
JOURNAL PRE-PROOF

This is an early version of the article, published prior to copyediting, typesetting, and editorial correction. The manuscript has been accepted for publication and is now available online to ensure early dissemination, author visibility, and citation tracking prior to the formal issue publication.

It has not undergone final language verification, formatting, or technical editing by the journal's editorial team. Content is subject to change in the final Version of Record.

To differentiate this version, it is marked as "PRE-PROOF PUBLICATION" and should be cited with the provided DOI. A visible watermark on each page indicates its preliminary status.

The final version will appear in a regular issue of *Archives of Acoustics*, with final metadata, layout, and pagination.

Title: Dimensions of the Face, Head, and Neck Affect Acoustic Parameters in Polish Speakers

Author(s): Łukasz Pawelec, Kamila Słowik, Anna Lipowicz

DOI: <https://doi.org/10.24423/archacoust.2026.4173>

Journal: *Archives of Acoustics*

ISSN: 0137-5075, e-ISSN: 2300-262X

Publication status: In press

Received: 2025-01-07

Revised: 2025-10-04

Accepted: 2026-01-02

Published pre-proof: 2026-01-29

Please cite this article as:

Pawelec Ł., Słowik K., Lipowicz A. (2026), Dimensions of the Face, Head, and Neck Affect Acoustic Parameters in Polish Speakers, *Archives of Acoustics*, <https://doi.org/10.24423/archacoust.2026.4173>

Copyright © 2026 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

Dimensions of the Face, Head, and Neck Affect Acoustic Parameters in Polish Speakers

Łukasz Pawełec <https://orcid.org/0000-0001-9406-9997>, Kamila Słowik, Anna Lipowicz <https://orcid.org/0000-0002-9182-6953>,*

Department of Anthropology, Wrocław University of Environmental and Life Sciences,
Wrocław, Poland

*Corresponding Author: anna.lipowicz@upwr.edu.pl

The relationships between human voice parameters and body dimensions have been previously described, but the connections between voice and face geometry remain poorly researched. This study aimed to determine the relationships between face dimensions and acoustic parameters in both sexes and examined 111 adult participants (30 males). Each participant underwent voice recording, which included five sustained vowels, along with anthropometric measurements of the neck, head, and face regions. Comparison of the voice and the head, face, and neck regions employed Pearson's correlation coefficients (r) and a multiple linear regression model. The results revealed significant relationships between head, neck, face dimensions and acoustic parameters in both sexes. Males with higher noses, greater head circumferences and wider faces tended to have lower formants and more stable voices. Females with higher head circumferences had lower formant values, and those with more substantial neck circumferences tended to have more stable voices. Also, females with increased nose height had a lower fourth formant. Moreover, females with wider faces, noses, and jaws tended to have less rough voices (lower jitter) and longer MPT. These findings may be useful for scientists and law enforcement authorities for creating algorithms that build face models based on voice signals.

Keywords: biometry; formants; fundamental frequency; pitch; personal identification.

1. Introduction

There are known associations between vocal acoustics and body dimensions (Brueckert et al., 2006; Evans et al., 2006; González, 2004, 2007; Graddol & Swann, 1983; Pawełec et al., 2022; Pisanski et al., 2014, 2016; Rendall et al., 2005), and body composition (Hamdan et al., 2012, 2013). Such relationships depend on the correlation between vocal tract length (VTL), shape, and body size (Fitch & Giedd, 1999) and the relationship between vocal tract morphology and

larynx/vocal fold size and acoustic voice parameters such as fundamental or formant frequencies (Fitch, 1997; Titze, 2011). Linear physical characteristics such as body height and weight, and the circumference of the shoulders, chest, waist, and hips, as well as proportions, i.a. the waist-to-hip ratio (WHR), are crucial for describing the appearance of an individual, but they are not as significant as the face in individual identification (Young & Bruce 2011). Moreover, when given two stimuli for personal identification (face and body), people rely more often on the face (Burton et al., 1999; O'Toole et al., 2010; Robbins & Coltheart, 2012). Additionally, judges rely more on facial features, especially nose and face shape, than body build characteristics (Rice et al., 2013).

The number of published papers examining the connections between facial morphology and voice features (Bommarito et al., 2019; Macari et al., 2015, 2017; Reinheimer et al., 2021) is limited, as are the facial measurements presented in them. Based on results of those studies weak (0.2-0.3) to moderate (0.4-0.6) correlations between facial dimensions such as i.e. jaw width (go-go), face width (zy-zy), maxilla width (j-j) or mandibular length (*co-gn/co-me*) were mentioned. Evidence that facial structure significantly affects voice parameters also comes from studies comparing facial measurements of voice professionals and control subjects (Brattström et al., 1991; Wyganowska-Świątkowska et al., 2013). Professional singers tend to have larger maxilla and mandible dimensions or greater lower face height. Furthermore, evidence indicates that faces can be correctly linked to voice with a probability greater than random using static (Mavica & Barenholtz, 2013) or dynamic facial images (Kamachi et al., 2003).

Some studies examined relations between head and neck circumferences and vocal characteristics but their findings are ambiguous - some of them showed the lack of such relationships (Evans et al., 2006; Rendall et al., 2005) and others revealed a reverse and weak association between neck circumference and voice pitch ($r \sim -0.3$; Pawelec et al., 2022) or

stronger connections between first three formants (F1-F3) and head circumference ($r \sim -0.6$ -0.7; Reinheimer et al., 2021). Bommarito et al. (2019) found that Martin's Facial Index (face height [n - gn]/face width [zy - zy]) correlated inversely with the second (F2) and the third formant (F3) in males ($r \sim -0.22$ and $r \sim -0.25$, respectively) and inversely with the first formant (F1) and positively with the third formant (F3) in females ($r \sim -0.31$ and $r \sim 0.27$, respectively). Macari et al. (2017) observed an inverse association between mandibular width and vocal pitch (F0) or habitual pitch (HP) in female participants ($r \sim -0.35$ and $r \sim -0.39$, respectively) and inverse correlations between F0 or HP and maxillary width in male participants ($r \sim -0.57$ and $r \sim -0.66$, respectively). This study also revealed negative correlations between face width and HP in males and females ($r \sim -0.54$ and $r \sim -0.35$, respectively). The reason why such relationships between head/neck anatomical structures and voice parameters may be observed is the fact that facial morphology is associated with the height of vocal tract cavities (i.e. oral, nasal) and pharyngeal airways (Kikuchi, 2008). In addition, vocal tract structures are related to voice parameters (Fitch, 1997), so one can find collinearity between head/neck dimensions and voice quality. Studies also demonstrate that machine learning methods can estimate face geometry from voice signals (Oh et al., 2019; Wu et al., 2022).

Accounting for the aforementioned scientific reports on the strength and directions of relationships between face and voice, the present study aimed to investigate the interrelationship between head, face, and neck dimensions and various acoustic parameters. The approach used two voice stimuli of five sustained vowels and a short sentence without emotional overtones, not just sustained vowel phonation as used in similar studies (Bommarito et al., 2019; Macari et al., 2015, 2017; Reinheimer et al., 2021). Moreover, anthropometric measurements determined the facial dimensions of live persons using calipers, and measurements did not rely on lateral radiographs (Macari et al., 2015, 2017; Reinheimer et al., 2021), other indicators (Bommarito et al., 2019) or photogrammetric technology (Lucas et al.,

2023). According to Krauss et al. (2002) to identify criminals making anonymous threatening or blackmailing calls, law enforcement agencies consult voice and speech analysis experts to identify the characteristics of the speaker. Previous research attempts to estimate facial features based solely on voice signal (Li et al., 2023; Ning et al., 2021; Wen et al., 2021; Zheng et al., 2021) but they use some algorithms to match voice and face without showing the strongest determinants of acoustic parameters and their findings are inconsistent. Therefore, the current study focused on finding the head and facial features most strongly associated with voice parameters and determined the direction of these relationships. The relationships revealed could help future researchers to develop an algorithm to identify the dimensions of a speaker's face solely from a recording of their voice.

2. Material and methods

2.1. Participants

Study subjects included 135 participants (40 males) from Wroclaw, Lower Silesia, Poland. The study group consisted of students from Wroclaw University of Environmental and Life Sciences, Faculty of Biology and Animal Science, and adult inhabitants of Wroclaw invited to the research. All volunteers were examined at the same time of day (9-12 AM) and under the same conditions (the same silent room, angle, and distance from the recorder, with the same sound recording equipment used). All participants filled in a preliminary questionnaire containing inclusion/exclusion criteria, basic questions (sex, date of birth), questions on all the possible factors that could affect their acoustic parameters (history of trauma and surgery of the head and neck regions, speech defects, hearing deficits, and occlusion defects), any illness during the examination, use of cigarettes or e-cigarettes, significant alcohol consumption on the day prior, use of hormonal drugs such as anabolic steroids, use of growth hormones or hormonal contraception, and history of voice work as a teacher, sales representative, professional, or

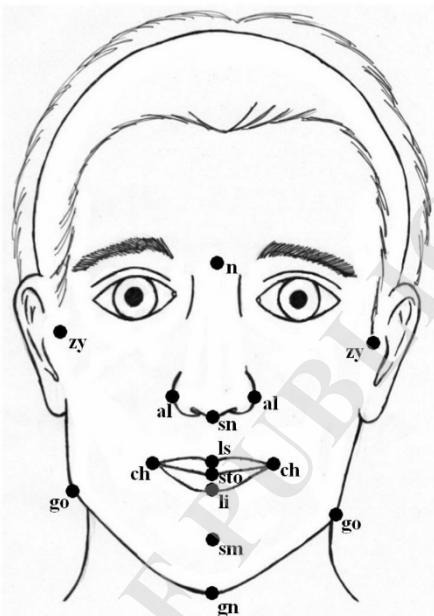
amateur singer. Females also answered questions about their current menstrual cycle, pregnancy, and menopause. No participants declared a history of head and neck trauma or surgery, hearing or speech defects, or voice work. However, excessive smoking excluded eight males and six females, while illness on the examination day excluded two males and one female. Due to the influence of sex hormones on the receptors of vocal fold epithelium (Newman et al., 2000; Voelter et al., 2008) and the consequent impact on human voice parameters (Abitbol et al., 1999; Dabbs & Mallinger, 1999; Evans et al., 2008; Raj et al., 2010), the use of hormonal contraceptives (n=4) and being in the fertile phase of the menstrual cycle (n=3) excluded seven females from further examination. This left a total of 30 males and 81 females for further study.

