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This paper presents a method for safe retuning of fixed-pitch string instruments to alternative musical
scales with fewer degrees than their original design. Our approach uses a systematic monotonic surjective
mapping to assign the existing set of strings to a new, smaller set of pitch classes. The primary goal is to
preserve the instrument’s timbre and structural integrity by keeping string tension changes within safe limits.
We demonstrate the method on a grand piano and an upright piano retuned from 12-tone equal temperament
(12-TET, 12EDO) to 10-tone equal temperament (10-TET, 10EDO). Presented approach may be generalized
for retuning from N - to M -step scales (N >M) and to other fixed-pitch string instruments. A grand piano was
safely retuned using the proposed method and successfully used in a professional concert.
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1. Introduction

The interest in alternative scale tunings among mu-
sicians arises from their ability to enable more accu-
rate performance in selected harmonic progressions,
which historically led to the development of various
temperaments in tuning. The microtonal approach,
which divides the octave into more than the typi-
cal twelve semitones (tasto spezzato), has been ex-
plored since the 16th century, as seen in Nicola Vi-
centino’s archicembalo with divided keys known as
tasto spezzato (Pilch, Toporowski, 2014). Alterna-
tive musical scales can also originate from the char-
acteristic spectrum of a given instrument, as in the
case of gamelan music, which employs the slendro

and pélog scales (Sethares, 1998). Some scales are
based on repeating intervals larger than the typical
octave, such as the Bohlen–Pierce scale, which uses
a tritave (3:1 frequency ratio) as its fundamental unit
(Mathews et al., 1988), or the hyperpiano, which fol-
lows a hyperoctave structure with a 4:1 ratio (Hobby,
Sethares, 2016).
Alternative tunings are gaining visibility beyond

specialist contexts. Popular musicians such as Jacob
Collier and Dua Lipa have incorporated microtonal
elements in widely streamed songs, reaching millions
of listeners (Bandy, 2025; Fraser, 2023). Online
communities also play a growing role: YouTube cre-
ators including Adam Neely, David Bruce, Georg Vo-
gel regularly explore harmony, tuning, and composi-
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tional techniques – often presenting alternative tem-
peraments in an accessible format. Microtonality is
also present in mainstream entertainment; for instance,
the track Trees in the Depths of the Earth from the
1996 video game Kirby Super Star uses the microtonal
Maqam Rast scale and has reached a broad audience
through a franchise that has sold over forty million
copies (Martin, 2025). This growing engagement is
rooted in a longer musical tradition. Early adopters
such as Alois Hába and Julián Carrillo, along with
20th-century figures like Harry Partch, Ben Johnston,
and Wendy Carlos, developed extensive bodies of mi-
crotonal work. Acoustic instruments such as the Sauter
Microtone piano (Thomas, 1996) and the Clavemu-
sicum Omnitonum by Krebs Cembalobau reflect con-
tinued interest in physical realizations of microtonal
tuning systems.
Another musically interesting approach is to reduce

the number of scale steps. In the case of the 10-tone
equal temperament, where ‘tone equal temperament’ is
abbreviated as TET, also referred to in the literature
as the 10 equal division of the octave (10EDO), the
octave is divided into ten equal steps, leading to larger
intervals between each step compared to a standard
semitone. The theoretical foundations of the 10-TET
scale were discussed in (Sethares 1998, pp. 259–270).
In particular, three structural features make 10-TET
a musically functional example. This includes:
1) it supports neutral intervals, such as the neutral
third and neutral sixth. These lie between tradi-
tional major and minor forms and allow for the
construction of neutral chords – harmonic entities
that extend the available vocabulary;

2) 10-TET enables chord cycles built on repeated
neutral thirds. This structure forms a circle of
thirds, functionally analogous to the circle of fifths
in 12-TET. While the steps are different, the pat-
tern supports harmonic progression and modula-
tion in a coherent way;

3) 10-TET admits two types of tritone-based ca-
dences, which can resolve to neutral chords in
distinct ways. These structures provide multiple
paths for harmonic motion and modulation, com-
pensating for the absence of a major-minor di-
chotomy.
Several compositions have already been written for

10-TET (Xenharmonic Wiki, n.d.), with some specifi-
cally composed for a 10-TET piano by Hunt (2022),
Senpai (2023), Sevish (2017), and Hideya (2021).
The 10-TET scale also exhibits unique mathematical
properties, which we demonstrate in Appendix. De-
spite its theoretical foundation and existing composi-
tions, to our knowledge, no acoustic 10-TET piano has
ever been built, and all performances in this tuning
have relied on electronic synthesizers.
Retuning an acoustic piano to an alternative scale

presents significant technical challenges. A change in

tuning affects string tension and may risk breaking
strings, altering the instrument’s timbre, or making
some strings too slack to vibrate properly.
A clear example of this challenge came when

renowned (Stanevičiūtė, Janicka-Słysz, 2022) jazz
pianist Leszek Możdżer approached us with a practi-
cal request. He wanted to perform on an acoustic pi-
ano tuned in 10-TET rather than the standard 12-tone
equal temperament (12-TET, 12EDO). His aim was to
achieve this new tuning without making major physical
modifications – retuning alone should suffice. Although
this idea may seem straightforward, direct methods of
retuning can lead to extreme pitch deviations in the
upper or lower registers, creating problems for both
tone quality and instrument safety.
There are multiple reasons why acoustic 10-TET pi-

anos have never been built. To construct an acoustic
piano designed for the 10-TET scale, one must over-
come all the challenges associated with designing a new
standard piano, including significant economic costs
and numerous design decisions specific to 10-TET,
a largely unexplored field that can only be fully eval-
uated in a finished instrument. These same obstacles
also contribute to the slow evolution of standard piano
development.
In this paper, we have chosen the opposite ap-

proach: instead of building a new instrument from
scratch, we start with an existing piano and intro-
duce the minimum necessary modifications – exclu-
sively through retuning – to achieve the desired ef-
fect: an acoustic 10-TET piano. Thus, we focus on
a safe and practical method for working within the
piano’s existing mechanical limits.
We propose a method called monotonic surjective

mapping that safely retunes a piano by preserving the
original frequency range and maintaining string ten-
sions within acceptable limits. The method can also
be extended to other fixed-pitch string instruments,
such as harpsichords and harps, and generalized to re-
tune from any N -step scale to an M -step scale where
N >M .
To validate our approach, we studied two instru-

ments: the Nyström upright piano, which has 85 keys
and served as a testing platform, and the Steinway
Model B grand piano, which has the typical 88 keys.
The presented method was successfully applied and
demonstrated at a jazz concert performed by Leszek
Możdżer on July 13, 2023 (Tomala 2024), and is used
on his albums (Możdżer et al. 2024; 2025).

