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This paper addresses the detection of divers with an open-circuit scuba. An acoustic vector sensor (AVS),
which contains four channels, one for the pressure component, and three for orthogonal particle velocity com-
ponents is proposed to be used. A novel covariance matrix analysis (CMA) method is presented for estimating
the signal power using AVS in three-dimensional measurements. This method is based on solving a quartic
equation that relates the determinant and trace of the AVS covariance matrix to the reciprocal of the signal-
to-noise ratio (SNR) in a three-dimensional isotropic acoustic field with spherical isotropic noise. This method
is compared with two traditional methods: the AVS pressure channel power, and the minimum variance distor-
tionless response (MVDR) beamformer, in estimating the acoustic power associated with the diver’s breathing.
Experimental data from sea trials demonstrate the capability of all three methods to reconstruct the waveform
of the acoustic diver signal and highlight the periodic breathing patterns. The diver’s breathing rate and cor-
responding power are estimated using the fast Fourier transform (FFT) of the power signal, therefore serving
as a key signature for diver detection. The experiment demonstrates that the CMA method gives better diver
detection index compared to the other two methods.
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1. Introduction

An acoustic signal is generated when the diver
breathes through an apparatus regulator, with air
bubbles discharged from it. This signal is a broad-
spectrum (Johansson et al., 2010) ranging from hun-
dreds of hertz to 75 kHz (Tu et al., 2020), quasi-
periodic (Gorovoy et al., 2015), with a periodicity
ranging from 2.44 s to 7.09 s, and exhibits a repetition
pattern corresponding to the diver’s breathing rate,
which typically falls within the range of 0.14Hz to
0.41Hz (Donskoy et al., 2008). This range variabil-
ity is influenced by several factors such as the diver’s
age, experience, activity level, and scuba equipment
used (Donskoy et al., 2008). Passive sonar systems
utilize this periodic signal to detect the presence of
a diver. The respiratory cycle of a diver initiates with
the inhalation phase, which corresponds to sound fre-
quencies exceeding 2 kHz, followed by the exhalation

phase, which corresponds to frequencies below 2 kHz
(Tu et al., 2020). Both signals are useful in detection
systems (Hari et al., 2015). The specific frequency
band of interest for analysis varies among scientific
papers, with some focusing on the band with a high-
frequency band above 2 kHz (Tu et al., 2020; Jin,
Xu, 2020; Lennartsson et al. 2009; Li et al., 2015),
others focus on the low-frequency band (Korenbaum
et al., 2016; Gorovoy et al., 2014). The detectability
of a diver can be determined by two distinctive indica-
tors: the power of the frequency band and its repetition
rate (Korenbaum et al., 2020), which apply to the two
types of scuba, open circuit and closed circuit, while
the first emits more acoustic noise (Donskoy et al.,
2008), the detection of a diver with a closed circuit is
still challenging.
As the acoustic signal propagates away from the

source, two distinct fields are produced: pressure and
particle motion (PM). Pressure is a scalar quantity
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that can be measured using a hydrophone, whereas
PM is a vector quantity that is oriented parallel to the
direction of wave propagation in the free far field. PM
can be measured directly using inertial sensors such
as accelerometers or geophones, or indirectly through
a configuration of nearby pressure sensors. In last case,
the differential measurements approximated the pres-
sure gradient, providing an estimate of PM accelera-
tion (Gray et al., 2016; Nedelec et al., 2021). The
direct measurement approach involves challenges re-
lated to buoyancy, compliance, suspension, geometry,
and flow. In the contrast, the indirect measurement ap-
proach faces many issues such as spacing, calibration
uncertainty, noise, and flow (Gray et al., 2016). Inte-
grating the PM sensor with an omnidirectional pres-
sure sensor into a single unit results in what is known
as an acoustic vector sensor (AVS) (Roh et al., 2022),
which has recently gained attention and has increased
usability (Yuan et al., 2022; Dong et al., 2024). This
sensor has a wide range of applications in both ter-
restrial and aquatic environments. In terrestrial en-
vironment, it is used for localization, tracking, and
speech enhancement (Chen et al., 2018; Cao et al.,
2017), while in aquatic environment – the focus of
this paper – it is employed for detection (Yuan et al.,
2022), localization (Chen et al., 2023), and tracking
(Nagananda, Anand, 2017).
Detection using a single AVS still requires fur-