Research was conducted in accordance with the Declaration of Helsinki. The personal information of all participants was anonymized by giving each of them an individual anonymous code. This study was approved by the Bioethics Committee at the Wroclaw Medical University (consent number: KB - 25/2021).

2.2. Voice recording and analysis procedure

The voice recording of each participant used the same standardized conditions, and the soundtrack recorded was five vowels (/a:/, /ɛ:/, /i:/, /ɔ:/, /u:/) sustained for three seconds, with a one-second break between them. This method is one of the most often used ones in such studies (i.e. see Pisanski et al., 2014) but there are also other variants for example bVt context words (bat, bet, beet, bot, boot) or whole sentences. Speakers were asked to announce the vowels using a comfortable pitch and loudness. The equipment used included a Shure SM 58 SE dynamic cardioid microphone (bandwidth 50 Hz - 15 kHz) connected to an IMG Stageline MPA-202 amplifier and the soundcard from a Dell Latitude E6400 computer. Each participant recorded while in front of a microphone on a height-adjusted tripod, with the distance between

the tip of the mouth and the recording device set at 15 cm and an angle of 0°. Standardization of the measurement conditions was achieved using a Mozos Mshield acoustic cabin. The sampling frequency was equal for all recordings and amounted to 44.1 kHz (16-bit resolution), and all tracks were saved as uncompressed format (.wav) mono sounds. The Benetech GM1351 (Benetech Poland) phonometer indicated that the value of the acoustic background of the recording room used was ~38 dB.


All recorded soundtracks were subsequently analyzed using Praat software v 3.9.2. (Boersma & Weenink, 2019). In the first instance, each vowel was analyzed separately. The middle (the most stable) part of each vowel of equal length (0.2 s) was extracted for analysis, and the “voice report” function was used to compute basic acoustic parameters such as fundamental frequency (F0 [Hz]), the lowest and strongest harmonic produced as vocal fold vibration and perceived as vocal pitch (mean F0, median F0, standard deviation [SD]-F0, min F0, and max F0), jitter [%], the degree of variation in the frequency of sound wave from period to period (local, rap, ppq5, ddp), shimmer [%], the degree of the amplitude of the acoustic wave variation from period to period (local, apq3, apq5, apq11, dda), mean harmonics-to-noise ratio (HNR [dB]), and the indicator of the relation of harmonics to noises in the voice (Teixeira et al., 2013; Titze, 1994). Other measurements and calculations included formant frequencies (formants; F1-F4 [Hz]), which are formed by filtering F0 in the supralaryngeal vocal tract (Fant, 1960), and their derivatives (Fn [Hz]), formant position (P_f [Z]), formant spacing (ΔF [Hz]), formant dispersion (D_f [Hz]), apparent VTL [cm] estimated from formants values, and voice intensity (loudness [dB]; see the appendix of Pisanski et al., 2014). The final values of acoustic parameters were calculated as the mean of all five vowels. Additionally, the mean maximum phonation time (MPT [s]) was measured as the maximum time of sustaining vowel /a:/ over three trials, with a five-second break between trials. The pitch floor was set to 75 Hz for males and 100 Hz for females, and the pitch ceiling was set to 300 Hz and 500 Hz for male and female speakers,

respectively. The formant ceiling values were 5000 Hz for males and 5500 Hz for females. All acoustics parameters were computed using Praat default algorithms.

2.3. Anthropometric measurements

All measurements followed standard anthropometric procedures (Martin, 1914) with each participant subjected to two series of anthropometric measurements of the body, head, and neck. The concordance of measurements derived from two series was more than 88% ($r = 0.94, p < 0.001$). The body measurements included body height (cm) measured with an anthropometer to an accuracy of 0.1 cm, and body weight (kg), recorded using an electronic InBody 270 body composition analyzer device (InBody Poland) to the nearest 0.1 kg. Body mass index (BMI [kg/m^2]) was then calculated based on body height and weight values. Head and neck measurements included circumference (cm) and width-length face measurements (mm). Neck and head circumferences measurements used an anthropometric measuring tape ranging from 0 to 150 cm and a precision of 0.5 cm. Neck circumference was recorded at the laryngeal prominence ('Adam's apple'), and head circumference was measured using two points, *glabella* (g), the most forward point on the lower part of the forehead between the superciliary arches, and *opistocranion* (op), the most posterior and inferior points on the occipital bone. The face measurements were taken using a linear caliper and spreading caliper with a precision of 0.1 mm and included face height (*nasion-gnathion* [n-gn]), nose height (*nasion-subnasale* [n-sn]), nose width (*alare-alare* [al-al]), upper lip height (*subnasale-stomion* [sn-sto]), lower lip height (*stomion-supramentale* [sto-sm]), total lip vermillion height (*labiale superior-labiale inferior* [ls-li]), labial fissure length (*cheilion-cheilion* [ch-ch]), face width (bzygomatic diameter; *zygion-zygion* [zy-zy]), and jaw width (*gonion-gonion* [go-go]; Fig. 1). Based on measurements analyzed by Bommarito et al. (2019), Macari et al. (2015, 2017) and Reinheimer et al. (2021) and the knowledge about relation between head/face/neck dimensions and vocal tract

parameters (Fitch & Giedd, 1999) above-mentioned measurements were chosen to the analyses. The rationale of choosing these head/neck measurements was i) the strongest association between them and vocal tract dimensions (i.e. oral cavity); ii) use of these facial measurements by other authors addressing similar research topics.

Fig. 1. Facial anthropometric landmarks used for measurements.

Source: Graja K., Król K. (2022). Antropometria i antroposkopia. Skrypt do ćwiczeń (unbundled materials of Division of Anthropology, Wrocław University of Environmental and Life Sciences) - in self modification.

The measurement values from the two series were averaged, and the means were used for all further analyses. For each of above-mentioned head/neck measurements the intra-evaluator technical error of measurement (TEM) was calculated with reference to the method presented in the study of Perini et al. (2005). Both absolute and relative (%) error were calculated based on the equations presented below:

$$Absolute\ TEM = \sqrt{\frac{\sum d_i^2}{2n}} \quad (Eq. 1)$$

Σd_i^2 = the sum of squared differences between 1st and 2nd measurement

n = the number of measured participants

i = the number of measurements

$$\text{Relative TEM} = \frac{\text{Absolute TEM}}{\text{VAV}} * 100\% \quad (\text{Eq. 2})$$

VAV – variable average value (arithmetic mean calculated on the basis of average values obtained from two measurements)

2.4. Statistical methods

All analyses employed Statistica 13.5 software (1984-2017 TIBCO Software Inc, Palo Alto, California, USA). Shapiro-Wilk W -test was applied to check the normality of distribution of body/facial features and acoustics parameters in male and female groups. To compare males and females, if the distribution of each variable was normal (gaussian) in both groups, independent samples t -test was applied and as measures of central tendency and variability mean \pm standard deviation (SD) were shown. When distribution was not gaussian at least in one studied group Mann-Whitney U -test was applied and median and lower/upper quartiles [Q1; Q3] were demonstrated. In both cases it was shown also range (min-max). Investigating the relationship between neck and head measurements and voice parameters used Pearson's partial linear correlation due to the continuous character of the compared variables, taking age and body height as confounders because of known relations between these factors and voice parameters and head/face morphology (i.e. Fitch & Giedd, 1999; Pisanski et al., 2014, 2016; Jandová & Urbanová, 2016; Rojas et al., 2020; Pawelec et al., 2022; Cazacu et al., 2025). Furthermore, multiple linear regression models verified which head, face, and neck measurements had the most impact on the voice parameters of males and females, separately.

Several models were created for both sexes, in which selected voice parameters acted as the dependent variables (one model used one voice parameter as a dependent variable). The acoustic parameters included F0 (mean pitch), jitter parameters, shimmer parameters, HNR, intensity, P_f , ΔF , D_f , apparent VTL, and MPT. For males, explanatory variables (predictors) included head circumference and nose length (*n-sn*), while three predictors for females included lip vermillion height (*ls-li*), mandible breadth (*go-go*), face height (*n-gn*). The independent variables used for regression models were based on the highest correlation coefficients (*r*) for voice parameters for males and females. The collinearity of the variables used was tested by the correlation coefficients, and no redundant variables were placed into models. The highest collinearity between predictors that we allowed were at most 0.3. In each model age and body height were included as a confounders. For each model adjusted coefficient of determination (*R*-squared) was also computed. Only models with significant predictors were shown. Results at a significance level of $p < 0.05$ were considered statistically significant.

