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This paper investigates the overfitting problem in vowel classification task for automatic speech recognition
(ASR). It utilizes a pitch synchronized human factor cepstral coefficients (PS-HFCC) as the parametrization
method, which outperforms traditional methods like HFCC and mel-frequency cepstral coefficients (MFCC) in
frame-level classification accuracy. While deep learning models are prevalent in contemporary ASR systems,
they often lack explainability, a characteristic of classical classifiers. Therefore, this study examines overfitting
phenomenon using a range of classifiers with well-understood properties. Specifically, it analyzes the impact
of different training strategies on classifier performance, comparing the susceptibility to overfitting of several
widely used classifiers, including the Gaussian mixture model (GMM), a standard approach in speech recogni-
tion. The analysis of training strategies considers various data splitting methods: random, speaker-based, and
cluster-based. Our analysis of training strategies highlights the crucial role of data splitting methods: while
random splitting is commonly used, it can lead to inflated accuracy due to overfitting. We demonstrate that
speaker-independent splitting, where the classifier is trained on one set of speakers and tested on a separate,
unseen set, is essential for robust evaluation and for accurately assessing generalization to new speakers. Po-
tentially, the resulting insights may inform the future development and training of more reliable ASR systems.
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1. Introduction

The objective of speech recognition is to lever-
age machines, computers, and appropriate software
to process speech signal and extract useful informa-
tion for humans. This information can include the se-
mantic content of speech, and the considered systems
are referred to as automatic speech recognition (ASR)
(KUNDEGORSKI et al., 2014; UMA MAHESWARI et al.,
2020; CHERIFI, GUERTI, 2021), automatic voice recog-
nition (AVR) systems for voice or speaker recognition
(MACIEJKO, 2015), and automatic emotion recogni-
tion systems (AER) for emotional state recognition
(NEDELJKOVIC et al., 2020; PIATEK, KEACZYNSKI,
2021; STEFANOWSKA, ZIELINSKI, 2024). Speech recog-
nition has been a highly researched topic in recent

years and continues to develop intensively. It is in-
herently interdisciplinary, encompassing a multitude
of fields, including acoustics, digital signal process-
ing, mathematical statistics, machine learning, artifi-
cial intelligence, linguistics, semantics, and psychology
(particularly the study of emotions). In order to opti-
mize the efficacy of an ASR system, it is essential to
consider a variety of factors influencing speech, as well
as the operational conditions under which it is pro-
cessed, during the system design phase. It is therefore
necessary to distinguish between three main categories
of ASR systems: speaker dependent (SD), designed for
a single speaker, speaker independent (SI) dedicated
to working with multiple speakers, and speaker adap-
tive (SA), in which parameters can be adjusted to fit
the active speaker. In order to optimize the ASR per-
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formance, it is also necessary to take into account other
specific operational conditions. These include the need
to work with continuous speech, single and isolated
commands, and conversions to text discussions involv-
ing multiple speakers (MAKOWSKI, 2011).

Feature extraction is fundamental component of
both traditional and modern ASR system architec-
tures. Classical approaches, such as hidden Markov
models with Gaussian mixture models (HMM-GMM)
and hybrid HMM-deep neural network (HMM-DNN)
rely on signal parameterization based on well-estab-
lished methods such as spectral, cepstral, or time-
frequency transformation methods. While end-to-end
(E2E) architectures integrate, or partially integrate,
feature extraction within DNNs, they still often uti-
lize internal representations, such as acoustic fea-
ture vectors (in encoders) or spectrograms and mel-
spectrograms (in convolutional neural networks —
CNNs). Signal parameterization, therefore, remains
a crucial step impacting the accuracy and efficiency of
ASR systems. The ongoing search for robust parame-
terization methods is warranted to mitigate the nega-
tive influence of various factors related to the variabil-
ity of acoustic speech features, which can detrimentally
affect ASR performance. Additionally, improved signal
representation can reduce the complexity requirements
for recurrent neural networks (RNNs), CNNs in deep
models, and E2E systems, addressing a key challenge
in ASR system design: the reduction of computational
complexity.

