.

Adapting a simple theory of porous materials given in [18, pp. 252�256], the equations
governing the acoustical behavior of the porous barrier are

iωκpΩp =
du2

dy
, (3.7)

and
dp

dy
= iωρp

[
1 +

iΦ
ρpω

]
u2. (3.8)

The particle velocity in the barrier u2 is restricted to be in the normal direction only,
the particle velocity in the tangential direction must be zero, and the acoustic pressure
in the barrier is p. The parameters of the model are κp the compressibility of the gas in
the pores, Ω the porosity or fraction of the volume occupied by the pores and hence by
the gas, ρp the e�ective density of the gas in the pores and Φ the �ow resistance. This
last parameter determines the e�ective sound absorbing properties of the barrier. At the
boundaries of the barrier the pressure and normal components of the particle velocity
are continuous. No condition is placed on the tangential particle velocity components
immediately outside the barrier. Integrating Eqs. (3.7) and (3.8), noting that p and u2

are the total �elds in the barrier and using the boundary conditions at the barrier walls
gives

[∇χt · n̂] = −ω2ρκpΩ(−iωρ)−1

h∫

−h

p dy, (3.9)
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and

[χt] = iωρp

[
1 +

iΦ
ρpω

]
(−iωρ)−1

h∫

−h

u2 dy. (3.10)

The barrier is both thin and absorbing. We wish to capture both these features. De�ning
κe = κpΩ, ρe = ρp

[
1 +

iΦ
ρpω

]
and ce = (ρeκe)−1/2, the e�ective wavenumber in the

barrier is ke = ω/ce. We assume that p and u2 vary slowly enough through the barrier
to be approximated accurately by the �rst two terms of a Taylor series in the scaled
thickness variable |ke|h(y/h). This assumes that the �ow resistance is not so strong as to
cause the wave�eld in the barrier to decay very rapidly. We are therefore able to relate
Eqs. (3.5) and (3.6) to the porous barrier model by noting that

1
(−iωρ)2h

h∫

−h

p dy =
[χt(x, h, z) + χt(x,−h, z)]

2
+ O(|ke|h)2, (3.11)

and
−1
2h

h∫

−h

u2 dy =
[∇χt(x, h, z) · n̂ +∇χt(x,−h, z) · n̂]

2
+ O(|ke|h)2. (3.12)

Assuming that (|ke|h)2 is small, we �nd that

α + β = −iρc2κpΩhk, (3.13)

and
α− β =

iρ

ρp[1 + iΦ/ρpω]
. (3.14)

Note that only (α− β) contains the �ow resistance term.
To estimate the sizes of these terms assume that κp and ρp are equal to the com-

pressibility κ an density ρ of the surrounding gas, so that κpρpc
2 = 1. This is not quite

the case because ρp can be larger than ρ, and κp can be the isothermal compressibility
rather than the adiabatic compressibility κ. Nevertheless, if the barrier is to absorb the
incident sound, then Φ/ρω must be moderately large. Morse and Ingrad [18] suggest
a value as high as 10 at 1000Hz. We are therefore left with the following estimates:

α + β = −iΩhk, (3.15)

and
(α− β)−1 =

khΦ
ρω

. (3.16)

For kh small, (α + β) is small because Ω < 1, but (α − β)−1 need not be because,
for e�ective sound absorption, Φ/ρω > 1. Moreover, |ke|h = kh(ΩΦ/ρω)1/2. Examining
the approximation in Eqs. (3.11) and (3.12), we note that, provided khΦ/ρω = O(1)
or equivalently hΦ/ρc = O(1), then the error leading to the approximate equivalence
between Eqs. (3.5) and (3.6), and Eqs. (3.11) and (3.12) is, at least, O(kh) throughout.
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As we continue with the calculation we shall �nd that some terms are proportional to
(α + β) and can be dropped, while others contain (α− β) or (α− β)−1 and cannot. We
could just set (α+β) to zero at this point, but by carrying it through the calculation, the
di�erent roles of the barrier thickness and absorption become clearer. Moreover, though
we are assuming that (α − β) is not small, it can be set to zero to recover the case of a
rigid barrier.