3. Results

3.1. Descriptive statistics

The mean participant age was 29.4 ± 12.7 years (range: 18-65 years), with males aged 5 years older than females. Moreover, males had greater values of body height, body mass, neck circumference, head circumference, face circumference, and head measurements, except for the total lip vermillion height (*ls-li*; Table 1). The intra-evaluator technical errors of measurement (absolute [cm or mm]; relative [%]) for head and face dimensions were as followed: head circumference (0.3 cm; 0.5 %), neck circumference (0.6 cm; 1.9 %), *n-gn* (2.1 mm; 1.8 %), *n-sn* (1.8 mm; 3.6 %), *al-al* (1.0 mm; 3.2 %), *sn-sto* (0.9 mm; 4.0 %), *sto-sm* (1.4 mm; 8.8 %), *ls-li* (1.0 mm; 6.3 %), *ch-ch* (0.9 mm; 1.9 %), *zy-zy* (2.0 mm; 1.5 %), *go-go* (0.7 mm; 0.7 %).

According to the paper of Perini et al. (2005), obtained relative TEM are lower than 10 % and are acceptable.

Table 1. Physical characteristics of study participants.

Feature	Males (n=30)*	range	Females (n=81)*	range	<i>p</i> †
General data					
Age [y.]	27.0 [22.0; 36.0]	20 - 65	22.0 [22.0; 25.5]	18 - 64	0.046
Body height [cm]	180.5 ± 6.5	168.1 - 197	165.6 ± 6.5	146 - 187	<0.001
Body mass [kg]	89.2 [68.9; 107.9]	51.5 - 164.7	63.6 [55.5; 75.4]	47.2 - 145.2	<0.001
BMI [kg/m ²]	26.8 [22.2; 32.4]	17 - 46.4	23.4 [20.5; 27.2]	17.3 - 51.4	0.037
Head/neck measurements					
--circumferences [cm]--					
Head	57.5 ± 1.5	54 - 60	55.2 ± 1.5	52 – 58.8	<0.001
Neck	38.8 [36.1; 41.5]	32 - 48	32.0 [31.0; 34.0]	28 - 41	<0.001
--face measurements [mm]--					
n-gn	114.0 [110; 122]	65 - 131	108.5 [104.0; 112.5]	60 - 124	<0.001
n-sn	52.0 [54.0; 55.0]	44 - 65	49.0 [47.0; 52.5]	38 - 59	0.005
al-al	35.5 [33.0; 38.0]	30 - 42	32.0 [30.5; 34.0]	27 - 48	<0.001
sn-sto	19.5 [18.0; 22.0]	12 - 27	20.0 [18.0; 21.0]	15 - 25	0.443

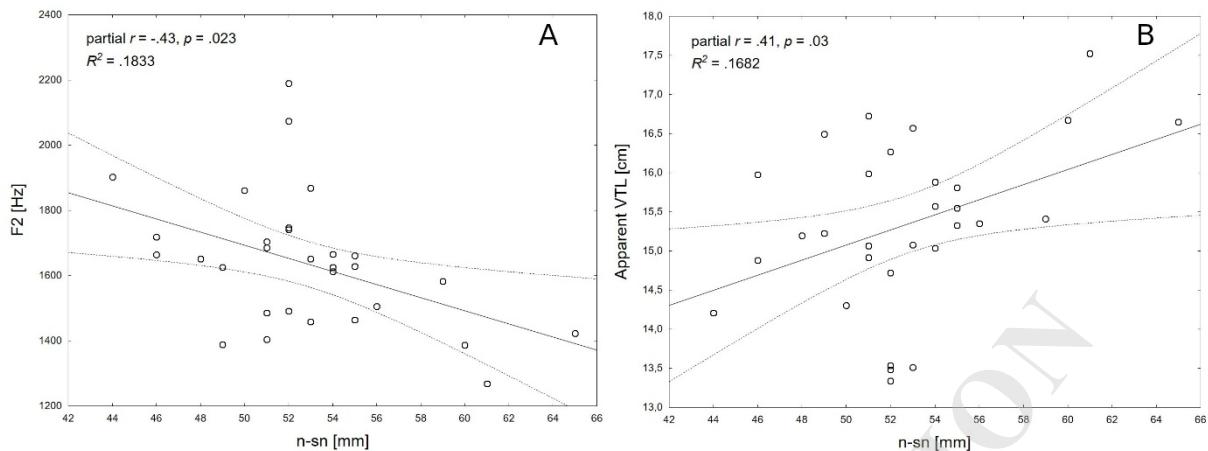
sto-sm	16.0 [15.0; 19.0]	11 - 47	16.0 [14.0; 17.0]	11 - 35	0.147
ls-li	13.3 ± 4.1	5 - 23	15.1 ± 2.9	8 - 21	0.075
ch-ch	52.0 [49.0; 56.0]	42 - 62	50.0 [48.0; 52.0]	31 - 62	0.025
zy-zy	140.0 [132.0; 146.0]	120 - 153	132.0 [128.0; 136.5]	114 - 184	0.002
go-go	112.0 [106.0; 118.0]	98 - 125	101.0 [94.5; 105.0]	87 - 130	<0.001

*Mean ± SD for *t*-Student test or Median [Q1; Q3] for Mann-Whitney test, [†] significance of male-female difference

Table 2. Voice parameters computed from vowels for males and females.

Acoustic parameter	Males (n=30)*	range	Females (n=81)*	range	<i>p</i> [†]
Median pitch [Hz]	110.0 [103.9; 118.3]	87.1 - 174.5	207.8 [187.7; 220.8]	158.6 - 253.4	<0.001
Mean pitch (F0) [Hz]	110.0 [103.9; 120.6]	87.0 - 174.6	207.8 [187.7; 221.0]	159.1 - 256.3	<0.001
Standard deviation [Hz]	0.9 [0.7; 2.1]	0.4 - 13.7	1.2 [1.0; 1.7]	0.3 - 14.6	0.045
Minimum pitch [Hz]	107.6 [102.0; 117.0]	84.5 - 172.2	205.8 [185.9; 216.7]	156.3 - 248.6	<0.001
Maximum pitch [Hz]	111.6 [105.6; 122.0]	87.7 - 177.0	209.5 [191.0; 224.0]	163 - 285.2	<0.001
Jitter (local) [%]	0.43 [0.35; 0.62]	0.23 - 2.3	0.38 [0.29; 0.46]	0.16 - 0.79	0.013
Jitter (rap) [%]	0.21 [0.16; 0.24]	0.12 - 1.32	0.21 [0.16; 0.26]	0.08 - 0.45	0.950
Jitter (ppq5) [%]	0.25 [0.2; 0.32]	0.15 - 1.67	0.22 [0.17; 0.25]	0.09 - 0.43	0.006
Jitter (ddp) [%]	0.63 [0.48; 0.73]	0.36 - 3.97	0.63 [0.48; 0.77]	0.25 - 1.36	0.886

Shimmer (local) [%]	3.17 [1.94; 4.93]	0.83 - 8.33	2.41 [1.83; 3.59]	0.77 - 7.22	0.086
Shimmer (apq3) [%]	1.55 [1.01; 2.2]	0.40 - 3.97	1.3 [0.96; 1.82]	0.40 - 3.42	0.148
Shimmer (apq5) [%]	1.94 [1.23; 2.71]	0.55 - 6.41	1.4 [1.06; 2.08]	0.45 - 4.60	0.041
Shimmer (apq11) [%]	2.98 [1.83; 3.95]	0.83 - 5.52	1.92 [1.45; 2.71]	0.57 - 6.74	0.015
Shimmer (dda) [%]	4.66 [3.04; 6.59]	1.21 - 11.92	3.9 [2.88; 5.47]	1.21 - 10.25	0.149
Mean harmonics-to-noise ratio [dB]	18.1 ± 3.3	11.5 - 23.9	22.4 ± 2.8	15.8 - 28.8	<0.001
Intensity [dB]	82.6 [75.2; 87.5]	63.9 - 90.8	78.9 [72.7; 84.7]	63.0 - 89.7	0.102
F1 [Hz]	570.3 ± 74.5	463.4 - 801.9	590.3 ± 60.8	404.2 - 718.7	0.152
F2 [Hz]	2771.2 [2685.2; 2891.3]	1268.8 - 2190.2	1559.5 [1519.1; 1648.3]	1306.4 - 1981.0	0.290
F3 [Hz]	2772.5 ± 162.3	2393.9 - 3079.8	2901.0 ± 144.5	2561.1 - 3194.6	<0.001
F4 [Hz]	3730.3 ± 163.5	3425.6 - 4072.7	4012.0 ± 196.2	3561.7 - 4461.6	<0.001
F _n [Hz]	2160.8 [2090.1; 2248.2]	2008.9 - 2422.5	2276.3 [2209.8; 2336.1]	2089.1 - 2462.8	<0.001
P _f [Z]	-0.8 [-1.5; 0.0]	-2.2 - 1.6	0.3 [-0.4; 0.8]	-1.5 - 2.0	<0.001
ΔF [Hz]	1101.9 ± 80.2	965.8 - 1270.9	1137.3 ± 52.6	1018.7 - 1273.6	0.030
D _f [Hz]	1053.3 ± 50.7	962.0 - 1154.4	1140.6 ± 68.4	986.5 - 1324.4	<0.001
apparent VTL [cm]	15.3 ± 1.1	13.3 - 17.5	14.8 ± 0.7	13.2 - 16.6	0.019
MPT [s]	20.0 [12.1; 26.8]	4.0 - 43.8	10.6 [7.1; 14.3]	2.4 - 30.2	<0.001


*Mean ± SD for *t*-Student test or Median [Q1; Q3] for Mann-Whitney test, [†] significance of male-female difference.