2. Retuning from 12-TET to 10-TET
in a standard way demands extending

the frequency range of an acoustic instrument

A key consequence of transitioning from 12-TET
to 10-TET while utilizing all available strings is ex-
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Fig. 1. Idea of monotonic surjective mappings: the problem of extending the original instrument scale when retuning from
the 12-TET to the 10-TET scale (left panel); how to solve this problem using monotonic surjective mappings (right panel).

ceeding the instrument’s total frequency range span.
In 12-TET, the frequency progression follows a well-
defined logarithmic slope, where each step corresponds
to a fixed frequency ratio of 21/12 ≈ 1.0595. However,
in 10-TET, each step is larger, with a ratio of 21/10 ≈
1.072, meaning that for the same number of keys, the
frequency span is stretched. As a result, if an instru-
ment originally designed for 12-TET is simply retuned
to 10-TET without additional constraints, its lowest
strings may become too loose to function properly,
while the highest strings can be subjected to excessive
tension, increasing the risk of breakage.
To quantify this effect, consider a standard 12-TET

piano, where the fundamental frequency range spans
from 27.5Hz (A0) to 4186Hz (C8). Applying a stan-
dard mapping from 12-TET to 10-TET (centered at
C4(40) = 261.63Hz1) shifts the lowest fundamental
frequency to 17.53Hz, far below the playable limit for
an acoustic piano, while the highest frequency extends
to 7288.3Hz, well beyond the structural limits of typ-
ical piano strings. As the tension of a string is propor-
tional to the square of its frequency, the tension ratio
is given by T /Torig = (f/forig)2, which results in low-
ering the tension of the first string to approximately
40% of its original value and increasing the tension of
the highest string to above 300% of its original ten-
sion. This extreme expansion in the frequency range,
leading to severe tension changes, is the fundamental
reason why such retunings have, until now, only been
implemented in electronic synthesizers rather than in
acoustic instruments. An illustration of this problem is

1In this paper, we use a simplified musical notation: C4(40)
is written as C(40), meaning that the 40th key of the analyzed
instrument corresponds to a key associated with the note C.
This notation also emphasizes that we consider only the strings,
which, in the case of a piano, are always connected to the pi-
ano action. The action is triggered by a key positioned within
a keyboard that follows the fixed Halberstadt layout. In other
fixed-pitch string instruments, such as a diatonic harp, the fixed
pattern of the diatonic scale is represented by the colors of the
strings.

presented in the left panel of Fig. 1. The left panel ex-
plains the problem of extending the original instrument
scale when retuning from the 12-TET to the 10-TET
scale. The vertical axis represents the frequencies of
each note on a logarithmic scale. Both scales appear as
straight lines but with different slopes. For the 10-TET
scale (blue dashed line), each scale step is larger than
for the original 12-TET scale (green dotted line). The
gray areas at the bottom and top parts of the plot
show the frequency range by which the instrument
scale must be extended if a standard mapping is used
for retuning from 12-TET to 10-TET. The right plot
illustrates how to solve this problem using monotonic
surjective mappings. One example of a monotonic sur-
jective mapping is marked with an orange curve. This
line connects the frequency of the first key in the orig-
inal 12-TET tuning with the frequency of the last key
in the original tuning by following either lines with the
same slope as the alternative 10-TET tuning (exam-
ples of them are marked with gray lines) or remaining
constant (horizontal).

3. Monotonic surjective mappings

The solution to the above problem proposed in this
paper aims to possibly preserve the two outermost fre-
quencies of the instrument’s original scale while follow-
ing the alternative 10-TET scale in between. However,
this creates a contradiction, as the slope of the alter-
native scale is steeper than that of the original one. To
resolve this, we allow for a monotonic surjective map-
ping, meaning that some pitches from the alternative
scale can be repeated.
This approach results in a large number of possi-

ble mappings, many of which do not align naturally
with the standard keyboard layout. A logical way to
introduce order into these mappings is to preserve the
octave interval (12 key distance) on a normal keyboard.
This has the advantage that trained pianists already
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Table 1. 12-TET and 10-TET scales expressed in cents.

a) 12-TET scale

Key name C C# D D# E F F# G G# A A# B

Interval [¢] 0 100 200 300 400 500 600 700 800 900 1000 1100

b) 10-TET scale

Step 1 2 3 4 5 6 7 8 9 10

Interval [¢] 0 120 240 360 480 600 720 840 960 1080

have the octave distance embedded in their muscle
memory, making adaptation to the alternative map-
ping significantly easier.
This leads to a more formal definition of the as-

sumptions that describe monotonic surjective map-
pings:

– the alternative scale is mapped onto the original
scale surjectively. This ensures that no string (key)
is omitted, meaning that every string set is as-
signed a pitch from the new scale;

– the mapping is monotonic, meaning that each sub-
sequent string has an equal or higher frequency.
This allows for repeated sounds in the alternative
scale while maintaining the conventional left-to-
right increasing pitch layout expected by pianists;

– the octave interval is preserved, ensuring that a pi-
anist playing an octave in the original tuning will
still play an octave after retuning.

The right panel of Fig. 1 demonstrates the idea
how a monotonic surjective mapping resolves de-
scribed problem by selectively repeating alternative
scale pitches while maintaining the original frequency
range.

4. Key definitions and computational framework
for safe retuning

A piano consists of a set of strings (for a typical
grand piano, like Steinway Model B, with 88 keys,
there are 236 strings), each corresponding to a spe-
cific key on the keyboard. These keys are arranged in
a repeating pattern of black and white keys known
as the Halberstadt layout (Mendel, 1949), which has
been standardized for Western instruments. The pitch
of each string follows a predefined tuning system, tra-
ditionally in modern Western culture based on the
12-tone equal temperament (12-TET), where each oc-
tave is divided into twelve equal steps. In this con-
vention, the keys are assigned names based on letter
notation (C, C#, D, D#, E, F, F#, G, G#, A, A#, B),
with C often serving as a convenient reference point.