The re�ection R and transmission T coe�cients for the velocity potential using the
boundary condition equation (2.3) are given in [7]. Neglecting the (α + β), they are

R(θ) =
sin θ

[sin θ + (α− β)]
, (3.17)

and
T (θ) =

(α− β)
[sin θ + (α− β)]

. (3.18)

Note that α ≈ −β and thus −2β ≈ (α− β). For normal incidence, using the previous es-
timates T (π/2) is approximately −(ρc/2hΦ) so that the barrier allows weak transmission
of sound. The coe�cients have no poles on the real θ axis (0 < θ < π).

4. The Wiener-Hopf problem

The Fourier transform and its inverse over the variable z is de�ned as

φt(x, y, ζ) =

∞∫

−∞
χt(x, y, z)e−ikζzdz,

(4.1)

χt(x, y, z) =
k

2π

∞∫

−∞
φt(x, y, ζ)eikζzdζ.

In Eq. (4.1), the transform parameter is taken as kζ and ζ is non-dimensional. Trans-
forming Eqs. (2.1), (2.7) and the boundary conditions (2.4) and (2.5) with respect to z

by using Eq. (4.1) and after using the resulting equation of Eq. (2.7), we obtain
(

∂2

∂x2
+

∂2

∂y2
+ k2λ2

)
φ0(x, y, ζ) = a1δ(x− x0)δ(y − y0), (4.2)

(
∂2

∂x2
+

∂2

∂y2
+ k2λ2

)
φ(x, y, ζ) = 0, (4.3)

∂

∂y
φt(x, 0±, ζ)± ikαφt(x, 0±, ζ)± ikβφt(x, 0∓, ζ) = 0 (−l < x < 0), (4.4)

∂

∂y
φ(x, 0+, ζ) =

∂

∂y
φ(x, 0−, ζ) (x < −l, x > 0) (4.5)

φ(x, 0+, ζ)− φ(x, 0−, ζ) = ã(ζ)eiµx (x > 0),
(4.6)

φ(x, 0+, ζ)− φ(x, 0−, ζ) = ã(ζ)e−iµx (x < −l),
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where
λ2 = 1− ζ2, a1 = e−ikζz0 . (4.7 a, b)

Following the method in reference [8], the Wiener-Hopf functional equation is given by

dφ+

dy
(ν, 0, ξ) + e−iνl dφ−

dy
(ν, 0, ξ)− iγN(ν)J1(ν, 0, ξ)

+
ãγN(ν)
2
√

2π

[
1

ν + µ
− e−i(ν−µ)l

ν − µ

]
− ãk(α− β)

2
√

2π

[
1

ν + µ
− e−i(ν−µ)l

ν − µ

]

=
−kλb sin θ0√

2π(ν − kλ cos θ0)

[
1− e−i(ν−kλ cos θ0)l

]
, (4.8)

where

γ =
(
k2λ2 − ν2

)1/2
, N(ν) = 1 +

k(α− β)
γ

,

J1(ν, 0, ξ) =
1
2

[
φ1(ν, 0+, ξ)− φ1(ν, 0−, ξ)

]
,

b = −a1

4i

√
2

πkλr0
e(kλr0−π/4),

r0 =
√

x2
0 + y2

0 , 0 < θ0 ≤ π/2,

and φ+ is regular for Im ν > −Im kλ, φ− is regular for Im ν < Im kλ, φ1 is an integral
function and is therefore analytic in −Im kλ < Im ν < Im kλ and ν is a Fourier transform
parameter on x.