1 The mean pitch (F0) computed for males was 110.0 Hz, and for females, it was 207.8 Hz. Also,
2 formants and their derivative values and HNR values were lower for males. On the other hand,
3 instability (jitter and shimmer), intensity, and apparent VTL had higher values for males. MPT
4 values were approximately doubled in males compared to females (Table 2). Most
5 head/face/neck features as well as acoustics parameters significantly differed between the sexes
6 (Tables 1-2) therefore all subsequent analyses were conducted separately for each sex group.

7 ***3.2. Head and neck dimensions vs. acoustic parameters from vowels - partial correlations***

8 For male participants, head circumference positively correlated with voice parameters from the
9 shimmer parameters group, meaning that a higher head circumference is associated with higher
10 amplitude of sound wave variation from period to period (less stable equates to a more hoarse
11 voice) regardless of age and body height. Additionally, males with larger head circumferences
12 had lower values of HNR (which also means a less stable voice), but this relationship did not
13 reach statistical significance. Males with greater nose height (*n-sn*) had a lower value of the
14 second formant (F2, $r = -0.43, p = 0.023$) but a higher value of apparent VTL ($r = 0.41, p =$
15 0.03; Fig. 2.). Meanwhile, males with greater face width did not have lower values of HNR (r
16 = -0.36, *ns*) and higher values of the third formant (F3; $r = 0.28, ns$). Also, male subjects with
17 increased nose height (*n-sn*) had shorter MPT, though this relationship was not statistically
18 significant ($r = -0.36, 0.05 < p < 0.1$; Table 3).

19

20

21 **Fig. 2.** Nose height ($n-sn$) and voice formants (from vowels) partial correlations controlling age and body height
22 as confounders: a. second formant (F2): $r = -0.43$, $p = 0.023$, b. apparent VTL: $r = 0.41$, $p = 0.03$. Male participants.

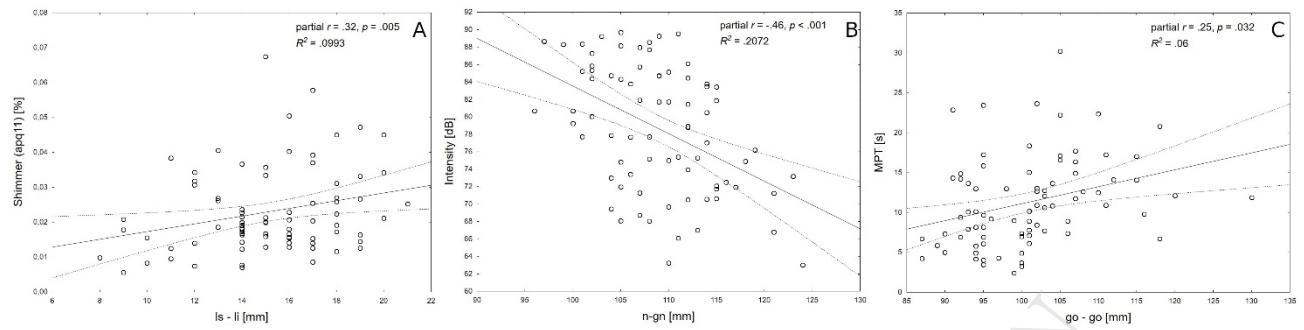
23

24 For female subjects, more significant relationships between head and face dimensions and
25 acoustic parameters extracted from vowels were found (Table 3). Female participants with
26 greater neck circumference had lower values of shimmer parameters (apq3, dda, both $r = -0.27$,
27 $p = 0.018$ and apq5, apq11 both $r = -0.25$, $p = 0.032$). Furthermore, females with greater face
28 height ($n-gn$) had lower voice intensity (loudness; $r = -0.46$, $p < 0.001$). Additionally, a higher
29 nose ($n-sn$), lower fourth formant (F4), and longer apparent VTL had a significant positive
30 relationship with lip vermillion height ($ls-li$) and voice parameters. A higher value of this
31 characteristic was positively correlated with shimmer parameters, which means that higher lip
32 vermillion and a higher unstable (hoarse) voice was related to a greater value of face width (zy -
33 zy), with lower jitter parameter values (rap, ppq5, ddp). Also, jaw width ($go-go$) showed similar
34 relationships with jitter parameters, but these correlations did not reach statistical significance.
35 Meanwhile, female participants with wider jaws ($go-go$) had higher values of MPT ($r = 0.25$, p
36 $= 0.032$; Table 3, Fig. 3).

37 Most of the above correlations were weak (~0.2-0.3) as it was expected, but some of them (i.e.
38 nose height ($n-sn$) vs. F2) showed moderate effect size for male participants.

Table 3. Head/neck circumferences and face measurements vs. voice parameters from vowels. Pearson's correlation coefficients for males (n=30) and females (n=81).

Acoustic parameter	Sex	Circumferences [cm]				Face measurements [mm]						
		Head	Neck	n-gn	n-sn	al-al	sn-sto	sto-sm	ls-li	ch-ch	zy-zy	go-go
Mean pitch (F0) [Hz]	M	-.02	-.03	.12	.15	.27	-.21	.03	-.25	.008	.12	.15
	F	.06	.08	-.04	-.01	-.10	.03	-.20	-.09	.08	.04	.08
Jitter [%]												
- local	M	.15	.12	-.05	.11	-.15	-.02	.18	-.35	.10	.21	.20
	F	-.10	-.05	-.07	-.09	.06	-.10	.09	.06	.03	-.12	-.14
- rap	M	.23	.31	.05	-.01	-.07	-.02	.08	-.16	.11	.31	.45
	F	-.09	-.001	-.13	-.13	.03	-.10	.11	.04	.05	-.14	-.19
- ppq5	M	.23	.11	.04	.07	-.10	.06	.10	-.20	.13	.18	.21
	F	-.10	-.08	-.08	-.04	.03	-.08	.04	.08	.03	-.22	-.19
- ddp	M	.23	.31	.05	-.006	-.007	-.002	.12	-.06	.01	.001	.31
	F	-.04	.04	-.12	-.11	.04	-.07	.13	.06	.10	-.23	-.15
Shimmer [%]												
- local	M	.41	.21	-.11	.08	.04	.05	.03	-.18	.36^b	.20	.21
	F	-.17	-.27	.12	.14	-.01	.17	.01	.29	-.03	.007	-.22^b
- apq3	M	.43	.26	-.02	.03	.13	.03	.06	-.21	.38	.26	.33


continued

	Sex	Circumferences [cm]										Face measurements [mm]							
		Head		Neck		n-gn		n-sn		al-al		sn-sto		sto-sm		ls-li	ch-ch	zy-zy	go-go
		F	M	F	M	n-gn	n-sn	al-al	sn-sto	sto-sm	ls-li	ch-ch	zy-zy	go-go					
- apq5	F	-.18	-.27		.10	.07	-.03		.18		.02	.25	-.04	-.03	-.22 ^b				
	M	.42	.22		-.006	.01	.19		.01		.04	-.19	.11	.23	.24				
	F	-.01	-.25		.11	.09	.07		.19		.03	.29	-.01	.03	-.20				
- apq11	M	.39	.22		-.19	.01	.01		.09		-.02	-.21	.38	.24	.14				
	F	-.14	-.25		.16	.12	-.11		.15		.01	.32	.002	.06	-.14				
	M	.43	.26		.02	.03	.13		.03		.06	-.21	.21	.26	.33				
- dda	F	-.18	-.27		.10	.07	-.03		.18		.02	.25	-.04	-.03	-.22 ^b				
	M	-.32	-.40		.03	.08	-.19		-.07		.03	.26	.29	-.36	-.28				
	F	.12	.17		-.19	-.03	-.07		-.14		.04	-.13	.03	.13	.13				
Harmonic-to-noise ratio [dB]	M	-.17	-.08		-.005	-.15	.18		-.15		.01	-.21	.29	-.12	-.16				
	F	.06	.08		-.46	-.21	.10		-.11		.11	-.11	-.07	-.13	.03				
	Formants and their derivatives																		
F1 [Hz]	M	.003	.11		-.24	-.25	.22		-.05		.06	-.21	-.06	-.06	-.08				
	F	-.11	-.16		.02	-.05	-.07		.14		-.07	-.08	-.06	-.08	-.10				
F2 [Hz]	M	.17	.25		-.14	-.43	.30		.13		.02	-.26	.01	.18	.10				
	F	-.15	-.04		.07	-.21	-.006		-.05		-.09	-.15	-.005	-.07	.03				

continued

Acoustic parameter	Sex	Circumferences [cm]				Face measurements [mm]						
		Head	Neck	n-gn	n-sn	al-al	sn-sto	sto-sm	ls-li	ch-ch	zy-zy	go-go
F3 [Hz]	M	.03	.19	-.13	-.21	.07	-.16	-.26	-.26	.12	.28	.24
	F	-.10	-.13	.03	.11	.13	-.06	.11	-.05	.10	-.12	.01
F4 [Hz]	M	.05	.17	.08	-.09	.15	.09	-.06	.03	.07	.13	.01
	F	-.003	.08	-.16	-.24	.11	.03	-.20	-.17	-.08	-.08	.12
P _f [Z]	M	.10	.25	-.12	-.33	.24	.03	-.09	-.27	.06	.21	.12
	F	-.11	-.05	-.05	-.15	.10	.002	-.13	-.13	-.01	-.13	.08
ΔF [Hz]	M	.09	.22	-.19	-.35	.27	.01	-.03	-.29	.01	.13	.06
	F	-.15	-.13	.003	-.14	.02	.06	-.10	-.10	.05	-.12	-.07
D _f [Hz]	M	.05	.12	.20	.03	.04	.12	.25	.14	.10	.17	.05
	F	.03	.12	-.15	-.17	.12	-.01	-.07	-.05	.05	-.05	.15
Apparent VTL [cm]	M	-.11	-.25	.22	.41	-.28	-.04	.02	.27	-.02	-.16	-.08
	F	.14	.12	.01	.14	-.03	-.07	.12	.14	.04	.14	.07
MPT [s]	M	.08	-.006	-.03	-.36	.12	.001	-.35	-.08	.27	.22	.12
	F	.08	.19	.17	.08	-.04	.07	.04	-.03	-.07	-.07	.25