4.1. Expressing intervals in cents

A useful measure of the frequency ratio (musical
interval) is the cent, a logarithmic unit that divides

one octave (ratio 2:1) into 1200 cents. If f1 and f2 are
two frequencies, their difference in cents, ∆c, is given
by ∆c = 1200 log2(f2/f1). A single semitone in 12-TET
spans exactly 100 ¢. In contrast, in a 10-TET scale,
each step between intervals is larger, measuring 120 ¢
as presented in Tables 1a and 1b.

4.2. Tuning point

To define a tuning system, one particular note is
chosen as a reference, here called the tuning point
(TP). This is the frequency from which all other
pitches in the scale are derived. A common TP is A4 =
440Hz, which serves as the modern international tun-
ing standard2. In this paper, unless explicitly stated
otherwise, we assume the TP to be A4 = A(49) =
440Hz. However, this is an arbitrary choice, and tun-
ing can be established from any key.

4.3. Pinning point

The pinning point (PP) we define as a main fre-
quency alignment point between the original and al-
ternative scales. Unlike the TP, which defines the fre-
quency system, the PP is selected based on where
the two tuning systems coincide at a particular key
(string). At the PP, one note has the same frequen-
cy in both scales, ensuring that this pitch remains
unchanged during the transition from 12-TET to
10-TET. The choice of PP affects how the mapping
between old and new pitches relate to each other.
As illustrated in Fig. 2, the blue curve represents

relative frequencies (intervals) in the 12-TET scale
within one octave, where one note is chosen as a ref-
erence (called here TP) for tuning the entire system.
A common example of a TP is the international stan-
dard pitch, A4 = 440Hz. Starting from this note,
the frequencies of other steps in the 12-TET scale
are calculated. In a 12-TET scale, each step corre-
sponds to 100 ¢, whereas in a 10-TET scale, each
step is larger, corresponding to 120 ¢. As a result,
the relative frequency curve for the 10-TET scale is
steeper (120 ¢/step) compared to the 12-TET scale
(100 ¢/step). In the plot, the blue curve represents

2Other examples include scientific pitch (Verdi pitch) with C4

= 254Hz or French pitch (diapason normal) with A4 = 435Hz.
In some historical instruments tuning was as low as A4 = 415Hz
(Rose, Law, 2001).
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Fig. 2. Difference between the TP and the PP; the blue curve – 12-TET; gray – 10-TET from same TP;
black – shifted 10-TET intersecting the 12-TET curve at the PP.

the 12-TET scale, while the gray curve represents the
10-TET scale, both starting from the TP. However,
the second curve can be arbitrarily shifted to start from
a different step. This shift introduces another impor-
tant point, referred to here as the PP. The note at this
point has the same frequency in both the 12-TET and
10-TET scales, meaning that at this position, the two
frequency curves intersect. The black curve represents
the 10-TET scale shifted so now it intersects the blue
12-TET curve at the PP. The placement of the PP
is independent of the TP, though in some cases, they
may coincide. Selecting different PP values results in
distinct mappings, influencing how the new scale aligns
with the existing instrument layout.
Moreover, choosing a particular PP determines how

the instrument interacts with other instruments tuned
to 12-TET. A well-chosen PP increases the number of
shared (common) notes between the two systems, al-
lowing for better harmonic compatibility. If the PP is
poorly chosen, the retuned instrument may lack criti-
cal common notes, making ensemble performance with
12-TET instruments more challenging. Thus, selecting
an appropriate PP is not only a technical decision but
also a musical one, balancing structural feasibility with
practical usability.

4.4. Standard mapping

We define a standard mapping as the simplest way
to retune from 12-TET to 10-TET. One selects a TP
and a PP, then assigns each key to consecutive steps of
the new scale, moving outward from the PP. Sethares
(1998, pp. 259–270) and Hunt (2021) describe simi-
lar direct approaches for the 10-TET scale. Sethares
suggests middle C as the starting point, PP = C4 =
C(40) = 261.63Hz, while Hunt uses PP = C2 = C(16)
= 65.41Hz. In both cases, they perform on electronic
synthesizers rather than acoustic instruments.

4.5. Number of possible monotonic surjective
mappings

As a consequence of the assumptions made regard-
ing the monotonic surjective mappings, we retain the
octave (12 keys apart) but distribute 10 steps of the al-
ternative scale within it. This requires selecting two
keys per octave for repeated sounds, leading to 66 pos-
sible key assignments for a given PP. This situation
can be generalized to arbitrary scales by considering
the number of ways to assign M -steps of the alter-
native scale to N -keys of the original scale, allowing
for repeated steps while preserving order. The number
of such mappings is given by the binomial coefficient
C(N,M):

C(N,M) = C(N − 1,M − 1) +C(N − 1,M)

= N !

M !(N −M)! , (1)

where N ≥ M > 1 and ‘!’ denotes the factorial oper-
ation. The first term counts all monotonic mappings
while excluding the ‘cyclicity’ of the musical scale,
meaning that the last step is not equivalent to the first
step. The second term accounts for mappings where
the last step is equal to the first step due to the cyclic
nature of the scale. While there are only 12 unique
steps of the original scale, the physical properties of
the instrument introduce additional complexity. Un-
like the keyboard, which maintains translational sym-
metry across octaves – where shifting by an octave
results in an equivalent musical structure – the strings
do not share this symmetry. Each string has a unique
tension. Consequently, there are 88 (number of keys)
unique PP, leading to a total of 88 × 66 = 5808 possi-
ble mappings that fulfill our assumptions. In this pa-
per, for simplicity, we discuss subset of PP from middle
octave (from C(40) to B(51)).
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4.6. Operating point

The operating point (OP) of a given string is de-
fined as the ratio, expressed as a percentage, of the
string tension to the breaking tension of that string,
based on manufacturer data: OP = T /Tbreak × 100%.
For an instrument designed for a specific tuning sys-
tem, such as 12-TET, the original OP values corre-
spond to an optimal tension that ensures the desired
timbre and sound quality.