5. Solution of the Wiener-Hopf equation

The unknown di�racted wave�eld have been determined using the procedure discussed
by Noble [16, pp. 196�202]. Several steps in the procedure are given in Appendix and
the �nal result is given by

χ(x, y, z) =
isgn(y)
8π2

√
rr0

∞∫

−∞

[g2(−kλ cos θ) + g3(−kλ cos θ)]√
1− ζ2

·eikλ(r+r0)+ikζ(z−z0)dζ, (5.1)

where

g2(−kλ cos θ) =
[
f1(−kλ cos θ)
cos θ + cos θ0

+ kλf2(−kλ cos θ)
]

, (5.2)
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g3(−kλ cos θ) = −g1(−kλ cos θ)




(α− β)





1
cos θ1 − λ cos θ

+
eikλl cos θ

cos θ1 + λ cos θ





+ f3(−kλ cos θ)

− iS+(k cos θ1)
k





S+(−kλ cos θ)
cos θ1 − λ cos θ

+
eikλl cos θS+(kλ cos θ)

cos θ1 + λ cos θ








. (5.3)

The integrals in Eq. (5.1) can be solved asymptotically using the method of steepest
descent. Introducing r + r0 = r12 sin θ12, z − z0 = r12 cos θ12, ζ = cos(θ12 + iq), (−∞ <

q < ∞, 0 < θ12 < π), the far �eld is given by

χ = χA + χw, (5.4)

where χA denotes that part of χ that arises when there is no wake and χw the part that
arises when there is a wake. They are explicitly given by

χA =
isgn(y)g2(−k cos θ sin θ12)

4π
√

2πkrr0r12

ei(kr12−π/4), (5.5)

χw =
isgn(y)g3(−k cos θ sin θ12)

4π
√

2πkrr0r12

ei(kr12−π/4), (5.6)

where g2(−k cos θ sin θ12) and g3(−k cos θ sin θ12) are given by Eqs. (5.2) and (5.3) respec-
tively.

6. Concluding remarks

A new canonical di�raction problem of spherical wave (emanating due to a point
source) by a penetrable �nite plane has been solved in the presence of a wake. The
problem studied takes into account the material properties and thickness of the �nite
plane. I address this problem using an analytical approach based on the Wiener-Hopf
method. A key attribute of such an approach is that it is not fundamentally numerical in
nature and thus allows additional insight into the mathematical and physical structure
of the di�racted �eld.

It is also of interest to note from Eqs. (A.8) and (A.9) that φsep consists of two parts
each representing the di�racted �eld produced by the two edges at x = 0 and x = −l

respectively, as though the other edges were absent while φint gives the interaction of
one edge upon the other. Furthermore, the transmitted sound level, for wood or plastic
barriers is almost proportional to kh. Thus most of the transmitted noise is the low
frequency sound. The high frequency sound is di�racted into the shadow of the barrier
via the edges.

The present work with no wake also has applications in electromagnetism when con-
sidering di�raction by a dielectric �nite plane. For this we introduce n = √

ε1σ1/εσ, N =
K1ε/kε1 sin θ0, (for χt = Hz magnetic vector parallel to z-axis), N = K1σ/kσ1 sin θ0, (for
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χt = Ez electric vector parallel to z-axis) where σ, ε and σ1 and ε1 are the permeability
and permittivity of the media |y| > h and |y| < h, respectively.

Several physically interesting features of Eq. (5.7) are further noted. First, it is once
again found that the imposition of the Kutta-Joukowski condition and associated wake
has the e�ect of producing a stronger di�racted �eld away from the wake than that
in the absence of the Kutta-Joukowski condition when the source is near the edge. In
the neighbourhood of the wake an intense sound is created; it is much stronger than
the scattered �eld away from the wake and does not decay downstream. This is true
whether or not the source is near the edge. Second, the results for no wake situation
can be obtained by taking a = 0. Third, the �eld corresponds to a rigid barrier if we
put α = β = 0. Fourth, the results for an absorbing �nite plane in presence of a wake
can be obtained by taking β = 0 and α = ρ0c/za (ρ0 is the density of the undisturbed
stream and za is the acoustic impedance of the surface). Thus, the consideration of the
penetrable �nite plane with wake represent a more generalized model in the theory of
di�raction and quite a few interesting situations can be obtained as a special case by
choosing suitable parameters.