M – males, F – females; $p < 0.05$ results were **bolded**, ^b – borderline significance ($0.06 > p > 0.05$)

Fig. 3. a. Lips vermillion height ($ls-li$) and shimmer (apq11): $r = 0.32, p = 0.005$, b. face height ($n-gn$) and voice intensity (loudness): $r = -0.46, p < 0.001$, c. jaw width and maximum phonation time (MPT): $r = 0.25, p = 0.032$ partial linear correlations controlling age and body height as confounders. Female participants.

5

6 **3.3. Head and neck dimensions vs. acoustic parameters for vowels: multiple regression**
7 **models**

8 For males, multiple regression modeling indicated a significant positive relationships of head
9 circumference and shimmer (local), meaning that those with larger head circumferences had
10 more unstable (hoarse) voices ($\beta = 0.42, t = 2.44, p = 0.022$; see Table 4, model 1). The second
11 model revealed a significant correlation between nose height with apparent VTL, so males with
12 higher noses had longer estimated vocal tracts ($\beta = 0.42, t = 2.39, p = 0.024$; see: Table 4, model
13 2).

14 For females, the first multiple regression model revealed that lip vermillion height significantly
15 correlated with shimmer (apq11), which mean a larger value of $ls-li$ ($\beta = 0.35, t = 2.99, p =$
16 0.004), was connected to a more hoarse voice (see: Table 4, model 3). The second model
17 showed a borderline significance reverse correlation of face height ($n-gn$) and voice intensity
18 (loudness), which means that women with higher faces had quieter voices ($\beta = -0.23, t = -1.96,$
19 $p = 0.054$; see: Table 4, model 4). The last significant model created for females showed
20 borderline significance correlation between jaw width ($go-go$) and maximum phonation time

- 1 (MPT; $\beta = 0.24$, $t = 1.98$, $p = 0.052$). This associations means that women with wider jaws had
- 2 longer maximum time of phonation (see Table 4, model 5).

Table 4. Multiple general regression models (GRM) of acoustic parameters (dependent variables) and head/neck measurements (predictors) for males (n=30) and females (n=81).

Sex	Regression model	Predictors	β	SE_{β}	<i>t</i>	<i>p</i>
Males	1. Dependent variable: Shimmer (local) [%]	Intercept	-	-	-1.73	0.097
		Head circ. [cm]	0.41	0.18	2.25	0.034
		n-sn [mm]	0.07	0.19	0.38	0.704
		Age [y.]	0.09	0.19	0.46	0.650
		Body height [cm]	0.02	0.18	0.10	0.918
	2. Dependent variable: apparent VTL [cm]	Intercept	-	-	1.15	0.260
		Head circ. [cm]	-0.12	0.18	-0.65	0.522
		n-sn [mm]	0.42	0.18	2.28	0.031
		Age [y.]	-0.13	0.19	-0.70	0.489
		Body height [cm]	0.16	0.18	0.91	0.373
Females	3. Dependent variable: Shimmer (apq11) [%]	Intercept	-	-	-2.52	0.014
		ls-li [mm]	2.99	0.004	2.99	0.004
		go-go [mm]	-1.52	0.132	-1.52	0.132
		n-gn [mm]	1.84	0.070	1.84	0.070

	Age [y.]	0.33	0.13	2.44	0.017
	Body height [cm]	0.31	0.12	2.71	0.008
	Intercept	-	-	4.44	<0.001
4. Dependent variable: Intensity [dB]	ls-li [mm]	-0.13	0.12	-1.07	0.288
$R^2_{Adj.} = 0.16\% ; \varepsilon = 7.15$	go-go [mm]	0.06	0.13	0.48	0.632
$F = 1.02 ; p < 0.410$	n-gn [mm]	-0.23	0.12	-1.96	0.054^b
	Age [y.]	-0.20	0.14	-1.37	0.175
	Body height [cm]	-0.09	0.13	-0.73	0.467
5. Dependent variable: MPT [s]	Intercept	-	-	-2.18	0.033
$R^2_{Adj.} = 8.59\% ; \varepsilon = 5.52$	ls-li [mm]	-0.02	0.12	-0.16	0.875
$F = 2.47 ; p < 0.040$	go-go [mm]	0.24	0.12	1.98	0.052^b
	n-gn [mm]	0.14	0.11	1.23	0.221
	Age [y.]	0.06	0.14	0.46	0.650
	Body height [cm]	0.20	0.12	1.67	0.099

β – standardized regression coefficient; SE_{β} – standard error of β ; $R^2_{Adj.}$ – adjusted R-squared of a model; ε – standardized random error of a model; t – t -statistic of β showing a significance of a predictor; F – Fisher test value showing a significance of the whole model. The results significant on the $p < 0.05$ level were **bolded**, ^b – borderline significance ($0.06 > p > 0.05$)

1 4. Discussion

2 Significant relationships between head, neck, and face dimensions and voice parameters are
3 apparent for both sexes. The strongest relationships for males occurred between shimmer
4 parameters and head circumference, F2, nose height and apparent VTL, as well as, between
5 jitter (rap) and jaw width (go-go). As such, males with larger heads had more hoarse (unstable)
6 voices, and those with higher noses had lower values of F2 and longer apparent VTL. Males
7 with wider jaws had greater voice roughness. For females, the strongest connections existed for
8 face height and voice intensity, neck circumference and lip vermillion height with shimmer
9 parameters, nose height with F4 and jaw width with maximum phonation time (MPT). These
10 results suggest that females with smaller face height have higher voice intensity. Also, female
11 participants with greater neck circumferences and lower lip height had more stable (less hoarse)
12 voices. Finally, females with longer noses had lower fourth formant value and those with wider
13 jaws – longer MPT. Furthermore, the relationships between lip vermillion height and shimmer
14 remained significant after applying multiple linear regression models. There were no significant
15 relationships between F0, formant frequencies (F1-F4), derivatives (P_f or D_f), and head or neck
16 circumferences for males and females, but these relationships were found for shimmer
17 parameters. These results confirm partially the findings of Evans et al. (2006), who found the
18 lack of such relationships for males, and are supported by the results of Rendall et al. (2005),
19 who found no significant connections for both sexes. However, Pawelec et al. (2022) found
20 significant associations between neck circumference and formants and F0 for males, even after
21 applying multiple regression models.

22 For females, the strongest relationships based on multiple linear regression model were found
23 for jaw width and MPT. Interestingly, no significant associations were found between voice
24 pitch (F0) and head, neck, and face dimensions. Macari et al. (2017) found a significant negative

1 correlation between face width (*zy-zy*) and habitual pitch (F0 for the sentence) in males and
2 inverse correlations between habitual pitch and total face height (*nasion-menton*, *n-me*,
3 measurement corresponding to our *n-gn*) and jaw width for females. Moreover, one study
4 showed a negative relationship between Martin's Facial Index (*n-gn/zy-zy*) and F3 in males and
5 a positive correlation for females (Bommarito et al., 2019). Consequently, females with higher
6 and narrower faces and males with shorter and wider faces had higher values of F3. Wu et al.
7 (2022) found that voice may indicate wider or thinner faces and stated that "*the best indicative*
8 *attribute voice can hint is the head width.*" This finding is consistent with the results of the
9 current study, which indicate many significant correlations between acoustic parameters and
10 face width measurements (*go-go*, *zy-zy*, *ch-ch*) in males and females.

11 Connections between face morphology and voice parameters found in this study are logical and
12 result from the anatomy and physiology of the speech apparatus. It is known that the length of
13 the vocal tract is closely related to body size and shape, including body height and mass (Fitch
14 & Giedd, 1999) and taller and heavier individuals tend to have lower voices, expressed by lower
15 values of fundamental and formant frequencies (Evans et al., 2006; González 2004, 2007;
16 Pawelec et al., 2022; Pisanski et al., 2014; Rendall et al., 2005). Meanwhile, larger individuals
17 have a bigger larynx and a longer vocal tract (Fitch & Giedd, 1999), and such anatomical
18 structures affect the voice via longer vocal folds, lower F0, longer vocal tract, and lower formant
19 frequencies (Fitch, 1997; Titze, 2011). Therefore, a reverse relationship between body size and
20 voice parameters is observed (Brueckert et al., 2006; Rendall, 2005), which is also pointed out
21 by subjective assessment of body build done by judges (Pawelec et al., 2023). A positive
22 correlation was also found between head length (*g-op*), face height (*n-gn*), and growth indexes
23 of the vocal tract structures during early childhood (Voperian et al., 1999). Thus, significant
24 associations between head and face dimensions and acoustic parameters found in this study
25 seem justified and logical. Moreover, all presented results show pure effect of head/neck/face

1 dimensions on vocal characteristics, not affected by body size and age. Size (expressed by body
2 height) and metrical age of participants were controlled as confounders in partial correlations
3 and regression models, thus their apparent impact on head/neck/face – voice relations is
4 reduced.