The Polish language contains six basic vowel
sounds, which can be classified as either oral or nasal
vowels. In this study, we focus only on the classification
of six oral vowels in Polish speech: A /a/, E /e/, 1 /i/,
O />/,Uor O /u/, Y /i/, without the two nasal vow-
els: A /o/ and E /e/. The main cause of overfitting
in vowel classification is the use of a small, homoge-
neous training dataset. When training data includes
recordings from only a few speakers or environments,
the model might overfit to these specific conditions and
fail to generalize across different voices or settings. The
other reasons for overfitting are overly complex models
(e.g., DNN and E2E with many layers). In vowel classi-
fication, this can lead to overfitting, as the model may
capture intricate details of the training data that do
not generalize well.

2. Theoretical background of speech production

The Fant source-filter model assumes that the
speech signal s(n) can be described by the following
relationship:

s(n) = u(n) xv(n) xr(n), (1)

where x is the convolution operator, n is the time
index, and the component u(n) denotes the excita-
tion signal, v(n) is the vocal tract, and r(n) describes

emission of the signal through the speaker’s mouth
(RABINER, SCHAFER, 2010). For voiced speech, the ex-
citation signal assumes a periodic form, a noisy char-
acter in voiceless speech, or a mixed model to de-
scribe plosive phonemes (QUATIERI, 2001). When the
air from the lungs vibrates the vocal cords, the excita-
tion takes the form:

u(n) = g(n) * p(n) = ;ztgmn k), (@)

where g(n) is the shape of a single excitation pulse,
p(n) is a pulse train with a repetition period equal
to the fundamental period Ty, which is related to the
periodic opening and closing of the vocal cords, and
T, is the sampling interval.

3. Feature extraction

In general, speech is characterized by both high
variability and randomness, therefore, its time signa-
ture is not an adequate representation of it. One of the
key elements in the signal processing scheme of ASR
systems is therefore the preprocessing and feature ex-
traction stage. The main goal of the parameterization
of the speech signal here is to represent the signal us-
ing a possibly small set of parameters that effectively
extract its distinctive features relevant for further pro-
cessing and analysis. The literature in this area is very
extensive. In general, speech parameterization meth-
ods can be divided into two categories: solutions based
on signal filtering, i.e., using linear predictive coding
(LPC) analysis, and methods based on time-frequency
transformations, usually short-time Fourier transform
(STFT), and cepstral analysis (psychoacoustic model)
of the signal. The latter are considered classic solu-
tions.

The cepstral parameterization process results in
a vector of cepstral coefficients, expressed as

c(t,m) = in(t,j) cos (m (j— %) %), m=1,..,M,
i 0

where t is the index of the signal frame, m is the index
of the cepstral coefficient, M is the number of coeffi-
cients, j is the index of the mel scale bin, J is the num-
ber of mel bands, and Y] is the logarithm of the ampli-
tude spectrum in the mel-frequency scale obtained at
the output of a bank of perceptual filters.

Various cepstral parameterization solutions differ
mainly in the way the perceptual filter bank coef-
ficients are determined. A commonly used feature
extraction method in speech recognition are mel-
frequency cepstral coefficients (MFCC), introduced by
Davis and MERMELSTEIN (1980). MFCCs are popu-
lar preprocessing method, not only in speech recogni-
tion (UPADHYAYA et al., 2015), but also in multiple
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Fig. 1. PS-HFCC cepstral parameterization scheme.

other applications, such as honeybee sound analysis
(LiBAL, BIERNACKI, 2024a; 2024b; 2024c). However,
a more robust cepstral representation is obtained by
human factor cepstral coefficient (HFCC) parameter-
ization (SKOWRONSKI, HARRIS, 2004). Studies show
that HFCCs perform better under noisy signal condi-
tions and lead to improved classification results, i.e.,
lower errors during the single-frame recognition stage
of the signal (SKOWRONSKI, HARRIS, 2004).

In order to make the classical HFCC parametriza-
tion method robust against the negative effects of ex-
citation periodicity in voiced speech phonemes, the
pitch synchronized human factor cepstral coefficient
(PS-HFCC) parametrization is employed. This ap-
proach utilizes variable-length signal frame processing,
as depricted in Fig. 1.

The result of the frequency analysis of a signal
frame s,,(n) containing a voiced fragment of speech
can be described by the following relation (GMYREK
et al., 2023):

Sw(w) = (S(w) - G(w,To)) * W(w), (4)

where S, (w) is the frame spectrum of the speech sig-
nal, S(w) is the desired form of the spectrum with
clearly visible formants, and W (w) is responsible for
the impact of the windowing operation needed to ex-
tract individual frames from the recorded signal. The
negative impact of the fundamental frequency fo on
HFCC coefficients was studied in detail in (GMYREK
et al., 2023; 2024).