ther research efforts (Yuan et al., 2022). The energy-
flux detector is proved to perform as a maximum
likelihood ratio detector under isotropic noise condi-
tions (Sun et al., 2003). For horizontal isotropic noise,
Yuan et al. (2022) introduced a method to estimate
the signal power by analyzing the covariance matrix
of the 2D-AVS output. Incorporating this estimation
into detection has proven to be more effective than
traditional energy detectors under nonstationary am-
bient noise. Furthermore, an adaptive matched fil-
ter is proposed with 2D-AVS for passive broadband
source detection, demonstrating superior performance
against noise and interference (Ma et al., 2019). The
signal waveform can be optimally estimated using
the minimum variance distortion response (MVDR)
beamformer, also known as the Capon beamformer
or the minimum power distortion response (MPDR)
(Van Trees, 2002; Zhao et al., 2018). This tech-
nique is particularly valuable for direction of arrival
(DOA) estimation (Zhao et al., 2018), which is a topic
of growing interest among researchers. Various algo-
rithms have been explored with a single AVS, including
the arctan (Bereketli et al., 2015), intensity-based
(Wang et al., 2014; Nehorai, Paldi, 1994), velocity-
covariance-based (Nehorai, Paldi, 1994), beamform-
ing (Zhao et al., 2018; Bereketli et al., 2015), maxi-
mum likelihood (Levin et al., 2012), multiple signal
classification MUSIC (Zhao et al., 2018), and esti-
mation of signal parameters via rotational invariance

techniques Esprit (Tichavsky et al., 2001; Paulraj
et al., 1985).
Multiple algorithms are available for detection the

diver’s acoustic signal. While all of these algorithms
contribute to estimating the energy of the breathing
frequency, they vary in the way they reconstruct the
waveform of the diver’s signal. The envelope spectrum
was used within a 30 kHz–35 kHz bandwidth, achieving
a detection range of up to 25m (Lennartsson et al.,
2009). Chung et al. (2007) utilized a multiband nor-
malized matched filter but a reference signal is needed.
Tu et al. (2020) employed the envelope spectrum de-
tection method within 13 kHz–18 kHz bandwidth and
extended the range of detection from 20m to 40m by
using an adaptive noise subtraction approach. All the
aforementioned studies utilize data from a single hy-
drophone. Conversely, other studies have employed two
hydrophones to reconstruct the waveform of the diver’s
signal through cross-correlation. This cross-correlation
analysis determines the time delay between the sig-
nals received by the hydrophones, which is used in
DOA estimation (Korenbaum et al., 2020; Sutin
et al., 2013).
This paper focuses on utilizing an AVS to capture

the acoustic signals emitted by a diver with an open-
circuit scuba. Equations that relate the determinant
and trace of the AVS covariance matrix to the recip-
rocal of signal-to-noise ratio (SNR) are extracted in
a three-dimensions isotropic acoustic field with spher-
ical isotropic noise. Solving these equations results in
power signal estimation. We name this technique as
covariance matrix analysis (CMA). Additionally, the
MVDR beamformer is used to estimate the power sig-
nal by optimizing the azimuth and elevation angle val-
ues in order to maximize the MVDR spectrum. The
presence of a diver is estimated through comparing
the breathing frequency estimated power with a pre-
defined threshold which is estimated empirically using
a recorded data for ambient noise. The detection algo-
rithm is evaluated using data obtained from sea trials.
The structure of this paper is arranged as follows.