5 Relationships between jaw width and acoustic parameters in females seem difficult to explain
6 at first glance. However, females with greater face width tend to have lower jitter values (more
7 stable voices). Moreover, females with wider mandibles have lower shimmer parameters (less
8 hoarse voice) and greater MPT. It was also found that female vocalists had significantly greater
9 face dimensions and mandible width than a control group of non-vocalists (Wyganowska-
10 Świątkowska et al., 2013). These results may suggest a role for face and jaw morphology in
11 voice emission (especially articulation) and speech processes. The larger jaw size is likely
12 associated with a stronger development of the muscles attached to the mandible and greater
13 development of the entire stomatognathic apparatus. Consequently, this affects the
14 biomechanics of these structures during voice emission. Some support for this thesis is provided
15 by results showing that nonsingers using a low mandible maneuver (LMM), a technique used
16 in top-ranked professional singers to enhance vocal output by altering oral, pharyngeal, and
17 laryngeal configurations, had an increase in voice intensity (sound-pressure level [SPL]) and
18 lower F1 and F2 (Mercer & Lowell, 2020).

19 The significant negative relationships between face height, nose height, intensity, and formants,
20 and the positive correlations between those dimensions and apparent VTL in males and females
21 can be explained by knowledge of the speech apparatus anatomy. Facial morphology, such as
22 face and nose height, is associated with the oral and nasal cavity height and the pharyngeal
23 airways (Kikuchi, 2008). Total VTL is highly positively correlated with oral cavity length,
24 pharyngeal cavity length, and palate height in both sexes (Roers et al., 2009). Furthermore,

1 VTL is inversely related to formant frequencies and their derivatives (Fitch, 1997). As such,
2 the aforementioned relationships are likely to result in an apparent correlation of face and nose
3 height with the formant frequencies of the voice.

4 There were found no associations between lip vermillion height and formants or their derivatives
5 in both sexes. This result is incomprehensible, as some study have shown a relationship between
6 lip shape and F1 and F2 (Ladefoged et al., 1978) or a significant association between formants
7 and lip rounding (Wood 1985). A significant relationship was also found between this mouth
8 shape and the first two formants, with F1 closely related to mouth height and F2 corresponding
9 to mouth width (Kim et al., 2002). Another study showed a high correlation between the F1 and
10 mouth height but no correlation between F2 and the mouth height (Erber, 1979). In present
11 study lip vermillion height was correlated positively with shimmer parameters but only in
12 females.

13 **4.1. Study limitations and future perspectives**

14 The study was limited by the restricted number of head and neck measurements, and future
15 studies should examine more head and face dimensions, such as head length (*glabella-*
16 *opisthocranion* [g-op]), physiognomic face height (*trichion-gnasion* [tr-gn]), forehead width
17 (*frontotemporal-frontotemporal* [ft-ft]), and forehead height (*trichion-nasion* [tr-n]).
18 Furthermore, it is essential to examine the impact of more vocal tract structures, such as the
19 frontal sinuses, on voice features. Another limitation is the lack of head and neck imaging, such
20 as x-ray, computed tomography, and magnetic resonance imaging, which would have allowed
21 for the true dimensions of the vocal tracts of the subjects to be shown and highlight their
22 influence on voice acoustic parameters. In addition, the unequal number of male and female
23 participants makes cross-sex comparisons difficult. Some of the relationships presented in this
24 study may not be authoritative in the perspective of practical usability because of the

1 methodology applied in part of this work - isolated sustained vowels. Correlations with acoustic
2 parameters computed from short sentence or spontaneous speech seem to be more valuable in
3 ecological validity as these signals are more similar to natural conditions. Also the limitations
4 of the study is the lack of controlling other factors which may influence the voice quality such
5 as hormones (Damrose 2009; Kirgezen et al., 2017; Newman et al., 2000; Voelter et al., 2008),
6 social context (Sorokowski et al., 2019), emotions (Klasmeyer & Sendlmeier 2000; Raine et
7 al., 2019; Rothkrantz et al., 2004; Sondhi et al., 2015), used stimulants (Byeon & Cha 2020;
8 Moreira et al., 2015) or various aspects of physical and mental health status (Arnocky et al.,
9 2018).

10 Finally, the dimensions of the palate, including height, width, and length, could be included in
11 future studies, as there are indications that palate shape influences voice type in opera singers
12 (Bottalico et al., 2021; Marunick & Menaldi, 2000).

13 **5. Conclusions**

14 Some significant correlations were found between head and face morphology and vocal
15 acoustic parameters in males and females, which suggests a simple relationship between vocal
16 tract structure and function and voice emission. Indeed, both facial width and length
17 measurements had significant negative relationships with voice parameters (Bommarito et al.,
18 2019; Macari et al., 2015, 2017; Reinheimer et al., 2021). Also, connections were highlighted
19 between head and neck circumferences and acoustic parameters (Pawelec et al., 2022;
20 Reinheimer et al., 2021). VTL and shape are associated with voice parameters, especially
21 formant frequencies (Fitch, 1997; Story et al., 2001) and body size, height, and weight (Fitch
22 & Giedd, 1999). Moreover, head and face size and proportions are related to body size, VTL,
23 and shape, meaning a correlation might be observed between face and head dimensions and
24 acoustic parameters. All observed associations were quite weak in most cases and some were

1 moderate. These relationships may be used by forensic scientists to estimate the facial
2 morphology of offenders based on voice recordings alone (Bunker, 2017; Oh et al., 2019). It is
3 necessary to expand this research by increasing the number of head and face measurements and
4 sample size to allow for a meta-analysis of the relationship between facial morphology and
5 voice acoustic parameters. Another way is to use geometric morphometrics' method taking into
6 account not size of head/face but their shape (i.e. some indices describing face geometry). The
7 results of such a study would enable future investigators to identify perpetrators and victims
8 based solely on audio recordings or evaluation of voice changes in people after surgical
9 interventions of the head and face (medical and aesthetic plastic surgery). A recent study shows
10 some degree of success in estimating facial morphology from the voice signal (Li et al., 2023).

11 **Acknowledgements**

12 We would like to express our gratitude to all the participants who have given their voice as well
13 as anthropometric measurements for this research.

14 **Funding**

15 This work was supported by the Wrocław University of Environmental and Life Sciences
16 (Poland) as the Ph.D. research program „Bon doktoranta SD UPWr” no N020/0008/20 from
17 the subsidy increased by the minister responsible for higher education and science for the period
18 2020-2026 in the amount of 2% of the subsidy referred to Art. 387 (3) of the Act of 20 July
19 2018 – Law on Higher Education and Science, obtained in 2019.

20

21 **Conflict of interest**

22 None

23

24

1 References

- 2 1. Abitbol, J., Abitbol, P., & Abitbol, B. (1999). Sex hormones and the female voice.
3 Journal of voice, 13(3), 424-446. [https://doi.org/10.1016/S0892-1997\(99\)80048-4](https://doi.org/10.1016/S0892-1997(99)80048-4)
- 4 2. Arnocky, S., Hodges-Simeon, C. R., Ouellette, D., & Albert, G. (2018). Do men with
5 more masculine voices have better immunocompetence?. *Evolution and Human
6 Behavior*, 39(6), 602-610. <https://doi.org/10.1016/j.evolhumbehav.2018.06.003>
- 7 3. Boersma P, & Weenink D. (2019). Praat: doing phonetics by computer [Computer
8 program]. Version 6.0.56, Available at: <http://www.praat.org/>. Accessed June 20, 2019.
- 9 4. Bommarito, S. (2019). Correlation between voice, speech, body and facial types in
10 young adults. *Global Journal of Otolaryngology*, 20(4).
11 <https://doi.org/10.19080/gjo.2019.20.556041>
- 12 5. Bottalico, P., Marunick, M. T., Nudelman, C. J., Webster, J., & Jackson-Menaldi, M.
13 C. (2021). Singing voice quality: The effects of maxillary dental arch and singing style.
14 *Journal of Voice*, 35(3), 501-e11. <https://doi.org/10.1016/j.jvoice.2019.09.015>
- 15 6. Brattström, V., Odenrick, L., & Leanderson, R. (1991). Dentofacial morphology in
16 professional opera singers. *Acta Odontologica Scandinavica*, 49(3), 147-151.
17 <https://doi.org/10.3109/00016359109005899>
- 18 7. Bunker, D. (2017). Speech2Face: reconstructed lip syncing with generative adversarial
19 networks. *Data reflexions: Thoughts and Projects*, 8.
- 20 8. Burton, A. M., Wilson, S., Cowan, M., & Bruce, V. (1999). Face recognition in poor-
21 quality video: Evidence from security surveillance. *Psychological Science*, 10(3), 243-
22 248. <https://doi.org/10.1111/1467-9280.00>
- 23 9. Byeon, H., & Cha, S. (2020). Evaluating the effects of smoking on the voice and
24 subjective voice problems using a meta-analysis approach. *Scientific Reports*, 10(1),
25 4720. <https://doi.org/10.1038/s41598-020-61565-3>

1 10. Cazacu, C. J., Jula, C. R., Șapte, E., Chistol, R. O., Furnică, C., Grammatikis, E., &
2 Bulgaru-Iliescu, A. I. (2025). Morphology of facial aging: a shape-based quantification.
3 Romanian journal of morphology and embryology= Revue roumaine de morphologie et
4 embryologie, 66(2), 367-373.