Appendix

For the solution of the Wiener-Hopf functional equation (4.8), we make the following
factorizations:

γ = (kλ + ν)1/2(kλ− ν)1/2 = K+(ν)K−(ν), (A.1)
N(ν) = N+(ν)N−(ν), (A.2)

where N+(ν) and K+(ν) are regular for Im ν > −Imk λ and N−(ν) and K−(ν) are
regular for Im ν < −Im kλ. The factorization (A.2) is obtained by employing the method
of Noble [16, p. 164] and is given by

N±(ν) = 1− i(α− β)
π

[
(ν/k)2 − λ2

]−1/2
cos−1(±ν/kλ). (A.3)

Thus, substitution of Eqs. (A.1) and (A.2) in Eq. (4.8) yields

dφ+(ν, 0, ξ)
dy

+
dφ−(ν, 0, ξ)

dy
e−iνl + S+(ν)S−(ν)J1(ν, 0, ξ)

+
iãS+(ν)S−(ν)

2
√

2π

[
1

ν + µ
− e−i(ν−µ)l

ν − µ

]
− ãk(α− β)

2
√

2π

[
1

ν + µ
− e−i(ν−µ)l

ν − µ

]

=
−kλb sin θ0√

2π(ν − kλ cos θ0)

[
1− e−i(ν−kλ cos θ0)l

]
. (A.4)

In Eq. (A.4), S+(ν)[= K+(ν)N+(ν)] is regular for Im ν > −Im kλ and S−(ν)

[= K−(ν)N−(ν)] is regular for Im ν < −Im kλ. The unknown functions dφ+(ν, 0, ξ)
dy

and

dφ−(ν, 0, ξ)
dy

in Eq. (A.4) have been determined using the procedure discussed by Noble
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[16, p. 196�202] and are given by

dφ+(ν, 0, ξ)
dy

=
−kλb sin θ0√

2π
[S+(ν)G1(ν) + T (ν)S+(ν)C1]

+
ã

2
√

2π

[
k(α− β)
(ν + µ)

− iS+(µ)S+(ν)
(ν + µ)

+
T (ν)S+(ν)

(k + µ)
C3

]
, (A.5)

dφ−(ν, 0, ξ)
dy

=
−kλb sin θ0√

2π
[S−(ν)G2(−ν) + T (−ν)S−(ν)C2]

+
ã

2
√

2π

[
k(α− β)
(µ− ν)

− iS+(µ)S−(ν)
(µ− ν)

+
T (−ν)S−(ν)

(k + µ)
C3

]
. (A.6)

Using above expressions and following [8], the di�racted wave�eld φ is given by

φ(x, y, ζ) = φsep(x, y, ζ) + φint(x, y, ζ), (A.7)

where

φsep(x, y, ζ) =
isgn(y)f1(−kλ cos θ)

4πkλ(cos θ + cos θ0)
√

rr0
eikλ(r+r0)−ikζz0

+
asgn(y)
2
√

2πkλr




(α− β)eiπ/4





1
cos θ1 − λ cos θ

+
eikλl cos θ

cos θ1 + λ cos θ





+
e−iπ/4S+(k cos θ1)

k





S+(−kλ cos θ)
cos θ1 − λ cos θ

+
eikλl cos θS+(kλ cos θ)

cos θ1 + λ cos θ








eikλr, (A.8)

φint(x, y, ζ) =
isgn(y)f2(−kλ cos θ)

4π
√

rr0
eikλ(r+r0)−ikζz0

+
ãei(kλr+π/4)

2
√

2πkλr
sgn(y)f3(−kλ cos θ), (A.9)

f1(−kλ cos θ) = − sin θ0

[
S+(−kλ cos θ)
S+(kλ cos θ0)