Section 2 describes the AVS with its mathematical
model and covariance matrix. The signal power estima-
tion using the AVS P -channel is presented in Sec. 3. In
Sec. 4, the signal power estimation by maximizing the
spectrum of MVDR beamformer is presented. In Sec. 5,
the power signal estimation using the CMA method is
performed. This method based on analysing the covari-
ance matrix of AVS channels: pressure and velocity,
which results in a quartic equation. Solving this equa-
tion provides an estimation of the signal power. The
effectiveness of this method is evaluated using simu-
lated data. The proposed diver detection approach us-
ing AVS is explained in Sec. 6 and evaluated in Sec. 7
using sea trial data. Finally, Sec. 7 concludes the pa-
per by summarizing the key findings and implications
derived from the study.
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2. Acoustic vector sensor model

The AVS sensor has four output channels, one for
pressure signal (P -channel) and three orthogonal com-
ponents for particle velocity signal (V-channels). So
that, the AVS captures more information about the
acoustic field comparing to hydrophones. The relation-
ship between the PM velocity (v), acceleration (a),
and the pressure (p) given by Euler’s equation, is de-
scribed as

dv
dt
= a = −

∇p

ρ
, (1)

where t is the time, ∇ is the gradient operation, and
ρ is the water density.
The PM vector, which has information about the

direction of the signal, can be measured in two ways:
1) using a geophone to measure the PM velocity (v),
or accelerometer to measure the acceleration (a), this
way is named direct measurement type or inertial type;
2) by estimation of the ∇p using multiple spaced hy-
drophones, this way is named indirect type or gra-
dient pressure type (Gray et al., 2016; Nedelec
et al., 2021).
Under plane wave conditions, the relationship be-

tween the pressure signal and the PM velocity signal
is expressed as (Abraham, 2019)

v = −
p

ρc
u, (2)

where ρc represents acoustic impedance, while c de-
notes the speed of sound in water,

u = [ cos θ cosϕ cos θ sinϕ sin θ ]
T

is a unit vector oriented from sensor to source, ϕ is the
azimuth angle, and θ is the elevation angle (Fig. 1).

Fig. 1. AVS coordinates.

The AVS output s(t), after scaling the velocity
channels with ρc, is modelled as

s(t) = [ p(t) + np(t) vT(t) + nT
v (t) ]

= h(ϕ, θ)p(t) + ns(t), (3)

where

h(ϕ, θ) = [ 1 uT ]
T
, ns(t) = [ np(t) nT

v (t) ]
T

is the ambient-noise, np(t) is the pressure noise with
power σ2

np, and n
T
v (t) is the velocity noise with power

σ2
nv. Under the ambient isotropic noise condition, the
relation between σ2

np and σ2
nv is given as σ

2
np = 3σ2

nv

(Levin et al., 2012).
Assuming p(t) and ns(t) are uncorrelated, the co-

variance matrix of s(t) is given as

R =
1

T
∫

T

s(t) ∗ sT(t)dt =Rs +Rn, (4)

where Rn and Rs are the covariance matrix of noise
and signal. In practice, R can be estimated from the
received signal as following (Yuan et al., 2022; Liu
et al., 2019):

R̂ =
1

N

N

∑
n=1

s(n)sT(n), (5)

whereN is the length of snapshot. This matrix is a cru-
cial in array signal processing, as demonstrated in the
subsequent sections.

3. Signal power estimation using the AVS
P -channel

The AVS contains a pressure sensor that functions
as an omnidirectional hydrophone. The sensor’s out-
put, sp(t), is expressed as

sp(t) = p(t) + np(t). (6)

The power of measurement signal, assuming the
noise np(t) is uncorrelated with the signal p(t), is de-
fined as

y2 =
1

T
∫

T

s2p(t) =
1

T
∫

T

p2(t)dt + σ2
np

= σ2
s + σ

2
np = σ

2
s (1 +

1

SNR
) , (7)

where
σ2
s = ∫

T

p2(t)dt

is the signal power. For a high SNR, the power of pres-
sure signal approaches to signal power.
In practice, this power is estimated by averaging

the instantaneous power over a snapshot of lengthN as

y2 =
1

N

N

∑
n=1

s2p(n). (8)

This method is used to estimate the power of the
acoustic signal emitted by the diver to highlight its
periodicity, and is compared to other signal power es-
timation methods described in the next section.
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4. Signal power estimation using MVDR
beamformer