The PS-HFCC method makes it possible to com-
pensate for the undesired effect of G(w,Tp), which
results in occurrence of amplitude spectrum ripples
at multiples of the fundamental frequency fy. In this
case, the modification of the method consists of esti-
mating the current value of the fundamental frequency
fo and synchronizing the signal frame length with the
fundamental period Tj. Details of this solution are de-
scribed in (GMYREK, HOSSA, 2025a; 2025b). By apply-
ing the PS-HFCC method, the values of the variance

estimators of the cepstral coefficients decrease and,
consequently, a higher concentration of areas with data
representing the cepstral parameters of the elementary
frames is observed. At the same time, this results in
narrower multivariate probability density distributions
of the data, which in turn translates into better classi-
fication results, i.e., a decrease in recognition errors at
the level of individual signal frames levels.

The preprocessing of the Polish vowel recordings
using PS-HFCC parametrization was performed using
custom-prepared MATLAB scripts.

4. Database

The authors developed a proprietary speech cor-
pus, comprising recordings from 37 adult male speak-
ers, collected from various regions of Poland. For each
speaker, 150 Polish words were recorded, with speech
fragments containing vowels (six classes) from 43 words
subsequently employed in the experiment. The sam-
pling rate of the signals was 12kHz. The original
database was characterized by a low noise level with
a signal-to-noise ratio (SNR) of 35dB. The experi-
ments, presented in this work, were conducted on both
the original dataset and its noisy versions, with SNRs
of 20dB, 10dB, and 5dB (representing progressively
higher noise level). This database is highly representa-
tive — it captures both inter-speaker and intra-speaker
variability, as well as contextual and phonetic diver-
sity. The preparation of this dataset was exceptionally
labor-intensive and costly, involving semi-automatic
signal segmentation and detailed phonetic labeling. All
recordings were manually segmented and labeled, with
six phonemes (‘a’, ‘e’ ‘', ‘0’, ‘u’, and ‘y’) chosen as the
phonetic units for labeling process. The frame length
was set to 30 ms, with a 10 ms shift. The YIN estimator
(DE CHEVEIGNE, KAWAHARA, 2002) and its statisti-
cally improved version PYIN (MAucH, DIXON, 2014)
were employed to estimate the current value of the
fundamental period Ty. After signal preprocessing, we
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obtained N = 14 cepstral coefficients for each frame.
In our database, the numbers of frames for individ-
ual phonemes were: 12208 for ‘i’, 9288 for ‘y’, 29778
for ‘e’, 35406 for ‘a’, 23628 for ‘o’, and 8082 for ‘u’.
The total number of frames that contain vowel sounds
was 118 390.

The authors acknowledge the limitations associated
with analyzing only male speech recordings, so a com-
parable female speech corpus is currently under de-
velopment. However, it is not expected to play a cen-
tral role in the current analysis. The primary acoustic
distinction between male and female voices lies in the
higher fundamental frequency (fy) typically observed
in female speakers. In pitch-synchronous analysis, this
leads to a greater number of pitch cycles within a sin-
gle frame, which may facilitate improved signal av-
eraging and potentially enhance recognition accuracy.
Nonetheless, this factor has a limited impact on overfit-
ting, which is primarily influenced by the chosen train-
ing and test data partitioning strategy.

5. Training and test sets

All classification methods based on the maximum
likelihood lead to fit models to the training dataset.
The real challenge is to construct the training and test-
ing sets in a way that prevents overfitting. To trace the
influence of the training process of the classifier, we
conducted a series of tests using a database of vowel
sounds from Polish speech. These tests involved divid-
ing the data into training and test sets in various ways,
with an effort to maintain the following proportions:
two-thirds of data for the training set, and the remain-
ing one-third for the test set. The training and testing
sets were always kept disjoint.

For the purposes of this research, we employed
three methods of splitting the data into training and
testing sets: random split, speaker split, and cluster
split, each of which is described further.

5.1. Method 1: random split

The first method for splitting the data into train-
ing and test sets is a random split, with exact propor-
tions of two-thirds for the training set and one-third
for the test set. Each recording frame was randomly as-
signed to one of these sets. The training and test sets
remained disjoint. The random split was performed
10 times, and all classifiers were trained 10 times on
the obtained sets to average the results.