4.7. Mapping signature

As briefly explained in Fig. 1, a monotonic sur-
jective mapping describes how to assign 10 steps of
the 10-TET scale to 12 keys of the 12-TET scale.
To unambiguously identify the mapping, we must
specify the PP, which indicates which step of the
original 12-TET scale corresponds to the 1st step
of the alternative 10-TET scale. We also need to
identify which steps ‘break’ the ascending sequence
by repeating the previous steps from the alternative
scale. For example, for PP = G#(48) and choos-
ing 2nd and 10th steps of alternative scale, the full

Table 2. Typical mapping cases.

a) Mapping no. 18: PP = G#, MS = ‘2’:(A, A#); ‘10’:(F#, G)

Original key C C# D D# E F F# G G# A A# B

Alternative 4 5 6 7 8 9 10 10 1 2 2 3 4

5

6

7

8 9

(10)

(10)

1

(2)

(2)

3

b) Mapping no. 31: PP = G, MS = ‘4’:(A#, B); ‘8’:(D#, E)

Original key C C# D D# E F F# G G# A A# B

Alternative 5 6 7 8 8 9 10 1 2 3 4 4 5

6

7

(8)

(8) 9

10

1

2

3

(4)

(4)

Table 3. Special double-key case, mapping no. 10: PP = C, MS = ’2’:(C#, D, D#).

Original key C C# D D# E F F# G G# A A# B

Alternative 1 2 2 2 3 4 5 6 7 8 9 10

Table 4. Cyclicity cases.

a) Mapping no. 55, MS = ‘1’:(B, C, C#)

Original key C C# D D# E F F# G G# A A# B

Alternative 1 1 2 3 4 5 6 7 8 9 10 1

b) Steinway, TP = A(49) 440Hz, PP = C(40), mapping no. 65, MS = ‘1’:(A#, B, C)

Key 40 41 42 43 44 45 46 47 48 49 50 51

Original key C C# D D# E F F# G G# A A# B

Alternative 1 2 3 4 5 6 7 8 9 10 1 1

forig [Hz] 261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30 440.00 466.16 493.88

falt [Hz] 261.63 280.40 300.53 322.10 345.22 369.99 396.55 425.01 455.52 488.21 523.25 523.25

c) Steinway, TP = A(49) 440Hz, PP = F#(46), mapping no. 34, MS = ‘5’:(A#, B, C)

Key 40 41 42 43 44 45 46 47 48 49 50 51

Original key C C# D D# E F F# G G# A A# B

Alternative 5 6 7 8 9 10 1 2 3 4 5 5

forig [Hz] 261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30 440.00 466.16 493.88

falt [Hz] 244.11 261.63 280.40 300.53 322.10 345.22 369.99 396.55 425.01 455.52 488.21 488.21

mapping is fully defined, resulting in the sequence
—1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10— assigning them to
the 12-TET-based keyboard. This means that key G#
plays the 1st step of the 10-TET scale, A plays the 2nd
step, A# also plays the 2nd step, B the 3rd, C the 4th,
C# the 5th, D the 6th, D# the 7th, E the 8th, F the
9th, F# the 10th, and G the 10th step. Noticeably,
keys A and A# play the same pitch that corresponds
to 2nd step of the 10-TET scale. Similarly keys F#
and G play now the same sound that is 10th step of
the 10-TET scale as presented in Table 2a. To make
the notation easier to read, we refer to this mapping as
PP = G#(48), MS = ‘2’:(A, A#); ‘10’:(F#, G), where
MS is mapping signature. For convenience, we also as-
sign each mapping a numerical label (e.g., mapping
no. 18). This label is arbitrary but helps us quickly re-
fer to different mappings in software or in larger plots
such as presented in Fig. 9 without spelling out the
entire step sequence each time.
Table 3 demonstrates a special repeated-key

scenario, where the same new step is assigned multiple
times in a row – including the possibility of three rep-
etitions – while still respecting monotonic surjective
criteria. Finally, Table 4 shows how cyclicity can come
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into play, allowing repeated or tripled steps to extend
beyond a single octave. These examples confirm that
as long as pitch assignments remain non-decreasing
(or remain constant across a short span), the map-
ping fulfills the monotonic surjective definition, even in
more complex cases involving octave equivalence. The
mappings presented in Tables 4b and 4c are particu-
larly interesting because, at first glance, the mapping
MS = ‘1’:(A#, B, C) with PP = C(40) and MS =
‘5’:(A#, B, C) with PP = F#(46) leads to the same
assignment of new steps from the 10-TET scale to the
notes on the 12-TET keyboard – the three keys A#,
B, and C play identical pitch. However, the choice of
PP results in different frequencies being assigned to
the strings for those mappings (compare last rows in
Tables 4b and 4c). As we will see later, this leads to sig-
nificantly different total tension and OPs.

4.8. Calculations

Figure 3 illustrates the sequence of calculations
needed to evaluate each mapping. The ‘constants’ box

T       [N],

T      [N],

OPorig [%], Borig [%]

OPalt [%], Balt [%]

tot

tot

orig

alt

Constants

Tuning point (TP)

Mapping signature (MS)

Pinning point (PP)

Physical properties:
L [mm], dcore [mm], dwind [mm],
�core [km/m³], �wind [km/m³],

Tbreak [N], Ecore [GPa],
stringing chart

Frequencies forig [Hz]

Frequencies falt [Hz]

Tension Torig [N]

DT [N]

Df [¢]

Tension Talt [N]

Variables Alternative tuning

Original tuning Di�erences

Fig. 3. Flowchart of calculations for mapping an instrument’s tuning from an original scale with N -steps (e.g., 12-TET)
to an alternative scale with M -steps.
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strings with a single string per key. The middle segment corresponds to the section where there are two overspun strings
(bichord) per key. The final part represents the section with three strings per key (trichord) without winding; b) string

core wire diameter for each key; c) copper winding wire diameter for the overspun strings.

provides instrument-specific data, such as the reference
frequency at the TP and each string’s physical proper-
ties. The ‘variables’ box defines the PP and MS, which
change with each tested mapping. The ‘original tuning’
and ‘alternative tuning’ boxes list values calculated for
each string (for example, tension and OP) and single
scalar values for the entire instrument (for instance, to-
tal tension). Finally, the ‘differences’ box compiles pa-
rameter differences or ratios (e.g., ∆T , ∆f , etc.) that
allow us to compare the original and alternative tun-
ings under chosen criteria.
Figure 4 shows the input data used for the cal-

culations for the Steinway Model B grand piano
and the Nyström upright piano (both instruments
originally were designed for TP = A(49) = 440Hz).
Those parameters correspond to the ‘constants’ box in
Fig. 3. The values for Nyström (e.g., string lengths, di-
ameters) were measured directly, and for the Steinway
are taken from Matthias (1990). Notable differences
include the longer speaking lengths (the lengths of
vibrating part of the strings) for the grand piano (com-
pared to the upright) and distinct transitions between
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unichord, bichord-wound, and trichord string sections.
Additional windings are used in shorter bass strings
to compensate for the reduced length (Rose, Law,
2001). Other parameters like maximum tension, den-
sity properties are taken from datasheets provided by
manufacturer of piano rounded steel wire (Stahl- und
Drahtwerk Röslau GmbH, n.d.).