Beamforming is a technique employed in array sig-
nal processing to steer, shape, and concentrate signals
received from sensors toward a desired direction. The
shape and width of the beam are adjusted by combin-
ing multiple signals through weighting and delays. The
AVS features an array of four sensors located at the
same point, allowing for the application of beamform-
ing without the need for delay adjustments. The first
order beamformer is formed as (Levin et al., 2012)

y(n) =wTs(n) = αp(n) + (1 − α)uT
strv, (9)

where
wT
= [ α (1 − α)uT

str ]
T

is the weights with α ∈ [0 1], and ustr is the look vector.
The parameter α significantly influences the beam

pattern, functioning as a monopole for α = 1, and
a dipole for α = 0, while the optimum value of

α = α0 =
σ2
nv

σ2
np + σ

2
nv

corresponds to the DOA estimator with maximum re-
liability (Levin et al., 2012).
One of the most widely employed beamformers

is the MVDR. The objective is to determine the
weights wT that produces the signal p(n) at the beam-
former’s output without distortion while minimizing
noise power. This problem is mathematically formu-
lated as follows:

wMVDR = argmin
w

y2(n) = argmin
w

wTRw

subject to wTh(θ, ϕ) = 1.

(10)

Fig. 2. MDVR spectrum for source radiates signal from (θ,∅) = (45○,45○) angles and SNR = 5dB.

Using the Lagrange multiplier (Van Trees, 2002),
the solution is given as

wMVDR =
R−1h

hTR−1h
, (11)

the covariance matrix R should represent the noise co-
variance matrix in MVDR, and the array measurement
covariance matrix in MPDR. When the steering di-
rection aligns with the signal direction, MVDR and
MPDR are identical (Van Trees, 2002).
If the vector h is known, and the covariance matrix

R is estimated using Eq. (5), the weight vectorwMVDR

can be estimated, allowing the estimation of p̂(n) =
y(n) =wT

MVDRs(n) in the output of beamformer. And
the associated power is:

y2(n) = wT
MVDRRwMVDR

=
1

hT(θ, ϕ)R−1h(θ, ϕ)
= f(θ, ϕ). (12)

In case where the direction angles are unknown,
the MVDR spectrum f(θ, ϕ), which is a measure of
power radiating from direction (θ,∅), is computed by
changing (θ,∅) over all possible values. The solution
for the DOA problem is by searching (θ,∅) for maxima
of f(θ, ϕ). Therefore, the MVDR can be used in ad-
dition to DOA estimation, to estimate the max power
radiating from this estimated direction. The estimated
power can be applied to reconstruct the waveform of
AVS signals. Figure 2 presents an example of the spec-
trum of the MVDR for a single source emitting a linear
frequency signal within the band [600–1000]Hz, with
−3 dB power, from a position (θ,∅) = (45○,45○), and
with an SNR = 5 dB for additive Gaussian noise.
For the experimental data, only the estimated sig-

nal power is utilized, as this paper focuses on diver
detection rather than the diver’s DOA.
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5. Signal power estimation using the AVS
channels through CMA

For 2D-AVS, the signal power was estimated by
solving a cubic equation that relates signal and noise
power, to the determinant and trace of the AVS co-
variance matrix. The cubic equation is derived under
the assumption of a horizontal isotropic acoustic field
(Yuan et al., 2022). In this section, the solution for
3D-AVS with isotropic noise in both horizontal and
vertical dimensions is presented.
The covariance matrix of the AVS output is the

sum of signal covariance Rs and the noise covariance
Rn, as shown in the Eq. (4). The matrix Rs is ex-
pressed as follows:

Rs = h(θ, ϕ)h
T
(θ, ϕ)σ2

s

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 cos θ cosϕ cos θ sinϕ sin θ

cos θ cosϕ cos2 θ cos2 ϕ cos2 θ cosϕ sinϕ cos θ sin θ cosϕ

cos θ sinϕ cos2 θ cosϕ sinϕ cos2 θ sin2 ϕ cos θ sin θ sinϕ

sin θ cos θ sin θ cosϕ cos θ sin θ sinϕ sin2 θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
s .