5.2. Method 2: speaker split

The second method relies on dividing the speakers
into two groups: one for training the classifiers and the
second for testing them. The database contains record-
ings from 37 speakers. While the division into training

and test sets was not exactly two-thirds to one-third,
but quite close with 24 speakers in the training set
and 13 speakers in the test set. The random choice of
speakers for the two sets was also repeated 10 times,
leading to 10 separate experiments to average the re-
sults. In this split, the training set was disjoint from
the test set, and additionally, no recordings from the
same speaker appeared in both sets at the same time.

In contrast to random split, the speaker split
method for the training of the classifiers should prevent
overfitting to some degree and provide more realistic
(lower) performance results.

5.8. Method 3: cluster split

The third method involves K-means clustering.
Three clusters were separated from the data by the
K-means algorithm with K = 3. Each recording frame
was allocated to one of the three clusters. The clus-
ters produced by the K-means algorithm are groups of
data points that share similar features and are spa-
tially close to one another in the feature space. In
K-means clustering, each cluster is defined by a cen-
troid, which represents the center of the cluster and
is calculated as the average of all data points within
that cluster. The algorithm iteratively adjusts the po-
sitions of the centroids to minimize the sum of squared
distances between the data points and their respective
centroids, ensuring data points are grouped in a way
that reduces intra-cluster variance.

To maintain the two-thirds to one-third ratio, in
each experiment one cluster served as the test set,
while the remaining two clusters were used as the train-
ing set. The clusters are formed by grouping similar
feature vectors based on Euclidean distance. We ex-
pect that this data-splitting method will produce the
worst performance for the classifiers.

6. Vowel classification
6.1. Classifiers

For the classification of vowels and the study of
overfitting, we performed a series of classifications us-
ing the following classifiers: Gaussian mixture model
(GMM), K-nearest neighbors (KNN), random forest
(RF), support vector machines (SVM), and multi-layer
perceptron (MLP). The classification experiments were
performed in the Python programming language with
the scikit-learn library.

In the context of speech recognition, the GMM
(REYNOLDS, 2009; MCLACHLAN, PEEL, 2000) is a pop-
ular statistical approach used to model the distribution
of acoustic features in speech. A GMM is a mixture of
M multivariate, normal distributions, which together
describe the distribution of input data, such as acous-
tic feature vectors (e.g., MFCC, HFCC or PS-HFCC)
extracted from speech signals. GMM is particularly
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useful in acoustic classification, as it allows for model-
ing the variability in speech across different speakers,
acoustic conditions, and over time. The diagonal co-
variance matrices Y;. were determined based on the
expectation-maximization (EM) algorithm:

M
pc(O) = Z Wie N(O, Mic, Eic), (5)
i=1

where w;. denotes the weights and m;. denotes the
means for the mixture of i-th component and c-th
phoneme (class). The EM algorithm was described in
detail in (DEMPSTER et al., 1977).

The KNN (CovER, HART, 1967; BisHopr, 2006) is
a simple, instance-based algorithm that classifies data
points based on the majority class of their nearest
neighbors. It uses distance metrics (such like Euclidean
distance) to find the closest K-neighbors and as-
signs the most common class among them. To investi-
gate the overfitting, tests were conducted for K = 1,21,
and 51 neighbors. KNN can overfit when K is too small
(e.g., K =1), as it becomes sensitive to noise and out-
liers in the training data. This leads to a model that
performs well on the training data but poorly on un-
seen data.

MLP, also called deep feedforward network (Ru-
MELHART et al., 1986; GOODFELLOW et al., 2016), is
a type of neural network with multiple layers of neu-
rons. It uses backpropagation to learn the weights,
making it capable to learn complex patterns and non-
linear decision boundaries. MLPs are widely used for
various classification tasks. MLP can overfit when
the network is too deep (i.e., there are too many layers
or neurons) or when training is conducted for too many
epochs. Overfitting occurs when the network becomes
too specialized to the training data, capturing noise
and irrelevant patterns, leading to poor performance
on new data. This is particularly likely if regularization
techniques such as dropout or L2 regularization are not
used. For our experiments, we utilized an MLP with
one hidden layer consisting of 100 neurons and reclec-
tive linear unit (ReLu) activation function. The MLP
was trained for 200 epochs.

