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Due to the complexity of the infrasound environment and the high costs associated with data collection,
frequent acquisition of infrasound data is often impractical, resulting in a limited amount of labeled data. To
address the challenge of low classification prediction accuracy caused by data scarcity, this paper proposes an
infrasound prediction model based on a time-series generative adversarial network (TimeGAN) and coordinated
attention prototype network (CAPN) (TimeGAN-CAPN). The model begins by introducing TimeGAN, where
the generative network is trained using a combination of unsupervised and supervised learning. This approach
enables the network to operate within the latent space of temporal features and generate time-series data that
closely aligns with the distribution of the original data. These generated samples are then combined with the
original data to form an augmented dataset. Subsequently, the augmented data is input into the CAPN, which
enhances the sample size per class, allowing for more precise class prototypes and improving the prediction
accuracy of the model. Furthermore, the quality and diversity of the data generated by TimeGAN are quan-
titatively and qualitatively assessed using maximum mean discrepancy (MMD) and t-distributed stochastic
neighbor embedding (t-SNE), facilitating a comparison and verification of the generated data’s performance.
Experimental results show that TimeGAN-CAPN significantly outperforms the CAPN model in classification
tasks with limited infrasound data, achieving an increase in accuracy of 7.15%. This demonstrates that the
proposed method is highly effective for predicting infrasound-related disasters, particularly in scenarios with
small sample sizes.

Keywords: infrasound signal, time-series generative adversarial network, coordinated attention prototype
network, maximum mean discrepancy.
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1. Introduction

Infrasound (<20Hz) refers to sound waves with frequencies below the human hearing range, and is charac-
terized by long propagation distances and strong penetration ability (SOVILLA et al., 2025; Lu, L1, 2023). Many
extreme events, such as earthquakes, tsunamis, and explosions, generate infrasound waves. Globally, infrasound
monitoring has been widely applied in the prediction and prevention of natural disasters. Infrasound event detec-
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tion is the foundation of infrasound monitoring, with its main goal being to extract infrasound events from a large
amount of background noise and determine the event’s scope (DONG et al., 2024). Event detection is significant
for subsequent research such as event classification and localization. Therefore, improving the effectiveness of
event detection has become a key issue in the field of infrasound research.

The importance of infrasound event detection algorithms in infrasound monitoring has led to rapid ad-
vancements in their technological research. Many scholars have conducted studies on infrasound event detection
methods, and new methods continue to be introduced. BAEZA MOYANO, GONZALEZ LEZCANO et al. (2022)
explored the potential health impacts of infrasound and advocates for improvements in housing conditions to
mitigate these effects. WATSON et al. (2022) reviewed the advancements in volcano infrasound research and out-
lines future directions for further investigation and application in volcanic monitoring. FRIEDRICH et al. (2023)
examined how infrasound affects the perception of low-frequency sounds and its potential influence on human
perception and response. HUPE et al. (2022) discussed the use of infrasound data products from the International
Monitoring System for atmospheric studies and various civilian applications. MACPHERSON et al. (2023) explored
the use of local infrasound to estimate seismic velocity and earthquake magnitudes, offering a new approach for
seismic monitoring. LISTOWSKI et al. (2022) investigated the use of infrasound for remotely monitoring Mediter-
ranean hurricanes, highlighting its potential for early detection and tracking. ZAJAMSEK et al. (2023) explored
how infrasound influences the detectability of amplitude-modulated tonal noise, focusing on its impact on human
perception. WILSON et al. (2023) presented findings from a long-term microphone array deployment in Oklahoma,
analyzing infrasound and low-audible acoustic detections for various environmental and geophysical applications.
YANG et al. (2025) examined the correlation between gas desorption processes and infrasound signals, investigat-
ing the underlying mechanisms that link the two phenomena. However, the above methods do not consider the
prediction of infrasound signals in small sample scenarios.

To address the challenge of low classification prediction accuracy caused by the scarcity of labeled infrasound
signal samples, this paper proposes an infrasound prediction model based on coordinated attention prototype
network (TimeGAN-CAPN). The model first expands the temporal infrasound data using time-series genera-
tive adversarial network (TimeGAN), then combines the generated data with the original dataset to train the
prediction model, thereby enhancing its performance. Subsequently, drawing on the principles of metric learn-
ing, a coordinated attention mechanism is integrated into the traditional prototype network to extract more
discriminative feature information, facilitating the accurate construction of metric prototypes for various types
of infrasound. Inspired by the biological binocular system, a deep mutual learning framework is introduced to in-
tegrate convolutional neural networks with coordinated attention prototype network (CAPN), further improving
the model’s prediction accuracy. Experimental results demonstrate that the proposed method outperforms other
approaches in classification performance, significantly enhancing disaster early warning rates and advancing the
practical application of infrasound detection algorithms.