5 11. Dabbs Jr, J. M., & Mallinger, A. (1999). High testosterone levels predict low voice pitch
6 among men. *Personality and Individual Differences*, 27(4), 801-804.
7 [https://doi.org/10.1016/S0191-8869\(98\)00272-4](https://doi.org/10.1016/S0191-8869(98)00272-4)

8 12. Damrose, E. J. (2009). Quantifying the impact of androgen therapy on the female larynx.
9 *Auris Nasus Larynx*, 36(1), 110-112. <https://doi.org/10.1016/j.anl.2008.03.002>

10 13. Erber, N. P. (1979). Real-time synthesis of optical lip shapes from vowel sounds. *The
11 Journal of the Acoustical Society of America*, 66(5), 1542-1544.
12 <https://doi.org/10.1121/1.383511>

13 14. Evans, S., Neave, N., & Wakelin, D. (2006). Relationships between vocal
14 characteristics and body size and shape in human males: An evolutionary explanation
15 for a deep male voice. *Biological Psychology*, 72(2), 160–163.
16 <https://doi.org/10.1016/j.biopsych.2005.09.003>

17 15. Evans, S., Neave, N., Wakelin, D., & Hamilton, C. (2008). The relationship between
18 testosterone and vocal frequencies in human males. *Physiology & Behavior*, 93(4-5),
19 783-788. <https://doi.org/10.1016/j.physbeh.2007.11.033>

20 16. Fant, G. (1970). Acoustic theory of speech production: with calculations based on X-
21 ray studies of Russian articulations (No. 2). Walter de Gruyter.

22 17. Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with
23 body size in rhesus macaques. *The Journal of the Acoustical Society of America*, 102(2),
24 1213-1222. <https://doi.org/10.1121/1.421048>

1 18. Fitch, W. T., & Giedd, J. (1999). Morphology and development of the human vocal
2 tract: A study using magnetic resonance imaging. *The Journal of the Acoustical Society
3 of America*, 106(3), 1511–1522. <https://doi.org/10.1121/1.427148>

4 19. González, J. (2004). Formant frequencies and body size of speaker: a weak relationship
5 in adult humans. *Journal of Phonetics*, 32(2), 277-287. [https://doi.org/10.1016/S0095-4470\(03\)00049-4](https://doi.org/10.1016/S0095-
6 4470(03)00049-4)

7 20. González, J. (2007). Correlations between speakers' body size and acoustic parameters
8 of voice. *Perceptual and Motor Skills*, 105(1), 215-220.
9 <https://doi.org/10.2466/pms.105.1.215>

10 21. Graddol, D., & Swann, J. (1983). Speaking fundamental frequency: Some physical and
11 social correlates. *Language and Speech*, 26(4), 351-366.
12 <https://doi.org/10.1177/002383098302600>

13 22. Hamdan, A. L. H., Al Barazi, R., Khneizer, G., Turfe, Z., Sinno, S., Ashkar, J., & Tabri,
14 D. (2013). Formant frequency in relation to body mass composition. *Journal of Voice*,
15 27(5), 567-571. <https://doi.org/10.1016/j.jvoice.2012.09.005>

16 23. Hamdan, A. L., Al-Barazi, R., Tabri, D., Saade, R., Kutkut, I., Sinno, S., & Nassar, J.
17 (2012). Relationship between acoustic parameters and body mass analysis in young
18 males. *Journal of Voice*, 26(2), 144-147. <https://doi.org/10.1016/j.jvoice.2011.01.011>

19 24. Jandová, M., & Urbanová, P. (2016). The relationship between facial morphology, body
20 measurements and socio-economic factors. *Anthropological Review*, 79(2), 181-200.

21 25. Kamachi, M., Hill, H., Lander, K., & Vatikiotis-Bateson, E. (2003). Putting the face to
22 the voice': Matching identity across modality. *Current Biology*, 13(19), 1709-1714.
23 <https://doi.org/10.1016/j.cub.2003.09.005>

1 26. Kikuchi, Y. (2008). Three-dimensional relationship between pharyngeal airway and
2 maxillo-facial morphology. *The Bulletin of Tokyo Dental College*, 49(2), 65-75.
3 <https://doi.org/10.2209/tdcpublication.49.65>

4 27. Kim, T., Kang, Y., & Ko, H. (2002). Achieving real-time lip-synch via SVM-based
5 phoneme classification and lip shape refinement. In *Proceedings. Fourth IEEE*
6 *International Conference on Multimodal Interfaces* (pp. 299-304). IEEE.
7 <https://doi.org/10.1109/ICMI.2002.1167010>

8 28. Kirgezen ,T., Sunter, A. V., Yigit, O., Huq, & G. E. (2017). Sex hormone receptor
9 expression in the human vocal fold subunits. *Journal of Voice* 31(4):476-482.
10 <https://doi.org/10.1016/j.jvoice.2016.11.005>

11 29. Klasmeyer, G., & Sendlmeier, W. F. (2000). Voice and emotional states. [In:] Kent.
12 R.D. & M. J. Ball (Eds.), *Voice Quality Measurement* (pp. 339-357). Singular
13 Publishing Group.

14 30. Krauss, R. M., Freyberg, R., & Morsella, E. (2002). Inferring speakers' physical
15 attributes from their voices. *Journal of Experimental Social Psychology*, 38(6), 618-625.
16 [https://doi.org/10.1016/S0022-1031\(02\)00510-3](https://doi.org/10.1016/S0022-1031(02)00510-3)

17 31. Ladefoged, P., Harshman, R., Goldstein, L., & Rice, L. (1978). Generating vocal tract
18 shapes from formant frequencies. *The Journal of the Acoustical Society of America*,
19 64(4), 1027-1035. <https://doi.org/10.1121/1.382086>

20 32. Li, X., Wen, Y., Yang, M., Wang, J., Singh, R., & Raj, B. (2023). Rethinking Voice-
21 Face Correlation: A Geometry View. In *Proceedings of the 31st ACM International*
22 *Conference on Multimedia* (pp. 2458-2467). <https://doi.org/10.1145/3581783.3611779>

23 33. Lucas, T., Hatfield, D., & Henneberg, M. (2023). A morphological comparison between
24 a death mask of the American Prophet Joseph Smith and a photograph likely to depict
25 him. *Anthropological Review*, 85(4), 1-13. <https://doi.org/10.18778/1898-6773.85.4.01>

1 34. Macari, A. T., Karam, I. A., Tabri, D., Sarieddine, D., & Hamdan, A. L. (2015).
2 Formants frequency and dispersion in relation to the length and projection of the upper
3 and lower jaws. *Journal of Voice*, 29(1), 83–90.
4 <https://doi.org/10.1016/j.jvoice.2014.05.011>

5 35. Macari, A. T., Karam, I. A., Ziade, G., Tabri, D., Sarieddine, D., Alam, E. S., &
6 Hamdan, A. L. (2017). Association between facial length and width and fundamental
7 frequency. *Journal of Voice*, 31(4), 410-415.
8 <https://doi.org/10.1016/j.jvoice.2016.12.001>

9 36. Martin R. Lehrbuch der Anthropologie in systematischer Darstellung, Jena. 1914.

10 37. Marunick, M. T., & Menaldi, C. J. (2000). Maxillary dental arch form related to voice
11 classification: a pilot study. *Journal of Voice*, 14(1), 82-91.
12 [https://doi.org/10.1016/S0892-1997\(00\)80097-1](https://doi.org/10.1016/S0892-1997(00)80097-1)

13 38. Mavica, L. W., & Barenholtz, E. (2013). Matching voice and face identity from static
14 images. *Journal of Experimental Psychology: Human Perception and Performance*,
15 39(2), 307-312. <https://doi.org/10.1167/12.9.1023>

16 39. Mercer, E., & Lowell, S. Y. (2020). The low mandible maneuver: Preliminary study of
17 its effects on aerodynamic and acoustic measures. *Journal of Voice*, 34(4), 645-e1.
18 <https://doi.org/10.1016/j.jvoice.2018.12.005>

19 40. Moreira, T. D. C., Gadenz, C., Figueiró, L. R., Capobianco, D. M., Cunha, K., Ferigolo,
20 M., Barros, H. M. T., & Cassol, M. (2015). Substance use, voice changes and quality of
21 life in licit and illicit drug users. *Revista CEFAC*, 17, 374-384.
22 <https://doi.org/10.1590/1982-021620156714>

23 41. Newman, S. R., Butler, J., Hammond, E. H., & Gray, S. D. (2000). Preliminary report
24 on hormone receptors in the human vocal fold. *Journal of Voice*, 14(1), 72-81.
25 [https://doi.org/10.1016/S0892-1997\(00\)80096-X](https://doi.org/10.1016/S0892-1997(00)80096-X)

1 42. Ning, H., Zheng, X., Lu, X., & Yuan, Y. (2021). Disentangled representation learning
2 for cross-modal biometric matching. *IEEE Transactions on Multimedia*, 24, 1763-1774.
3 <https://doi.org/10.1109/TMM.2021.3071243>