4.9. String tension

For an idealized perfectly flexible, plain (unwound)
string of density ρ and diameter d, vibrating at fre-
quency f over a speaking length L, the tension T is of-
ten approximated by T = 4µf2L2, where µ = π ρd2/4
is the linear mass density (kg/m). This expression as-
sumes negligible bending stiffness. In case of wounded
(overspun) strings the tension is determined by the
core wire as the winding is made from soft (compared
to core made out of steel) copper wire (Bucur, 2016).

4.10. Overspun (wound) strings

For copper-wound bass strings, the tension formula
(Louchet, 2021) generalizes to

T = π f2L2

1012
[ρcore (dcore)2 + (

π ρwind

4
)(Ω2 − d2core)],

where dcore and dwind are the core and winding diame-
ters, Ω = dcore+2dwind is the outer diameter, and ρcore,
ρwind are material densities (e.g., 7750 kg/m3 for steel,
8920 kg/m3 for copper). The factor 1012 accounts for
unit conversions from millimeters to meters.

4.11. Inharmonicity for finite stiffness

Real musical strings have finite stiffness, so their
partial frequencies deviate from integer multiples of
the fundamental. If the fundamental frequency is f0,
then the n-th partial can be approximated by fn =
nf0
√
1 +Bn2, where B is the inharmonicity coefficient.

According to Fletcher (1964), for a solid steel string
with diameter d (in cm), speaking length L (in cm),
and fundamental frequency f0 (in Hz), the inharmonic-
ity coefficient is given by B ≈ 3.95 × 1010(d2/(L4f2

0 )).
For copper-wound steel strings, where dcore is the
core diameter and dtotal is the total diameter (in-
cluding winding), Fletcher (1964) provides B ≈
4.6×1010(d4core/(d2totalL4f2

0 )). In all cases, a sufficiently
small B is important to preserve the instrument’s char-
acteristic timbre (Louchet, 2021).

5. Results and discussion

The method described in the previous section al-
lows us to evaluate various monotonic surjective map-
pings by computing key parameters such as string ten-
sion, OPs, and inharmonicity coefficients. Before com-
paring different mappings in detail, we first examine

these parameters for selected cases to illustrate how
individual mappings affect the instrument.
Figure 5 presents the OPs of each string, expressed

as a percentage of the breaking force. This provides
a reference for further comparisons by showing how
tension varies across the keyboard. The figure includes
results for the original 12-TET tuning (empty mark-
ers), the standard mappings (thick curves), and two
selected surjective mappings (full markers connected
by thin curves). The plot reveals that the original OPs
are significantly different between the two instruments
which is expected as all string parameters are different.
The Steinway grand piano exhibits a smoother distri-
bution of tension, with a maximum OP around 50%,
while the Nyström upright piano reaches above 70%.
This difference shows that the optimal mapping may
not be the same for both instruments. In particular,
since the Nyström upright piano is already closer to
the breaking point near the 31st key, one would prior-
itize mappings that minimize additional tension.
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Fig. 5. String tension as a percentage of the breaking force
(OPs). The empty markers represent the tension levels for
the Steinway (empty black dots) and the Nyström upright
piano (empty red triangles), expressed as a percentage of
the breaking force for each string. These points define the
original OPs (OPorig) of the strings. The Nyström upright
piano reaches 70% of the breaking force around the 31st
key. The thick red and black curves represent the tension
values when a standard mapping is used to retune from 12-
TET to 10-TET. The breaking force is exceeded for both
instruments near the 67th key. The filled markers connected
by lines represent the calculated (OPalt) values for selected
monotonic surjective mappings, which closely align with

the original values.

We also observe that the standard mapping leads
to significant imbalances in OPs, as predicted earlier.
However, Fig. 5 now quantifies this effect across all
strings, confirming that standard mapping (for PP =
C(40)) introduces excessive tension in the upper range
– maximum allowed tension is exceeded around 67th
key which leads to string breaking. Unlike the stan-
dard mapping, the OP values obtained for the selected
monotonic surjective mappings closely match the orig-
inal ones for both instruments.
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Similarly, Fig. 6 presents the inharmonicity coeffi-
cients B calculated for the original tuning (markers).
In addition, we include values for the selected mono-
tonic surjective mappings (thick black and red curves).
The dotted lines represent the inharmonicity coeffi-
cients for the standard mapping. The results show an
order-of-magnitude difference between the original and
standard mappings, highlighting the necessity of care-
ful mapping to preserve the instrument’s intended tim-
bre.
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Fig. 6. Inharmonicity. The thick solid lines represent the
inharmonicity coefficients B calculated for the original
OP. The markers show the calculated inharmonicity co-
efficients for the optimal mappings: PP = G(47), MS =
‘4’:(A#, B); ‘8’:(D#, E) for Nyström and PP = G#(48),
MS = ‘2’:(A, A#); ‘10’:(F#, G) for Steinway. The dotted
lines represent the inharmonicity coefficients B calculated
for the standard mapping. The difference between the orig-
inal and standard mapping reaches an order of magnitude.

The details of presented before two selected mono-
tonic surjective mappings, PP = G(47), MS =
‘4’:(A#, B); ‘8’:(D#, E) and PP = G#(48), MS =
‘2’:(A, A#); ‘10’:(F#, G), are explained in Fig. 7. In
this figure, unlike in Figs. 1 and 2, the slope of the
original 12-TET scale has been subtracted. As a re-
sult, the original tuning appears as a horizontal line,
and the plot shows deviations from that tuning. This
plot serves as a practical reference for piano tuners per-
forming the transition from 12-TET to 10-TET, as it
directly indicates how many cents each key must be
retuned from the original 12-TET tuning. The inset
presents zoomed main plot for one octave around PPs
G(47) in case of Nyström and G#(48) for Steinway.
For this points the frequency difference is by definition
zero. The jumps between 43rd, 44th and 50th, 51st
keys for Nyström and between 46th, 47th and 49th,
50th key for Steinway are fingerprints of the presented
signatures.
To find the optimal mapping, one must establish

suitable criteria for ranking mappings from the most
to the least optimal. As mentioned earlier, multiple
parameters have conflicting requirements. For the pin-
block, where tuning pins are placed, lower total tension
is preferable. Similarly, individual pins benefit from
reduced tension. From a timbre perspective, a lower
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Fig. 7. PP and MS. Detuning from oryginal 12-TET scale
expressed in cents for all keys of keyboard. The gray solid
line at 0 ¢ represents oryginal tuning in 12-TET scale. The
black and red markers show selected monotonic surjective
mappings. The rising diagonal thick black and red dashed
curves are result of standard mappings from the same PPs
as those for optimal mapping. The slope of of diagonal lines
is a difference between 12-TETs slope (100 ¢ per key) and
10-TETs slope (120 ¢ per key) resulting in 20 ¢ per step.