RF (BREIMAN, 2001) is an ensemble learning
method that builds multiple decision trees and com-
bines their predictions to improve accuracy. Each tree
is trained on a random subset of the data, and the final
prediction is based on a majority vote from all trees.
This approach reduces variance and improves accuracy
compared to a single decision tree. Although RF's are
less prone to overfitting compared to individual deci-
sion trees, they can still overfit if the trees are grown
too deep or if the number of trees is too large. Over-
fitting can occur if the model becomes overly complex
and captures noise in the data.

SVM (BisHOP, 2006; CORTES, VAPNIK, 1995) is
a powerful classification algorithm that finds the hy-
perplane that best separates the data into different

classes. It maximizes the margin between the closest
data points (support vectors) from different classes.
For non-linear data, SVM can use kernel functions
(e.g., radial basis functions (RBFs) or polynomial) to
map the data into higher-dimensional spaces where
it can be linearly separated. In this study, we used
RBFs as kernels. SVM can overfit when a very com-
plex kernel (e.g., a high-degree polynomial) is used,
or when the regularization parameter is set too high,
causing the model to fit the training data too closely,
including noise, at the expense of generalization.

6.2. Classification error analysis

The classification results were analyzed by us-
ing three error measures: accuracy, frame error rate
(FER), and the confusion matrix.

Accuracy is the most general method for compar-
ing different classification methods. It is defined as the
fraction of correct predictions Neorrect Out of all pre-
dictions N:

Ncorrec
Acc = Tt -100 %. (6)

The higher the accuracy, the better the classification
quality. On the other hand, the accuracy measure does
not distinguish between the accuracy across individual
classes, which can sometimes be crucial when analyz-
ing classifiers. Other measures, such as the FER and
the confusion matrix, are employed to address this lim-
itation.

A confusion matrix is a performance evaluation tool
commonly used in machine learning to evaluate the
accuracy of classification models. It provides a sum-
mary of prediction results for a classification problem
by comparing predicted labels with the actual labels
for each class. Due to varying number of frames for
each class, we present confusion matrices containing
percentage results instead of numbers.

FER measure is traditionally used to assess the
quality of speech recognition at the individual frame
level and is defined for a class ¢ as

Nerr(c)
N(e)

FER(c) = -100 %, (7)
where N(c¢) is the total number of frames undergoing
recognition and Ne,,(c¢) is the number of unrecognized
frames from class ¢. FER can also be calculated di-
rectly from the confusion matrix by taking the ratio of
the sum of all values in a row of the confusion matrix,
excluding the diagonal value, to the sum of all values
in that row.

6.3. Classifier overfitting

The aim of this paper is to investigate the over-
fitting of vowel classification for Polish speech. Clas-
sifier overfitting (HASTIE et al., 2001; KUHN, JOHN-
SON, 2013; NG, 2004) occurs when a model learns to
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perform exceedingly well on the training data to the
extent that it begins to memorize irrelevant details,
noise, or peculiarities that are specific to that dataset.
As a result, while the model achieves high accuracy on
the training set, its performance deteriorates on un-
seen test data. In essence, the model fails to generalize
well, being overly tailored to the particular examples it
has encountered, rather than capturing the underlying
patterns that could apply to new, unseen data.

7. Results
7.1. Comparison of accuracy with split methods

In this section, we analyze the performances of var-
ious classifiers using different train-test split methods:
random, speaker and cluster. In this experiment, we
used seven classifiers with different overfitting tenden-
cies: GMM, KNN with K =1, 21, and 51, a fully con-
nected neural network of 100 perceptrons (MLP), RF
with trees of 15 branches in depth, and SVM with RBF
kernels. Results for our custom dataset with a signal-
to-noise ratio (SNR) of 35dB (indicating a low level
of noise), as well as artificially noised versions of the
dataset (with SNRs of 20dB, 10dB, and 5dB, rep-
resenting very high levels of noise) are presented in
Fig. 2 and Tables 1, 2, and 3. The most important fac-
tor in overfitting analysis is the comparison of the first
two methods, i.e., random split versus speaker split.
The greater the accuracy between these two splits (as-
suming the random split yields higher accuracy com-
pared to the speaker split), the stronger the overfit-
ting effect. At higher noise levels (i.e., lower SNRs),
all classifiers exhibit a small drop in accuracy, at most
by just a few percentage points. Nonetheless, the PS-
HFCC parametrization generally demonstrates robust-
ness against significant noise in the recordings. As de-

Table 1. Accuracy [%] for random split (method 1).