The structure of this paper is as follows: Sec. 2 provides a brief overview of the basic theories behind TimeGAN,
CAPN, and TimeGAN-CAPN, which are used in this study; Sec. 3 presents a performance comparison of different
methods through experiments; finally, conclusions are drawn in Sec. 4.

2. Methods
2.1. TimeGAN

YOON et al. (2019) proposed the TimeGAN by combining the flexibility of unsupervised learning with the
strong control of the training process in supervised learning. Its training process is essentially a process of solving
the min-max problem of a binary function. The model consists of two networks: the reconstruction network and the
embedding network; and two generative models: the discriminator and the generator. It uses three different loss
functions: the generation loss function, the supervised loss function, and the unsupervised loss function to train
the network.

The Time-GAN model uses gradient descent for parameter optimization, with the generator typically taking
random noise and vectors as input. The loss function is expressed as follows (SHARMA et al., 2024):
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La(Z) = Ez.p,(z)log (1 - D(G(2)))], (1)

where L () is the generator’s loss function, E(-) is the embedding network’s expected loss, G(-) is the generator
function, D(-) is the discriminator function, Pz(-) is the noise data distribution, Z is the random variable for
noise input.

The input variables for the discriminator are synthetic data and real data to be distinguished, and the loss
function is expressed as (VULETIC et al., 2024):

Lp(x) = Ex.p,(a) log D(2)] + Expg(x) [log (1 - D(2))], (2)

where Lp(+) is the real data variable, ¢ is the fake data variable, P;(-) is the real data distribution, x is the input
random variable.

2.2. CAPN

The CAPN model is shown in Fig. 1. It consists of two parallel views: in the global view, a convolutional neural
network (CNN) is used to capture inter-class relationships, while in the local view, a prototype network with
a coordinated attention mechanism focuses more on matching details (JIANG et al., 2025). The two views are then
aggregated through a deep mutual learning framework, implicitly exploring useful knowledge from each other.
The training process aims to find the best hyperparameter settings and leverage prior knowledge to better train
specific test tasks. Finally, during the testing process, the collaborative features from both views are combined
to perform classification tasks, thereby improving the accuracy of few-shot classification prediction. The model
is mainly divided into three parts: the global view, the local view, and cross-view mutual learning.
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Fig. 1. Structure of CAPN.

2.2.1. Global view

In the global view, a one-dimensional convolutional network is used for training (ZHANG et al., 2024). Specif-
ically, for a given task I', a global learner Ag is trained to map each data sample x; in the I' set to a high-
dimensional space. The probability distribution of x; is expressed as follows:

P (yi = y|:) = o (AZ (22), (3)

where o is the softmax activation function. It serves to combine the extracted features for nonlinear activation,

outputting the probability distribution of each class, which is then used for classification.
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The loss function is calculated using cross-entropy, i.e., the negative logarithm of the probability P (y; = y|x;)
(TANG et al., 2023). Therefore, the loss function for the global view is as follows:

N
Lgiobal = Bz, yoyer - Y, yilog P (y; = y|xi) . (4)
=1

2.2.2. Local view

In the local view, a prototype network is used to match each query sample with the class prototype from
the support set in the embedding space. Therefore, in the local view, a prototype network with a coordinated
attention mechanism is applied.

This model consists of three parts: feature embedding, prototype generation, and feature distance-based clas-
sification. The structure is shown in Fig. 2. The first step is to use a feature embedding module with an attention
mechanism for feature embedding. Samples of the support set and query set are passed through the convolutional
layers. By adding the coordinated attention mechanism, both spatial and channel information are extracted, and
by embedding position information in the channel attention, accurate position details and long-range dependen-
cies are captured. This allows the feature embedding to focus more on useful local feature information, enhancing
the feature representation ability of the feature embedding network. The second step is to compute the class pro-
totype features by averaging the feature maps of samples from the same class. The mean feature serves as the class
prototype feature. The third step is to measure the distance between the category prototype features learned by
the feature embedding network and the query sample features using a selected distance metric, such as Euclidean
distance. According to the principle that similar samples are close and dissimilar samples are far apart, the closest
prototype to the query set output is selected as the predicted result, and the network is trained until it meets
the required model and label prototypes. Classification prediction is then performed using the saved optimal
coordinated attention prototype network.
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Fig. 2. Structure of CAPN for the classification prediction.