inharmonicity coefficient is desirable; however, the in-
harmonicity coefficient is inversely proportional to ten-
sion. Moreover, reducing inharmonicity below its origi-
nal value is not always the goal, as preserving the orig-
inal timbre may be a higher priority. This consider-
ation is reflected in the maximum change of the OP
criterion. Furthermore, starting from different PP re-
sults in varying numbers of shared frequencies (notes)
with the original scale, which may be important when
performing with other instruments.
Ultimately, the criteria for selecting an optimal

mapping are subjective. The only truly objective re-
quirement is that each string’s tension must remain
below its ultimate breaking point. A nearly objective
criterion is ensuring tuning stability, but the litera-
ture does not define a single reference value for this.
Tuning stability depends on factors such as the instru-
ment’s materials, environmental conditions (temper-
ature, humidity), and playing intensity. A commonly
used guideline is to limit frequency changes for each
string to no more than 100 ¢.
Table 5 presents the results of calculations for stan-

dard mappings with PPs C(40) and A(49). These map-
pings were evaluated based on their impact on total
string tension and OPs, which measure the string ten-
sion as a percentage of the breaking force. The alter-
native tension values (Talt) and the changes in tension
(∆T ) are listed alongside the maximum and minimum
OPs for each case.
The results clearly demonstrate that standard map-

pings, regardless of the chosen PP, introduce severe
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Table 5. Summary of tension values for standard map-
pings with PPs from C(40) and A(49). The original ten-
sion is 161.684 kN for Nyström and 168.735 kN for Stein-
way. The original maximum OPmax

orig is 70% (Nyström) and
54.5% (Steinway). Similarly the original minimum OPmin

orig

is 25.3% for Nyström and 23.6% for Steinway.

Instr. PP Talt

[kN]
∆T
[kN]

OPmax
alt
[%]

OPmin
alt
[%]

Nyström A(49) 180.955 +19.271 155.7 8.9

Nyström C(40) 222.781 +61.097 191.7 11.0

Steinway A(49) 186.174 +17.438 134.3 11.0

Steinway C(40) 229.207 +60.471 165.3 13.5

structural and acoustic issues. In every case, the max-
imum OPmax

alt significantly exceeds the instrument’s
limit (is over 100%). Simultaneously, the minimum
OPmin

alt drops drastically from original values of 25.3%
for Nyström and 23.6% for Steinway, indicating that
some strings become too loose to function properly,
compromising pitch stability and timbre. The uneven
distribution of tension, combined with the extreme de-
parture from the instrument’s original inharmonicity
characteristics, results in an unbalanced tonal spec-
trum, rendering the instrument practically unplayable.
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Table 6. Summary of tension values for selected monotonic surjective mappings. The original tension is 161.684 kN for
Nyström and 168.735 kN for Steinway. The original maximum OPmax

orig is 70% (Nyström) and 54.5% (Steinway). Similarly
the original minimum OPmin

orig is 25.3% for Nyström and 23.6% for Steinway.

Instr. PP MS Talt [kN] ∆T [kN] OPmax
alt [%] OPmin

alt [%]

Nyström G(47) no. 31: ‘4’:(A#, B); ‘8’:(D#, E) 161.684 −0.000 71.0 24.7

Steinway G#(48) no. 18: ‘2’:(A, A#); ‘10’:(F#, G) 168.730 −0.006 56.6 25.3

Steinway C(40) no. 34: ‘1’:(A#, B, C) 165.560 −3.175 58.6 23.0

Steinway C(40) no. 55: ‘1’:(B, C, C#) 169.724 +0.988 59.1 23.0

Steinway F#(46) no. 65: ‘1’:(A#, B, C) 190.179 +21.444 67.3 26.5

On the other hand, Table 6 summarizes the total
string tension values for selected monotonic surjective
mappings. The mappings listed here represent a subset
of all possible monotonic surjective mappings, chosen
based on specific PPs and mapping structures previ-
ously presented in Tables 2, 3, and 4 as examples of
MSs. As shown, some of the presented mappings ex-
hibit a total tension difference between the alternative
and original tuning that is close to zero. It is worth
noting that even in some cases total tension difference
is relatively large (e.g., 21.444 kN) the maximum OP –
OPmax

alt is well below breaking value and minimum OP
value OPmin

alt is close to the original one.
While Table 6 provides a numerical overview of spe-

cific mappings, manually comparing each case is inef-
ficient given the large number of possible mappings.
A more effective approach is to visualize all computed
mappings and sort them based on different criteria to
identify the most favorable ones.
Figure 8 presents an extensive analysis of 792 pos-

sible monotonic surjective mappings, covering 12 dif-
ferent PP from PP = C(40) to PP = B(51). The plots
show absolute total tension change ∣∆T tot∣, signed
total tension difference ∆T tot, maximum and mean
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absolute frequency change, the number of shared notes
with the original tuning, and the relative change in the
maximum OP. By sorting mappings based on ∣∆T tot∣
(top-left panel), it becomes evident that mappings op-
timized for one criterion are not necessarily optimal
for others. Additionally, mappings for different instru-
ments (Steinway and Nyström) do not overlap, sug-
gesting that a universally optimal mapping does not
exist across different instruments.
A key finding of this analysis is that all 792 exam-

ined monotonic surjective mappings are structurally
safe. This means that none of the mappings exceed the
maximum breaking tension for any string. Moreover,
as shown in Fig. 8, particularly in the panel display-
ing the maximum absolute frequency change, no string
undergoes a retuning greater than 200 ¢, ensuring that
all modifications remain within a reasonable tuning
range. The plot in Fig. 8 presents 792 possible mono-
tonic surjective mappings for Steinway (black circles)
and Nyström (red triangles), calculated across 12 PP
ranging from PP = C(40) to PP = B(51), resulting in
a total of 12× 66 = 792 mappings. Each panel corre-
sponds to a different ranking criterion: absolute total
tension change ∣∆T tot∣, total tension difference ∆T tot,
maximum absolute frequency change, mean absolute
frequency change, number of shared notes between the
original and mapped tuning, and the relative change in
the maximum OP. The mappings are sorted by ∣∆T tot∣,
as shown in the top-left panel. The results demonstrate
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Fig. 9. Absolute total tension change for: a) Steinway; b) Nyström. The color scale represents the absolute total tension
change ∣∆T tot∣ in kN, using a logarithmic color scale. The black dots indicate mappings where ∣∆T tot∣ is below the threshold

of 6000 kN. The top 20 mappings are ranked and labeled with red numbers.