Classifier 35dB 20dB 10dB 5dB
GMM 85.92 85.89 85.56 84.20
1NN 99.52 99.05 98.89 98.02
21NN 94.36 92.70 92.19 90.75
51NN 91.82 90.64 90.32 89.12
MLP 92.76 92.00 90.52 89.16
RF 92.59 90.94 90.10 88.71
SVM 94.03 92.93 91.90 90.53

Table 2. Accuracy [%] for speaker split (method 2).

Classifier 35dB 20dB 10dB 5dB
GMM 81.11 80.73 81.42 80.04
INN 77.52 76.97 76.39 75.15
21NN 81.19 81.54 81.25 80.62
51NN 82.47 82.65 82.38 81.58
MLP 79.84 79.54 79.63 79.58
RF 82.84 82.97 82.84 82.12
SVM 82.72 83.24 83.02 82.44

Table 3. Accuracy [%)] for cluster split (method 3).

Classifier 35dB 20dB 10dB 5dB
GMM 64.05 71.28 65.27 64.73
INN 60.22 58.20 57.62 54.90
21NN 57.81 55.98 53.66 52.52
51NN 54.75 54.51 50.35 50.37
MLP 77.01 76.76 74.41 76.55
RF 56.50 56.41 56.04 57.53
SVM 81.44 78.05 76.77 73.82

picted in Fig. 2, classification results across various
SNRs (original 35dB, 20dB, 10dB, and 5dB) remain
consistent regardless of the train-test split method.
This consistency underscores the noise resilience of
PS-HFCC parametrization.
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Fig. 2. Classification accuracy for different train-test splits and SNRs.
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As expected, the KNN classifier with one neighbor
(K =1) exhibited overfitting, serving as a ‘litmus test’
for this behavior. The difference in accuracy between
the random and speaker splits for INN was very high,
at 22%. This indicates that the INN algorithm fits
the training data. Considering that the signal was di-
vided into 30 ms frames with 10 ms shifts, it is highly
probable that a neighboring frame, with 20 ms overlap,
could be chosen as the nearest neighbor. The difference
in accuracy between the random and speaker splits for
21NN dropped to 13.17 %, indicating better generaliza-
tion of results due to the majority voting among the 21
neighbors. For 51NN, the difference further decreased
to 9.35%. Obviously, the more neighbors vote for the
predicted class label, the better the generalization. At
the same time, there are disproportions in the num-
ber of frames for individual classes (since speech nat-
urally contains more instances of some vowels, e.g., ‘a’
and ‘e’), which influences the final classification result.

Very similar results to 51NN were obtained for the

RF classification, for which the difference in accuracy
between the random and speaker splits was equal to
9.75%. The RF model used in this experiment was an
ensemble of 100 trees. These trees were allowed to grow
to the maximum depth of 15. The RFs constructed by
shallower trees led to relatively lower classification ac-
curacy, especially for the speaker split. Using deeper
trees can lead to much stronger overfitting effect, which
is observed here, but at the same level to that of rela-
tively well generalized 51NN classifier.

To a certain extent, comparable behavior was no-
ticed for the MLP and SVM methods. The difference
in accuracy between the random and speaker splits was
12.94 % and 11.31 %, respectively, representing average
results of overfitting compared to the other classifiers.
Interestingly, the performance of the two classifiers on
the speaker and cluster splits was very close, with
only negligible small drop in accuracy from 79.84 %

to 77.01 % for MLP, and from 82.72% to 81.44% for
SVM — see Tables 2 and 3. This indicates that both
methods handle clustered data (from K-means parti-
tioning) significantly well, due to their nonlinear map-
pings. However, despite this strength, the overfitting
effect remains evident in the case of the random split,
for both MLP and SVM.