(13)

This matrix has four eigenvalues λ1 = 2σ2
s and λ2 =

λ3 = λ4 = 0.
The matrix Rn, under isotropic noise, is expressed

as follows:

Rn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1/3 0 0

0 0 1/3 0

0 0 0 1/3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
np. (14)

As a result, the matrix R can be expressed as fol-
lows:

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +α cos θ cosϕ cos θ sinϕ sin θ

cos θ cosϕ cos2 θ cos2 ϕ + α
3 cos2 θ cosϕ sinϕ cos θ sin θ cosϕ

cos θ sinϕ cos2 θ cosϕ sinϕ cos2 θ sin2 ϕ + α
3 cos θ sin θ sinϕ

sin θ cos θ sin θ cosϕ cos θ sin θ sinϕ sin2 θ + α
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
s ,

(15)

where

α =
σ2
np

σ2
s

= SNR−1.
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Fig. 3. Estimation using CMA: a) SNR; b) signal and noise power.

The eigenvalues of R are

λ1,2 =
1

3
(2α ±

√
α2 + 9 + 3)σ2

s and λ3 = λ4 =
1

3
ασ2

s .

When there is only a signal α → 0, the eigenvalues
are λ1 = 2σ

2
s , and λ2 = λ3 = λ4 = 0. These correspond

to the eigenvalues of Rs. Conversely, when α → ∞,
indicating the absence of a signal and the presence of
noise only, the eigenvalues are given as λ1 = σ

2
np, and

λ2 = λ3 = λ4 =
σ2
np

3
that are associated with the eigen-

values of Rn.
The trace of R is expressed as

trace(R) =
4

∑
i=1

λi = 2(α + 1)σ
2
s . (16)

The determinant of R is expressed as

det(R) =
4

∏
i=1

λi =
1

27
α3
(α + 4)σ8

s . (17)

Substituting σ2
s into Eqs. (16) and (17) yields

a quartic equation in α, which can be presented as

kα4
+ 4kα3

+ 6α2
+ 4α + 1 = 0 (18)

where
k = 1 −

trace(R)4

432det(R)
.

This equation has a real positive root correspond-
ing with k < 0 as shown in Appendix. By solving
Eqs. (16)–(18), the values of α, σ2

s , and σ2
np can be

determined. In practice, by estimating the covariance
matrix R̂ as indicated in Eq. (5), these parameters can
be determined using the following equations:

k̂ = 1 −
trace(R)4

432det(R̂)
,

k̂ α̂4
+ 4 k̂ α̂3

+ 6 α̂2
+ 4 α̂ + 1 = 0,

σ̂ 2
s =

trace(R)
2(α̂ + 1)

, σ̂ 2
np = α σ̂ 2

s .

(19)

Figure 2 shows the implementation of this method
for a linear frequency signal within the band [600–
1000]Hz, with additive Gaussian noise and using 1000
Mont Carlo runs. Figure 3a presents the SNR esti-
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mation as the actual SNR varies within the range
of [−20 5] dB. The accurate estimation achieved for
SNR > −12dB. While Fig. 3b presents the estimation
of noise power and signal power as the SNR changes
within the same range. And the true power signal esti-
mation (the true value is −3 dB) is for SNR > −12dB.
This simulation data demonstrates the technique’s

capability in estimation the signal power under low
SNR. So, this method with the above two method is
used to detect the acoustic signal power generated by
the diver.

6. Steps for diver detection using AVS

Our method for detecting the diver presence in-
volves analyzing the energy associated with their
breathing rate. The process is shown in Fig. 4.
The process has the following steps:
1) capture the acoustic signal from the diver using
an AVS;

2) apply a bandpass filter to increase the SNR;
3) reshape the signal to resemble a periodic wave-
form, employing various techniques including esti-
mated signal power using the AVS pressure chan-
nel (P -channel), CMA, and MVDR beamformer;

4) compute the power of the diver’s acoustic sig-
nal power within the frequency band of 0.14Hz–
0.41Hz, utilizing the fast Fourier transform (FFT);

FFT &
power calculation 

within [0.14,0.4] Hz

Threhold

Diver> YAAVSVS  channels BBanandd  pass filter 
600 Hz–1000 Hz

WWavaveefoformrm  
reconstruction

FFT &
power calculation 

within [0.14,0.4] Hz

Threhold

Diver

NNoo
driveerr

> Y

Fig. 4. Diver detection algorithm.

a) b)

Fig. 5. Our system and experimental location: a) passive sonar system; b) experimental location.