that mappings optimized for one criterion (±100 ¢ or
±6000 kN, shown as gray regions) are not necessarily
optimal for others.
We propose a useful tool for selecting an optimal

monotonic surjective mapping – a plot that visualizes
mapping-related scalar values using a color scale, with
PP on the vertical axis and MSs on the horizontal axis.
Black dots indicate mappings that fall below an arbi-
trarily chosen threshold, while the top 20 mappings are
ranked and labeled with red numbers.
This type of chart is particularly useful in several

ways. First, it helps identify which keys are doubled
in a given mapping. To interpret the chart, one starts
by selecting a specific field in the 2D map, then reads
the corresponding PP on the left and the MS at the
bottom. For example, in Fig. 9, which presents total
tension differences for Steinway, the best mapping ac-
cording to this criterion is marked with a red ‘1’. This
corresponds to PP = G# on the left and mapping num-
ber 18, which yields the alternative scale step sequence
—1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10—. This means that,
starting from the chosen PP key, the sequence follows
the structure presented in Table 11a, with repeated
key pairs A, A# and F#, G. This mapping can
be expressed as PP = G#(48), MS = ‘2’:(A, A#);
‘10’:(F#, G). Similarly for Nyström with this method
we identify mapping PP = G(47), MS = ‘4’:(A#, B);
‘8’:(D#, E) as optimal from the point of view of total
tension.
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Fig. 10. Maximum operating point for: a) Steinway; b) Nyström. The color scale represents the maximum operating point
– OPmax

alt , where white color is assigned to maximum value of original operating point – OPmax
orig .

While all analyzed mappings are structurally safe
and do not compromise the instrument, we can further
refine our selection by identifying the most optimal
ones based on additional criteria. Since total tension
remains within acceptable limits and does not threaten
the integrity of the pinblock (Fig. 9), we can instead
prioritize mappings that minimize changes in the max-
imum or minimum OPs, as these influence inharmonic-
ity (Fig. 10). Here, we present selected examples, but
the final choice of mapping should always be based on
a similar analysis tailored to each individual instru-
ment. For this reason, we do not provide 2D visualiza-
tions for all possible parameters.

6. Generalization for other fixed-pitch string
instruments

The methodology for identifying monotonic surjec-
tive mappings, as demonstrated with pianos, can be ex-
tended to other fixed-pitch string instruments, such as
harps, celestas, cimbaloms, harpsichords, clavichords,
lyres, dulcimers, kanteles, spinets, psalteries, virginals,
and zithers. In these applications, the traditional oc-
tave (2:1 frequency ratio) can be replaced by alterna-
tive interval structures, such as the tritave (3:1 ratio)
found in the Bohlen–Pierce scale (Mathews et al.,
1988) or the hyperoctave (4:1 ratio) used in experimen-
tal tuning systems, including some hyperpiano con-
cepts (Hobby, Sethares, 2016). The interval being

divided, sometimes called an equave, can be split into
unequal steps. Therefore, the approach presented in
this paper provides a systematic method for determin-
ing safe retuning mappings from an arbitrary N -step
scale to a smaller M -step scale, provided that M < N .
An example of a non-octave-based system is the set

of tuning scales proposed by Wendy Carlos, known as
the alpha, beta, and gamma scales. These systems di-
vide the perfect fifth, rather than the octave, into 9,
11, and 20 equal parts, respectively. While our method
is not directly applicable to retuning a 12-TET instru-
ment to one of these scales, because the basic periodic
unit is not the octave, it becomes fully applicable when
retuning between Carlos-type scales. For instance, an
instrument tuned in gamma (N = 20) can be retuned
safely to beta (M = 11) or alpha (M = 9), and beta
can be retuned to alpha. These transformations pre-
serve the periodicity of the fifth and meet all assump-
tions of the monotonic surjective mapping framework.
In this way, retuning between scales with different step
counts becomes feasible even when the equave is not
the octave but another interval, such as the perfect
fifth in Carlos-type tunings.
To illustrate the applicability of the method in a more

traditional octave-based context, we turn to the ex-
ample of a folk diatonic harp (not to be confused
with a harmonica). This instrument traditionally fol-
lows a heptatonic (seven-note) scale (original scale)
consisting of the notes C, D, E, F, G, A, and B, mean-
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ing N = 7. If the goal is to adapt the instrument to
a pentatonic (five-note) scale (alternative scale) con-
sisting of C, D, E, G, and A (M = 5), then the number
of possible monotonic surjective mappings for a given
PP can be determined using Eq. (1), yielding 21 po-
tential mappings. Similar to the fixed keyboard pattern
of the piano, diatonic harps also incorporate a struc-
tured system to indicate pitch relationships. In this
case, strings are color-coded, with C strings typically
colored red and F strings colored blue or black. This
provides a visual reference for the player and reinforces
the structural role of the octave. This suggests that the
assumption of octave preservation remains valid in this
case. Consequently, when applying monotonic surjec-
tive mappings to the diatonic harp, maintaining octave
equivalence remains a natural and practical choice.
The remainder of the analysis would proceed similarly
to that of the piano, requiring an evaluation of break-
ing tensions and other parameters, such as speaking
length, to ensure both structural integrity and tonal
stability in the alternative tuning.