Among the many parameters by which speakers
can be divided into groups, their personal vocal
characteristics, including vocal tract parameters, are
especially noteworthy. One such parameter is the
fundamental frequency fy, which can be taken as an
indicator of vocal tract size, as it is closely related to
the length of the speaker’s vocal cords (MAKOWSKI,
2011). The lengths of the oral and pharyngeal parts of
the vocal tract can be taken as a basis for grouping,
as they directly affect the positioning of formants
on the frequency axis (NAITO et al., 2002), as well
as influence the parametrization coefficients. These
coefficients aim to maximize the distance between the
multidimensional probability distributions of the fea-
ture vectors in terms of the chosen distance measure.
Partitioning can also be performed hierarchically,
using multiple factor to distinguish speakers from one
another. For example, clustering based on gender and
speaking speed has been proposed in (HAZEN, 2000).
One of the more recent algorithms proposed in the lit-
erature is an approach based on adapting the weights
of universal background model (UBM) proposed in
(Hossa, MakowskKl, 2016). However, in the current
study, clustering was performed numerically using
the K-means method. As expected, the classification
quality in this case was the lowest among all classifiers

used — see Table 3.

7.2. FER analysis

Analysis of the FER for the original custom dataset
with an SNR of 35 dB, as presented in the Fig. 3, leads

a) b) c)
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Fig. 3. FER for SNR = 35dB across three data split approaches used during classifiers training:
a) random split; b) speaker split; ¢) cluster split.
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Fig. 4. Confusion matrices for the classifiers: GMM and KNN with K =1, 21, and 51. Classification was performed using
three data split methods between training and testing sets. The results were obtained on the original custom Polish vowels
dataset with an SNR of 35 dB.
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to the following general conclusions. For the random class ‘y’ was most frequently misclassified as ‘i’. How-
split of data between training and testing sets (Fig. 3a),  ever, for the GMM with a random split, the highest
the INN classifier performed worse than all others, FER was observed for the vowel ‘e’, which was again
demonstrating a strong overfitting. For the speaker confused with ‘y’ sounds.

split (Fig. 3b), the only well and consistently perform-

ing classifier was GMM. Under the cluster split con- 7.8. Local error analysis

dition (Fig. 3c), the comparable results were obtained

for GMM, MLP, and SVM methods, with a slight ad- We analyzed the confusion matrices (Figs. 4 and 5)

vantage of GMM. for all tested classifiers to determine local errors, i.e.,
The most problematic phoneme in terms of recog- the confusion between true and predicted vowels. The

nition accuracy was the vowel ‘y’, which exhibited the most problematic vowel pair is ‘y’ and ‘e’. This is due
highest error values for all three splitting methods. The ~ to the close proximity of their formant frequencies
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Fig. 5. Confusion matrices for the classifiers: MLP, RF, and SVM. Classification was performed using three methods of
data splitting between training and testing sets. The results were obtained on the original custom Polish vowels dataset
with an SNR of 35dB.
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(MAKOWSKI, 2011). This can be verified by analyzing
widely available formant frequency tables for Polish
vowels, for example, such as those in (JASSEM, 1973).
Consequently, these vowels are often confused.

The confusion between vowels ‘y’ and ‘e’ is the
strongest in the speaker split for both training and
testing sets. All classifiers for the speaker split predict
frames from the vowel class ‘y’ as class ‘e’ quite often,
with the frequency (estimated probabilities) ranging
from 24.5% for GMM to as high as 45.7% for RF —
see Figs. 4 and 5. The worst performance was obtained
with RF for all three methods of data split.

The confusion between ‘0’ and ‘u’ in the speaker
split is highest for the KNN and RF algorithms
(around 17 %). The best result, with the lowest num-
ber of misclassified phonemes ‘0’ and ‘u’ in the speaker
split, was achieved again by GMM (7.4%). How-
ever, for the cluster split, GMM performed worst with
30.5% of ‘0’ phonemes misclassified as ‘u’. This is due
to the characteristic of the GMM training process,
where a separate model is built for each class and some
phonemes are not properly represented in the training
clusters after K-means clustering of the data.

The confusion between ‘i’ and ‘v’ and ‘a’ and ‘o’
appears most prominently in the cluster split. For the
first phoneme pair (I’ and ‘u’), the errors rate rage
from 14.0% for MLP to 77.5% for RF. Moreover,
under the speaker split all classifiers except GMM,
achieved error rates of around 3 % or lower, while only
GMM exceeded twice that level. Phoneme ‘u’ natu-
rally occurs quite rarely in Polish speech compared
to other phonemes. Confusion between ‘a’ and ‘o’ is
mainly visible for the cluster split with quite high er-
rors from around 25 % to 35 %, except MLP and SVM
classifiers, which performed very well in that case. We
guess well trained nonlinearity of decision function is
responsible for those correct classifications.