5) compare the computed breath power energy
against a predefined threshold.

The proposed methods, AVS pressure channel, CMA,
and MVDR, are evaluated and compared in diver de-
tection under sea trials, as discussed in the follow-
ing section.

7. Experimental results

A passive sonar system (Fig. 5a) was placed 5m
deep on the floor of the marine basin in Tartous har-
bour. Figure 5 illustrates both the system and the
experimental location. The system includes two hy-
drophones and an AVS. The AVS is of the type VHS-
90, with a sensitivity of −180 dB across four channels.
The VHS-90 sensor contains three pairs of accelerom-
eters arranged along three orthogonal directions, and
six hydrophones connected in parallel to a single out-
put in order to obtain an omnidirectional response. All
sensors are encapsulated and coated uniformly with
polyurethane material to satisfy the waterproof and
sound-permeable requirements.
An expert young diver, with an open-circuit scuba,

navigated around the sensor without following a con-
sistent path due to the highly murky water conditions.
The movement is roughly drawn in Fig. 6. The diver
started his trajectory at point A (18, 5) directed to
point B (0, 10). He rested at B for 0.35min, then pro-
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Fig. 6. Approximation of movement of diver around AVS.

ceeded to point C, then D, which is approximately 30m
away from the AVS. The diver has then returned to-
ward point E, before heading back to point B. The
diver rested at B 0.5min, then went toward the AVS,
he circled around the sensor and heading back to
point G.
The data was captured using an A/D converter at

a sampling rate of 44 100Hz with 24-bit resolution.
The MATLAB program was used for processing.
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Fig. 7. AVS output signals and corresponding power levels.

The recorded data was filtered by the 100th-order
bandpass FIR filter within the 600Hz–1000Hz range
in the time domain, corresponding to the exhalation
and air bubble signals. Figure 7 illustrates the AVS’s
channels over time and their corresponding power (the
power is calculated using a sliding window with 200ms
and 50% overlapping). The figure shows a repeated
pattern with period 6.3 s. Each pulse corresponds with
one breathing of the diver.
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Fig. 8. Signal power estimation and distance between diver and AVS.

The three estimation methods (P -channel power,
MVDR, and CMA) were implemented, and the results
are presented in Fig. 8, which also shows the distance
between the diver and the AVS over time. As illus-
trated in this figure, the signal power decreases with
increasing the distance from diver to AVS, falling be-
low the noise power by the end of Path3. This power
decreasing is resulted from attenuation caused by the
underwater environment. Furthermore, this figure il-
lustrates that all three methods effectively estimate the
waveform of the diver’s signal, which exhibits periodic
characteristics resulting from repetition in the breath-
ing process. However, the interference between pulses,
caused by scattering air bubbles, is evident especially
when the diver is close to sensor (Path4), where the
acoustic signal from the previous breath persists as
the current breath begins.
Utilizing a P -channel for detection is feasible; how-

ever, this approach relies only on the pressure sen-
sor that captures the noise from all directions. In
contrast, the CMA method depends on the correla-
tion between the pressure and velocity measurements,
similar to the MVDR method. However, the MVDR
method involves greater computational complexity re-
sulted from searching for maximum power.
Figure 8 illustrates that the CMA and MDVR

methods highlight the breathing pulses more effec-
tively than the P -channel method. This is because they
reduce noise power when the diver is silent or when
SNR is low (e.g., Rest2). However, when the SNR is
high (Path4), the estimated powers of all three meth-
ods converge to approximate the signal power.
After estimating the power signal which showed the

periodicity in the diver’s signal, it is necessary to de-
termine the power within the diver breath rate range
([0.14–0.42]Hz), as this serves as an indicator of the

diver’s presence. This can be done by calculation the
FFT of estimated power signal over a window of ap-
propriate length that must contain multiple breathing
cycles. Figure 9 illustrates FFT using a 13-second win-
dow when the diver is not silent. A local maximum at
0.15Hz is found – indicating a period with 6.7 s – for
all the three estimation methods, with advantages in
value to CMA first, MVDR, then P -channel. The diver
index Dindex is calculated by summing the squares of
FFT values between 0.14Hz–0.42Hz as