7. Conclusions – Final selection of mapping

The proposed method of monotonic surjective map-
pings provides a systematic way to retune a 12-TET
instrument to the alternative 10-TET scale while pre-
serving the original frequency range and ensuring that
no string exceeds its breaking tension. Our compu-
tational analysis confirms that every mapping gener-
ated by this method is structurally safe. Nonetheless,
various factors – such as absolute frequency changes,
total tension differences, and the number of shared
notes between the original and alternative tunings –
must be taken into account when selecting the optimal
mapping.
The final choice of mapping ultimately depends

on personal preference and performance context. One
important consequence of the monotonic surjective
mapping approach is that some neighboring keys on
the piano keyboard may be assigned the same pitch.
This feature allows for a rapid, percussive repetitions
of the same sound during performance, which may
influence an artist’s preference for a particular map-
ping. While many mappings can be optimized to min-
imize tension differences or frequency deviations, the
selection remains subjective. For instance, in a some-
what humorous twist, the professional pianist Leszek
Możdżer chose not to adopt the mapping with the
smallest overall tension change. Instead, he preferred
a different signature that maintained symmetry in the
keyboard layout. His decision was to repeat the keys F
and F# as well as A and A#, while sharing the note A
between the original and alternative scales. In his case,
his selection corresponds to mapping no. 7 with PP =
A(49), where the MS is given by: MS = ‘1’:(A, A#);
‘8’:(F, F#).

In conclusion, the monotonic surjective mapping
approach offers a viable solution for retuning acoustic
instruments to alternative scales. Although the method
ensures structural safety, the optimal mapping must
be chosen by balancing technical criteria with the mu-
sician’s individual artistic taste. Moreover, the concept
can be generalized beyond pianos to other fixed-pitch
string instruments, such as harps, harpsichords, and
dulcimers, thereby broadening its potential applica-
tions in diverse musical contexts.

Appendix – Why 10-TET is a unique choice

In the main text, we have focused on dividing the
octave into equal steps (TET, EDO). However, there
is also broad interest in other scales (temperaments),
seeking to resolve the small comma mismatch that
arises when combining integer frequency ratios (Pilch,
Toporowski, 2014; Rasch, 1984).
The Pythagorean tuning, for example, cycles

through perfect fifths (frequency ratio 3:2) while treat-
ing octave-equivalent tones (2:1) as musically identical.
This produces pure, consonant fifths but also leads to
the famous Pythagorean comma, which quantifies the
mismatch between twelve stacked just fifths and seven
octaves.
The Pythagorean comma is typically defined as the

cumulative discrepancy between twelve just fifths and
seven octaves:

(3/2)12
27

= 531441

524288
≈ 1.01364,

which corresponds to approximately 23.46 cents. This
classical definition is dimensionless and expresses the
ratio between the two paths through pitch space.
In this work, however, we use a normalized (per-

octave) version of the comma:

c(3,12,7) = ∣(3/2)12/7 − 2∣ ≈ 0.00388,

where 3 is the frequency ratio of a perfect fifth, 12 is the
number of such intervals stacked, and 7 is the number
of octaves they are expected to span. By raising the
full stack to the power 1/7, we calculate the average
interval needed per octave. The result is then compared
to the exact doubling of frequency (ratio 2) expected
for one octave. This way, the value c(3,12,7) captures
how much the average fifth-based step deviates from
the ideal octave size, making it easier to generalize and
compare different (t, s) scale configurations.
Although small, this discrepancy confirms that the

cycle does not close perfectly, and the frequency does
not return exactly to the starting note.

General Pythagorean t-step scales

Amore general version of Pythagorean tuning picks
an odd harmonic integer denoted nk and an integer
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m0 that ‘folds’ the nk-based interval into the base oc-
tave, ensuring the resulting frequency ratio remains
within [1,2]:

h1 =
nk

2m0
, with 1 < h1 < 2.

Repeatedly multiplying (or dividing) by h1, and divid-
ing (or multiplying) by 2 whenever the resulting fre-
quency lies outside [1,2], generates t steps within each
octave. If this process nearly reconstructs the octave
after t steps across s octaves, the mismatch – called
the comma – can be written as:

c = ∣(h1)t/s − 2∣ < ϵ,
where t is the number of steps per octave, s is the
number of octaves required to close the cycle, and ϵ is
a small upper bound for acceptable mistuning. If the
comma is smaller than the Pythagorean c(3,12,7),
then the triple (nk, t, s) is said to define a good
comma. This indicates that the generated scale closely
approximates octave closure while using a consistent
generator interval.
We restrict attention to manageable scales by re-

quiring t ⋅ s < 500, which limits the total number of
notes (i.e., the number of steps per octave times the
number of octaves needed to complete the cycle), and
limit nk ≤ 21 to avoid using excessively high harmonics.
Under these constraints, one finds that the small-

est comma c – i.e., the best result among all pos-
sibilities within these limits – arises for (nk, t, s) =
(13,10,7), giving a generating interval h1 = 13/8, often
called a ‘neutral sixth’. Since here t = 10, this results
in a 10-step Pythagorean scale whose comma

c(13,10,7) ≈ 0.00087
is more than four times smaller than that of the usual
12-tone Pythagorean system (3,12,7), with comma
c(3,12,7).

Angles on a musical circle

An insightful way to handle such cyclic issues is to
place each frequency ratio on a circle of angles. Specif-
ically, if hℓ is the frequency multiplier for the ℓ-th step
(where ℓ = 0,1, . . . , t − 1), we define the Pythagorean
angle by

φℓ = 2π log2(hℓ).
Because multiplying a frequency by 2 shifts its angle
by 2π (one full turn), the angle φℓ neatly captures
where hℓ lies ‘modulo octaves’. In that sense, going
once around the circle corresponds to going up by one
full octave in frequency.

Comparing with equal temperament

Another way to assess how well a Pythagorean
scale approximates its equal-tempered counterpart is
the tempered index:

δ(nk,t,s) =
1

t − 1
t−1

∑
ℓ=0

∣Φℓ − φℓ∣,

where φℓ = 2π log2(hℓ) and Φℓ = 2π s
t
ℓ are the equally

tempered angles for t notes in each of s octaves. Nu-
merically,

δ(3,12,7) ≈ 6.40 ¢/step

and
δ(13,10,7) ≈ 1.46 ¢/step,

where radians per step were recalculated to cents per
step.
Hence, from a purely mathematical viewpoint, the

10-TET scale is, at the same time, almost perfectly
the 10-step Pythagorean scale built using the 13:8 ratio
interval. Moreover, this 10-step Pythagorean scale has
the smallest comma c among all general Pythagorean
scales calculated with reasonable assumptions.
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