− S+(kλ cos θ)eikλl(cos θ+cos θ0)

S+(−kλ cos θ0)

]
, (A.10)

f2(−kλ cos θ) = sin θ0




S+(−kλ cos θ)R1(−kλ cos θ)eikλl cos θ0

−S+(kλ cos θ)R2(kλ cos θ)eikλl cos θ

−S+(−kλ cos θ)T (−kλ cos θ)C1

−S+(kλ cos θ)T (kλ cos θ)C2e
ikλl cos θ


, (A.11)

f3(−kλ cos θ) =
C3

k + k cos θ1

[
S+(−kλ cos θ)T (−kλ cos θ)

+S+(kλ cos θ)T (kλ cos θ)eikλl cos θ

]
, (A.12)
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S+(ν) =
√

kλ + νN+(ν), S−(ν) = eiπ/2
√

ν − kλN−(ν),

N±(ν) = 1− i(α− β)
π

[
(ν/k)2 − λ2

]−1/2
cos−1(±ν/kλ),

C1 =
S+(kλ)

[1− T 2(kλ)S2
+(kλ)]

(G2(kλ) + G1(kλ)T (kλ)S+(kλ)) ,

C2 =
S+(kλ)

[1− T 2(kλ)S2
+(kλ)]

(G1(kλ) + G2(kλ)T (kλ)S+(kλ)) ,

C3 = −iS+(µ)
S+(kλ)

[1− T 2(kλ)S2
+(kλ)]

(
T (kλ)S+(kλ)− eiµl

)
,

G1(ν) =
1

ν − kλ cos θ0

[
1

S+(ν)
− 1

S+(kλ cos θ0)

]
−R1(ν)eikλl cos θ0 ,

G2(ν) =
1

ν + kλ cos θ0

[
1

S+(ν)
− 1

S+(−kλ cos θ0)

]
eikλl cos θ0 −R2(ν),

R1,2(ν) =
E−1 [W−1 {−i(kλ + kλ cos θ0)l} −W−1 {−i(kλ + ν)l}]

2πi(ν ∓ kλ cos θ0)
,

T (ν) =
1

2πi
E−1W−1 [−i(kλ + ν)l] , E−1 = 2

√
leikλl−3iπ/4,

W−1(m) = Γ(1/2)em/2(m)−3/4W−1/4,−1/4(m)

(m = −i(kλ + ν)l and Wi,j is a Whittaker function).
In the limit r → 0, Eq. (A.7) shows that

φ(x, y, ζ) ≈ 2
√

rsgn(y)




−eikλr0−ikζz0
{
f1(−kλ cos θ) + kλ

2 f2(−kλ cos θ)
}

4π
√

r0
+

iãeiπ/4kλ

2
√

2πkλ

×




(α− β)
(
1 + eikλl cos θ

)
+

f3(−kλ cos θ)
2

− iS+(k cos θ1)
k


 S+(−kλ cos θ)

+S+(kλ cos θ)eikλl cos θ










,

where we have neglected the terms which are constant and O(r). Therefore, the velocity
will remain bounded at the edge if and only if the coe�cient of √r vanishes. Hence the
Kutta-Joukowski condition requires that

ã =
eikλr0−ikζz0−3iπ/4

√
2πkλr0

g1(−kλ cos θ), (A.13)

where

g1(−kλ cos θ) =
{

f1(−kλ cos θ) +
kλ

2
f2(−kλ cos θ)

}

×




(α− β)
(
1 + eikλl cos θ

)
+

f3(−kλ cos θ)
2

− iS+(k cos θ1)
k

× (
S+(−kλ cos θ) + S+(kλ cos θ)eikλl cos θ

)




−1

.
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Using Eq. (A.13) in Eq. (A.7) and then taking inverse Fourier transform over the
variable z we get Eq. (5.1).
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