Dindex =
1

M

f=0.42

∑
f=0.14

∣FFT{y2(n)}(f)∣
2
,

whereM is the number of frequencies within the spec-
ified range. The results from repeating this process
across the entire signals are illustrated in Fig. 10, in-
dicating an increasing in diver index when the diver
is actively breathing. By comparing the diver index to
the predefined threshold, a decision of diver detection
can be made. The CMA method shows a higher diver
index value than the MVDR and P -channel methods,
giving it an advantage in diver detection. For assertion,
the metrics: accuracy, recall, precision, and F1-score
are calculated and compared over these methods.
The predefined threshold Th can be estimated

by applying the three methods to recorded ambient
noise and selecting the maximum value as DN

index. We
then set the threshold Th = 1.3D

N
index as indicated by

Tu (2020). The probability of detection Pd can be ex-
pressed as

Pd =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 Dindex ≧ 2Th,

(Dindex − Th)/Th Th <Dindex < 2Th,

0 Dindex ≦ Th.

(20)

This formula was applied to recorded data, and the re-
sults are presented in Fig. 10, which shows false alarms
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Fig. 9. FFT of window with 13 s length where the diver is present.
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Fig. 10. Calculation of: a) the diver index for journey; b) probability of detection.

in the beginning. Additionally, a low value of Pd is
observed when the diver is either silent or far away
from the sensor. To determine the detection distance
for the three methods, the detection probability for
Path3 was calculated and shown in Fig. 11. This figure
shows that the distance of detection is approximately
29m for both the P -channel and CMA methods with
a preference for CMA, while this distance is about 26m
for the MVDR method.

To compare between the three detection methods,
several commonly metrics were calculated as shown in
Fig. 12. These metrics were derived based on the con-
fusion matrix provided in Table 1.
The confusion matrix was estimated based on the

defined threshold Th = 1.3D
N
index. The matrix initially

indicates comparable performance among the three
methods, with the CMA method showing an advan-
tage in correct classifications (true positives), while
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P -channel CMA MVDR
Accuracy 91.0% 92.8% 86.4%
Recall 90.0% 92.3% 84.9%
Precision 99.7% 99.5% 99.5%
F1 Score 94.6% 95.7% 91.6%
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Fig. 12. Comparison of the three methods in detection performance under Th = 1.3D
N
index.

Table 1. Confusion matrix under Th = 1.3D
N
index.

P -channel MVDR CMA

Actual values

Positive Negative Positive Negative Positive Negative

Predicted values
Positive 4102 11 3868 20 4203 21

Negative 454 628 688 619 353 618

the P -channel method exhibits a lower value of false
positives. It is important to note that increasing the
threshold value affects the confusion matrix, gener-
ally resulting in degraded performance. However, be-
yond a certain threshold value, the performance of

the MVDR method becomes superior to that of the
P -channel method.
The results in Fig. 12 illustrate that: the accuracy

of detection for the three methods was 86% to 93%,
the recall was 85% to 92%, the precision was 99% to



S. Mahmoud et al. – Experimental Results of Diver Detection in Harbor Environments. . . 183

100%, and the F1-score was 92% to 96%. These val-
ues demonstrate the effectiveness of the three methods
in detecting the presence and absence of divers under-
water, with advantage to the CMA method.
The experimental data demonstrated the possibil-

ity of using the three methods (P -channel, CMA, and
MVDR power) in diver detection with a preference for
the CMA method.
Therefore, detection is impacted by the method

used to represent the periodicity resulting from the
breathing process, which affects the diver index value.
Furthermore, the long detection window (13 s) is a lim-
itation of using the diver’s breath rate as a key signa-
ture.