4 43. Oh, T. H., Dekel, T., Kim, C., Mosseri, I., Freeman, W. T., Rubinstein, M., & Matusik,
5 W. (2019). Speech2face: Learning the face behind a voice. In *Proceedings of the*
6 *IEEE/CVF conference on computer vision and pattern recognition* (pp. 7539-7548).
7 <https://doi.org/10.1109/cvpr.2019.00772>

8 44. O'Toole, A., Weimer, S., Dunlop, J., Barwick, R., Ayyad, J., & Phillips, J. (2010).
9 Recognizing people from dynamic video: Dissecting identity information with a fusion
10 approach. *Journal of Vision*, 10(7), 643-643. <https://doi.org/10.1167/10.7.643>

11 45. Pawelec, Ł. P., Graja, K., & Lipowicz, A. (2022). Vocal indicators of size, shape and
12 body composition in Polish men. *Journal of Voice*, 36(6), 878-e9.
13 <https://doi.org/10.1016/j.jvoice.2020.09.011>

14 46. Pawelec, Łukasz, Kierczak, K., & Lipowicz, A. (2023). Assessment of the obesity
15 based on voice perception. *Anthropological Review*, 85(4), 43–60.
16 <https://doi.org/10.18778/1898-6773.85.4.04>

17 47. Perini, T. A., Oliveira, G. L. D., Ornellas, J. D. S., & Oliveira, F. P. D. (2005). Technical
18 error of measurement in anthropometry. *Revista Brasileira de Medicina do Esporte*, 11,
19 81-85. <https://doi.org/10.1590/S1517-86922005000100009>

20 48. Pisanski, K., Fraccaro, P. J., Tigue, C. C., O'Connor, J. J. M., Röder, S., Andrews, P.
21 W., Fink, B., DeBruine, L. M., Jones, B. C. & Feinberg, D. R. (2014). Vocal indicators
22 of body size in men and women: A meta-analysis. *Animal Behaviour*, 95, 89–99.
23 <https://doi.org/10.1016/j.anbehav.2014.06.011>

24 49. Pisanski, K., Jones, B. C., Fink, B., O'Connor, J. J., DeBruine, L. M., Röder, S., &
25 Feinberg, D. R. (2016). Voice parameters predict sex-specific body morphology in men

1 and women. Animal Behaviour, 112, 13-22.

2 <https://doi.org/10.1016/j.anbehav.2015.11.008>

3 50. Raj, A., Gupta, B., Chowdhury, A., & Chadha, S. (2010). A study of voice changes in
4 various phases of menstrual cycle and in postmenopausal women. *Journal of Voice*,
5 24(3), 363-368. <https://doi.org/10.1016/j.jvoice.2008.10.005>

6 51. Reinheimer, D. M., Andrade, B. M., Nascimento, J. K., Fonte, J. B., Araújo, I. M.,
7 Martins-Filho, P. R., Salvatori, R., Valenca, E. H. O., Oliveira, A. H. A., Aguiar-
8 Oliveira, M. H. & Oliveira-Neto, L. A. (2021). Formant frequencies, cephalometric
9 measures, and pharyngeal airway width in adults with congenital, isolated, and
10 untreated growth hormone deficiency. *Journal of Voice*, 35(1), 61-68.
11 <https://doi.org/10.1016/j.jvoice.2019.04.014>

12 52. Rendall, D., Kollia, S., Ney, C., & Lloyd, P. (2005). Pitch (F0) and formant profiles of
13 human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-
14 acoustic allometry. *The Journal of the Acoustical Society of America*, 117(2), 944-955.
15 <https://doi.org/10.1121/1.1848011>

16 53. Rice, A., Phillips, P. J., Natu, V., An, X., & O'Toole, A. J. (2013). Unaware person
17 recognition from the body when face identification fails. *Psychological Science*, 24(11),
18 2235-2243. <https://doi.org/10.1177/0956797613492986>

19 54. Robbins, R. A., & Coltheart, M. (2012). The effects of inversion and familiarity on face
20 versus body cues to person recognition. *Journal of Experimental Psychology: Human
21 Perception and Performance*, 38(5), 1098-1104. <https://doi.org/10.1037/a0028584>

22 55. Roers, F., Mürbe, D., & Sundberg, J. (2009). Voice classification and vocal tract of
23 singers: a study of x-ray images and morphology. *The Journal of the Acoustical Society
24 of America*, 125(1), 503-512. <https://doi.org/10.1121/1.3026326>

1 56. Rojas, S., Kefalianos, E., & Vogel, A. (2020). How does our voice change as we age?
2 A systematic review and meta-analysis of acoustic and perceptual voice data from
3 healthy adults over 50 years of age. *Journal of Speech, Language, and Hearing
4 Research*, 63(2), 533-551.

5 57. Rothkrantz, L. J., Wiggers, P., Van Wees, J. W. A., & van Vark, R. J. (2004). Voice
6 stress analysis. [In:] *Text, Speech and Dialogue: 7th International Conference, TSD
7 2004, Brno, Czech Republic, September 8-11, 2004. Proceedings 7* (pp. 449-456).
8 Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30120-2_57

9 58. Sondhi, S., Khan, M., Vijay, R., & K. Salhan, A. (2015). Vocal indicators of emotional
10 stress. *International Journal of Computer Applications*, 122(15), 38-43.
11 <https://doi.org/10.5120/21780-5056>

12 59. Sorokowski, P., Puts, D., Johnson, J., Źólkiewicz, O., Oleszkiewicz, A., Sorokowska,
13 A., Kowal, M., Pisanski, K. (2019). Voice of authority: professionals lower their vocal
14 frequencies when giving expert advice. *Journal of Nonverbal Behavior*, 43(2), 257-269.
15 <https://doi.org/10.1007/s10919-019-00307-0>

16 60. Story, B. H., Titze, I. R., & Hoffman, E. A. (2001). The relationship of vocal tract shape
17 to three voice qualities. *The Journal of the Acoustical Society of America*, 109(4), 1651-
18 1667. <https://doi.org/10.1121/1.1352085>

19 61. Teixeira, J. P., Oliveira, C., & Lopes, C. (2013). Vocal acoustic analysis – jitter,
20 shimmer and HNR parameters. *Procedia Technology*, 9, 1112-1122.
21 <https://doi.org/10.1016/j.protcy.2013.12.124>

22 62. Titze, I. R. (1994). Fluctuations and perturbations in vocal output. *Principles of Voice
23 Production*, 209-306.

1 63. Titze, I. R. (2011). Vocal fold mass is not a useful quantity for describing F0 in
2 vocalization. *Journal of Speech Language and Hearing Research* 54(2), 520-522.
3 [https://doi.org/10.1044/1092-4388\(2010/09-0284\)](https://doi.org/10.1044/1092-4388(2010/09-0284))

4 64. Voelter, C., Kleinsasser, N., Joa, P., Nowack, I., Martinez, R., Hagen, R., & Voelker,
5 H. U. (2008). Detection of hormone receptors in the human vocal fold. *European*
6 *Archives of Oto-rhino-laryngology*, 265, 1239-1244. <https://doi.org/10.1007/s00405-008-0632-x>

7 65. Vorperian, H. K., Kent, R. D., Gentry, L. R., & Yandell, B. S. (1999). Magnetic
8 resonance imaging procedures to study the concurrent anatomic development of vocal
9 tract structures: Preliminary results. *International Journal of Pediatric*
10 *Otorhinolaryngology*, 49(3), 197-206. [https://doi.org/10.1016/S0165-5876\(99\)00208-6](https://doi.org/10.1016/S0165-5876(99)00208-6)

11 66. Wen, P., Xu, Q., Jiang, Y., Yang, Z., He, Y., & Huang, Q. (2021). Seeking the shape of
12 sound: An adaptive framework for learning voice-face association. [In:] *Proceedings of*
13 the IEEE/CVF conference on computer vision and pattern recognition (pp. 16347-
14 16356). <https://doi.org/10.1109/CVPR46437.2021.01608>

15 67. Wood, S. (1986). The acoustical significance of tongue, lip, and larynx maneuvers in
16 rounded palatal vowels. *The Journal of the Acoustical Society of America*, 80(2), 391-
17 401. <https://doi.org/10.1121/1.394090>

18 68. Wu, C. Y., Hsu, C. C., & Neumann, U. (2022). Cross-modal perceptionist: can face
19 geometry be gleaned from voices? In *Proceedings of the IEEE/CVF Conference on*
20 *Computer Vision and Pattern Recognition* (pp. 10452-10461).
21 <https://doi.org/10.48550/arXiv.2203.09824>

22 69. Wyganowska-Świątkowska, M., Kowalkowska, I., Mehr, K., & Dąbrowski, M. (2013).
23 An anthropometric analysis of the head and face in vocal students. *Folia Phoniatrica et*
24 *Logopaedica*, 65(3), 136-142. <https://doi.org/10.1159/000354939>

25

1 70. Young, A. W., & Bruce, V. (2011). Understanding person perception. *British Journal*
2 of Psychology, 102(4), 959-974.

3 71. Zheng, A., Hu, M., Jiang, B., Huang, Y., Yan, Y., & Luo, B. (2021). Adversarial-metric
4 learning for audio-visual cross-modal matching. *IEEE Transactions on Multimedia*, 24,
5 338-351. <https://doi.org/10.1109/TMM.2021.3050089>