2.2.8. Cross-view mutual learning

In addition to learning within each individual view, the global and local views also mutually promote each
other through cross-view interaction in the deep mutual learning network. Specifically, for each view, in addition to
completing its own training task, the view also minimizes the imitation loss from the other view. This imitation
loss uses the Kullback—Leibler divergence to quantify the match between the prediction probabilities of the
two networks, which aids in implicit knowledge transfer (J1 et al., 2020). The mutual loss is shown in Eq. (5),
which includes two sub-items:

Lmutual:DKL(FIHFQ)+DKL(FQHF1)7 (5)

F
Dict (Fi Fy) = Filog 1, (6)

g
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- ™)

Dict (Fy| F1) = Fylog 12
where F'(') represents the feature distribution computed by o(Ag(x)), and the interaction problem is considered
from the perspective of feature distribution consistency. Learning in Euclidean space focuses on relative relation-
ships rather than hard constraints such as mean square error. This is because overly strong supervision signals
are not conducive to preserving the specificity of both views (RUDDICK et al., 2024).

Thus, the final loss function of the model is given by:

(8)

Liotal = aLglobal + BLll + ’yLmutualu

where «, (3, and ~ are the weighting factors. The optimal loss weights «, 8, and v are determined through
a systematic hyperparameter tuning process using grid search combined with cross-validation. This paper explores
various combinations of «, 3, and ~ within a pre-defined range, informed by prior work on similar models and
the characteristics of infrasound data. The model’s performance is evaluated based on classification accuracy
and loss using a validation set, with the aim of balancing the three loss terms — reconstruction loss, supervised
loss, and unsupervised loss — while avoiding overfitting. After multiple iterations, the values that resulted in the
highest overall performance are selected, ensuring the model effectively captured both temporal and discriminative
features of the infrasound signals.

2.8. Proposed approach

The TimeGAN-CAPN infrasound prediction model proposed in this paper is illustrated in Fig. 3. It consists of
three main components: data preprocessing, data generation, and infrasound prediction. In the data preprocessing
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Fig. 3. Framework of the proposed approach.




6 Archives of Acoustics — Online First February 6, 2026

phase, missing values in the sensor-collected data are imputed using the nearest neighbor interpolation method.
The data is then normalized using min-max normalization, ensuring consistent dimensions and complete features,
which enhances its usability. In the data generation phase, a TimeGAN model is constructed, and the collected
data samples are fed into the generative model. Through an adversarial process between the generator and
discriminator in the latent space, the loss function is computed to update the model parameters, ultimately
generating high-quality infrasound data samples. These generated samples are then combined with the original
data to form an augmented dataset. In the infrasound prediction phase, the synthesized dataset is split into
a training set and a test set. The training set is used to train the CAPN-based infrasound prediction model. The
final model is then applied to infrasound prediction tasks for early disaster detection.

2.8.1. Data preprocessing

The collected infrasound dataset contains valuable infrasound characteristics but is presented in various
forms, lacking uniformity, which makes it unsuitable for direct use in machine learning models. Consequently,
data preprocessing is essential to extract useful parameters and convert the infrasound data into a standardized
format that can be effectively recognized by learning algorithms. Initially, missing values are imputed to ensure
the completeness of the dataset. Following this, the input vectors are normalized to standardize the units, thereby
preventing issues such as disproportionately large feature weights that could lead to increased model training
time or gradient explosion problems.