8. Conclusion

This study investigated the feasibility of detecting
a diver with an open-circuit scuba by analyzing the
acoustic signals emitted during respiration, which are
captured by AVS. The AVS focuses on a low-frequency
range of [600–1000]Hz, corresponding to the exhala-
tion phase. The detection method involves estimating
the signal power associated with the diver’s breath-
ing. In this paper, a novel method was presented to
estimate the signal power by analyzing the covariance
matrix of the 3D-AVS channels. This analysis leaded
to the derivation of a quartic equation that relates the
determinant and trace of the AVS covariance matrix
to the reciprocal of the SNR. Solving this equation al-
lows for the estimation of both the signal power and
the SNR. Simulated data demonstrated the effective-
ness of this method in estimating signal power un-
der low SNR (−12 dB). Additionally, the paper pre-
sented the MVDR beamformer, which showed poten-
tial for estimating signal power along with azimuth
and elevation angles using simulated data. The esti-
mated power via CMA, MVDR, and P -channel meth-
ods was also compared using trial data, showing a pe-
riodicity corresponding to the diver’s exhalation. The
trial data demonstrated that the CMA method pro-
vides a stronger diver detection index compared to
MVDR and the P -channel. However, a limitation of
these methods is the long detection duration. This is-
sue could potentially be addressed using AI algorithms
to identify other features in acoustic diver signals. In-
vestigating this approach will be a focus of our future
work.

Appendix. Roots of quartic equation

The existence of one real positive number for the
quartic equation (Eq. (18)) is demonstrated, and it can
be rewritten as

aα4
+ bα3

+ cα2
+ dα + e = 0,

a = kb = 4kc = 6, d = 4, e = 1.

By applying the change of variable α = β− b
4a
= β−1, the

depressed quartic equation has been obtained, which
has the following form:

β4
+ pβ2

+ qβ + r = 0,

where

p =
8ac − 3b2

8a2
= 6(

1

k
− 1) = 6g,

q =
b3 − 4abc + 8a2d

8a3
= −8(

1

k
− 1) = −8g,

r =
16ab2c − 64a2bd − 3b4 + 256a3e

256a4
= 3(

1

k
− 1) = 3g,

g = (
1

k
− 1).

The presence of real roots can be determined by eval-
uating the signs or values of two terms (Prodanov,
2021) in the following form:

δ(p, q, r) = 256r3 − 128p2r2 + 144pq2r + 16p4r − 27q4

−4p3q2 = 6912g3(g + 1)2,

L(p, q, r) = 8pr − 9q2 − 2p3 = −432g2(g + 1).

There are several cases depending on the value of g, as
follows:
1) g = 0(k = 1) → δ = 0, L = 0, p = 0: rewrite Eq. (18)
as (α + 1)4 = 0, the root is αi = −1, this value is
invalid because it is a negative number;

2) g = −1 (∣k∣→∞) → δ = 0, L = 0, p < 0: rewrite
Eq. (18) as α3(α+4) = 0, there are two real roots:
α1 = 0, and α2 = −4. The root α1 indicates that
the power of noise equals to zero, and the root α2

is invalid;
3) g < 0(k < 0 ∪ k > 1) → δ < 0: Eq. (18) has two
distinct real roots;

4) g > 0(0 < k < 1) → δ > 0, L < 0: Eq. (18) has not
any real roots.

Thus, the acceptable case is 3, where there are two
distinct real roots. To determine the sign of these roots,
Descartes’ rule of signs is applied, which is based on
analyzing the sign changes in the coefficients of the
polynomial, as follows:
– k > 1: the polynomial f(α) = kα4 + 4kα3 + 6α2 +

4α + 1 has no changes in the sign of coefficients.
So, the two distinct roots are negative. And this
case is invalid;
– k < 0: the polynomial f(α) = kα4 + 4kα3 + 6α2 +

4α + 1 has one sign change, indicating that the
Eq. (14) has one positive real root. Additionally,
the polynomial f(−α) = kα4 − 4kα3 + 6α2 − 4α + 1
shows three sign changes, meaning it has either
three or one negative roots. Since Eq. (18) has two
distinct roots, this results one invalid negative real
root and one valid positive real root.
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As a result, when k < 0, Eq. (18) has one positive root,
which represents the valid solution for the reciprocal
of SNR.
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