The confusion between ‘e’ and ‘a’ is observed for all
classifiers under the seakers split and error rate ranges
from 9.5 % for RF to 15.2% for INN. For the random
split, these two phonemes were generally confused in
4%-5% of cases, with two exceptions for the GMM
and INN algorithms. For GMM, we observe error rates
of 4.5% and 6.7 %, while for the INN — extremely low
error rates of 0.2% and 0.3%. These low error rates
for INN indicate, a strong overfitting tendency (only
one neighbor decides on predicted class). In contrast,
GMM demonstrates to well-generalizable performance.

8. Conclusions

Overfitting in classifiers remains a challenging phe-
nomenon to quantify in a rigorous scientific manner,
especially in real-world applications. However, it can
have a detrimental effect, causing models to make inac-
curate predictions, even when the tested data suggest
otherwise.

The experiments conducted in this study involved
a comparison of the learning performance of the follow-
ing seven classifiers: GMM, 1NN, 21NN, 51NN, MLP,
RF, and SVM. These classifiers were trained on three
data setups, each applyinh different training strategies
for splitting the data into training and testing sets:

— random split using all frames;

— speaker split, where speakers were grouped to
avoid repetition;

— cluster split, based on the most distant feature
vectors, selected according to a chosen metric.

Using an ASR system, outside the conditions it was
trained on, can lead to a significant drop in perfor-
mance. Speech signals are highly variable, influenced
by factors such as speaker characteristics (e.g., gender,
age, vocal tract anatomy), intra-speaker variability,
linguistic diversity, as wells as regional, cultural, and
contextual factors. Therefore, ASR systems must ac-
count for these variations to maintain accuracy across
different environments and user populations.

The PS-STFT, a generalization of classical cep-
stral parameterization methods such as MFCC and
HFCC, as well as other spectrogram-based approaches,
enhances recognition performance in ASR systems.
It achieves this by smoothing the amplitude spectra
(and, consequently, spectrograms), and by reducing
the variance of cepstral coefficient estimators. Our clas-
sification results across various SNRs (original 35dB,
20dB, 10dB, and 5dB) consistently demonstrate the
high robustness of the PS-HFCC parametrization to
noise in recordings, regardless of the train-test split
method used.

The aim of the study was to compare different pop-
ular classifiers with — the default algorithm commonly
used in speech recognition — the GMM algorithm.
GMM is the most robust against overfitting among
tested classifiers and well generalizes the data, even in
the case of a random split between training and testing
sets in the classifier learning process. This is a scenario
in which we expected the highest overfitting effect.
Considering that the signals were divided into 30 ms
frames with 10 ms shifts, it is highly probable that
neighboring frames with 20 ms overlap were chosen as
nearest neighbors. For this reason, the KNN algorithm
served as a reference point for overfit detection.

While random split is the default method used in
most studies on classification tasks, speech recogni-
tion is a specialized task that often requires alterna-
tive splitting strategies, such as speaker grouping by
gender or other individual characteristics. In scenarios
like ours, where the classifier is trained on one set of
speakers and tested on a different set (i.e., a speaker
split), this approach is essential. Training an algorithm
for all potential speakers is impossible due to the vast
voice diversity, as encountered in real-world applica-
tions such as smartphone-based speech recognition.
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For this reason, popular big-data systems incorporated
in everyday software utilize users voice samples to re-
train the systems and improve their performance. How-
ever, collecting additional samples from new speakers
is not always feasible. Therefore, it is important to use
methods that are as resistant to overfitting as possible.

Beyond simply separating speakers for training
and testing, advanced speaker grouping techniques
(e.g., based on gender, dialect, or vocal characteristics)
can further enhance the robustness of ASR systems.
While our current study utilizes only male recordings,
the observed benefits of speaker-independent train-
test splitting and the robust performance of PS-HFCC
parametrization are expected to extend to other de-
mographic groups. This underscores at broader impli-
cation: speaker-independent evaluation, potentially in-
corporating detailed speaker grouping, is crucial for de-
veloping ASR models that truly generalize and avoid
overfitting to specific speaker characteristics present
in the training data, thereby ensuring reliable perfor-
mance with unseen users across diverse populations.
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