In the experiments, the nearest neighbor interpolation method is used to fill missing data. The nearest neighbor
interpolation method uses the previous and next values of the missing data (SEHAR et al., 2025). Let the value
at time ¢ be x1, at time t2 be x5, and at time t3 be z3. The missing value x5 can be expressed as follows:

Ta—T1 _ Y24 (9)
L3—T1 Y3~ Y1

For normalization, the min-max normalization method is used to map the results to the interval [0, 1]
(MITROPOULOS et al., 2022), as shown in Eq. (10). The original data = is normalized to z*, where i, and
Tmax are the minimum and maximum values in the original data, respectively:

* T = Tmin

rt s ——. (10)

Tmax ~ Tmin

2.8.2. Data generation

In the data generation phase, the TimeGAN model is composed of four primary components: the embedding
network, the recovery network, the sequence generator, and the sequence discriminator. The embedding and recov-
ery networks fall under the autoencoder category, while the sequence generator and discriminator are part of the
generative adversarial network framework. As a result, TimeGAN involves joint training of both the autoencoding
and adversarial components. In the autoencoding section, the embedding network maps high-dimensional data
into a lower-dimensional vector, or latent space, to capture essential feature information. The recovery network
then reconstructs the data from this latent space back to its original dimensionality, minimizing the reconstruction
loss Li to optimize the representation of the latent space. Following the principle that the dynamics of complex
systems are often driven by a smaller set of lower-dimensional factors, the adversarial component trains the se-
quence generator and discriminator within the latent space produced by the embedding network. This approach
alleviates the challenges associated with high-dimensional data during the adversarial training process.

The embedding and recovery functions achieve the mapping from the feature space to the latent space,
enabling the adversarial network to learn the potential time characteristics of the data through low-dimensional
representations. Let Hg represent the latent vector space containing time-related feature S, and similarly, let
Hx represent the latent vector space for the static feature X. The role of the embedding function e is to encode
real-time sequences into the latent space, defined as Sx[], X - Hgx[], Hx. This function uses a recurrent neural
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network (RNN) to perform the mapping, encoding both static and temporal features into low-dimensional latent
vectors hg, hi. = e (S, X1.7) which are easier for the network to learn (RUDDICK et al., 2024). The embedding
function is expressed as

{hS :eS(S)’ (11)

ht = eX(hS7ht—17Xt)7

where eg : S - Hg is the embedding function for static features, aimed at converting static features S into
low-dimensional static features hg through mapping, and ex : Hg x Hx x X - Hx is the RNN-based embedding
function for temporal features, aiming to map temporal features X; into low-dimensional static features h;.
It follows causal ordering, meaning each step’s output depends only on the preceding information.

The recovery function ~ performs decoding, defined as Hg x [, Hx = S x [[; X. It uses a feedforward neural
network (FNN) (RUDDICK et al., 2024) to restore the low-dimensional latent code back into high-dimensional
static and temporal features SXq.p = v(hg, h1.1):

S =~s(hs),

- (12)
Xt = ’VX(ht)v

where g : Hg — S is the recovery function for static features, which is the inverse mapping of hg, and similarly,
vx : Hx = X represents the recovery network for temporal feature embeddings, which is the inverse mapping of h;.

In the autoencoding part, the embedding function maps high-dimensional static and temporal features into
a low-dimensional latent space, and the recovery function maps them back to high-dimensional features. There-
fore, the embedding function and recovery function are reversible mappings existing between the feature space
and latent space. They can accurately represent the high-dimensional reconstructed data S, X1 using high-
dimensional original data S, X1.7 and low-dimensional latent vectors hg, h1.7. The reconstruction loss Ly of the
autoencoder part is shown in Eq. (13), which represents the autoencoder’s understanding of the intrinsic patterns
in the input data (J1 et al., 2020). By optimizing the reconstruction, the autoencoder can generate higher-quality

low-dimensional latent representations:
Lr=Esxup ||9-5],+ Et: X - X, | (13)

During TimeGAN'’s training, two types of data are input into the sequence generator (J1 et al., 2020). In the
open-loop mode, the low-dimensional data hg, .1 generated by the generator is input into the sequence generator
to obtain the next generated vector hy. Then, by optimizing the unsupervised loss Ly, the probability of correctly
classifying the real data hg, hi.7 and generated data 71'5,%1;7« is increased:

Ly=Esx,r.p [log Ys + Zt: log yt] +Es Xrop [log (1-7s)+ Zt: (1-Togy,)|- (14)
Due to insufficient adversarial feedback from the sequence discriminator, the sequence generator does not
fully capture the conditional distribution of the time steps in the real data (TANG et al., 2023). Therefore,
TimeGAN introduces a supervised loss to further constrain the model and alternates training in the closed-loop
mode. The low-dimensional temporal latent sequence hi.;—; encoded by the embedding network is input into
the sequence generator to obtain the latent vector for the next time step. Then, the supervised loss is opti-
mized using the maximum likelihood method, which reflects the similarity between the data generated by the
sequence generator and the data encoded by the autoencoder. This loss measures the difference between distribu-
tions p (Hy| Hs, H14-1) and p( Hy| Hg, H1 4-1). The supervised loss Lg obtained using the maximum likelihood
method:

Ls =Esxypp |2 10 = gx (hs, hio1,20) |5 |- (15)
t
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At each training step, the difference between the next latent vector from the embedding function and the
next latent vector synthesized by the sequence generator needs to be evaluated. Although the unsupervised loss
Ly can guide the sequence generator to create real sequences, the supervised loss Lg ensures that it generates
smooth transitions.

2.3.3. Infrasound prediction

The specific process of the coordinated attention mechanism is shown in Fig. 4, which includes two steps:
information embedding and attention generation.
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Fig. 4. Schematic of the coordinated attention generation process (Hou et al., 2021).

The information embedding component plays a crucial role in enhancing the attention module’s ability to
capture a higher-quality global receptive field while preserving the accuracy of positional encoding (TANG et al.,
2023). In traditional channel attention, global pooling is commonly used to encode spatial information (ZHANG
et al., 2024). However, this approach often compresses global spatial data into channels, making it challenging to
retain precise positional information (JIANG et al., 2025). To address this issue, the information embedding op-
eration decomposes the global average pooling step by pooling separately along both the horizontal and vertical
axes of the input features. This technique aggregates features from both spatial directions, resulting in two feature
maps that retain directional information. As shown in Fig. 5, by performing transformations along both direc-
tions, long-range dependencies along one spatial axis and positional information along the other are captured by
the attention module, enabling the network to more effectively localize key targets.
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Fig. 5. Schematic of the coordinated attention information embedding operation.
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Specifically, in the horizontal direction, the global average pooling operation uses a pooling kernel of size H x 1
to compress the input feature X dimensions from H x W xC to H x 1 x C:

1
ZMh) == Y wc(h,a)zl e RO (16)

w 0<as<W
In the vertical direction, the global average pooling operation uses a pooling kernel of 1 x W size to compress
the input feature dimensions from H x W x C to H x1 x C:

Z¥(w) = 1 > wo(bw)zg e ROV, (17)
H o2n
The attention generation operation aims to fully utilize the positional information encoded in the embedding
operation and capture the regions of interest and relationships between channels. Specifically, the feature maps
from the two directions, Zg and Z#, are concatenated along the channel dimension, and then convolution
operations are applied using a shared convolutional transformation function F}, obtaining intermediate feature
maps f, f € R7*H*W) which encode both horizontal and vertical directions:

f=5(F1 ([Zhjzw]))’ fER%+1>e(H+W)7 (18)

where § is the non-linear activation function ReLU, [+, -] represents the concatenation along the spatial dimension.
Then, the intermediate feature map f is split along the spatial dimensions into two feature maps f* and f%,
fre RFH | fve RF*W  Each feature map is upsampled using convolution operations Fj, and F,,, obtaining two

directional attention weights ¢ and ¢, g" € RE*H*L gw ¢ REXIXW a5 follows:
g" =0 (Fn(f")), (19)
9" =0 (Fu(f")). (20)

Finally, the attention weights ¢” and ¢* are multiplied with the original features z¢ to obtain the scaled
features yco:

ye(a,0) = zc(a,b) x g¢(a) x g& (b). (21)
2.4. Data set

This study utilizes infrasound data provided by the international monitoring system (IMS) with support from
the Comprehensive Nuclear-Test-Ban Treaty Beijing National Data Center. A total of 611 infrasound data sets
are collected from six distinct infrasound sensor arrays located globally. These data sets are categorized into
three types of infrasound events: earthquake, tsunami, and volcano. All infrasound recordings have a sampling
frequency of 20 Hz. Table 1 presents the details of the infrasound data collected from various regions, while Fig. 6
illustrates the geographical distribution of the infrasound stations.

Table 1. Information of infrasound data.

Data source : : Number Samplin,
Event type (IMS station code) Geographic coordinate of signals Total frequeniy ﬁ{ .
114CL (-33.65, —78.79) 74 20
Earthquake 130JP (35.31, 140.31) 124 203 20
159US (19.59, —155.89) 6 20
110CA (50.20, -96.03) 4 20
. 122FR (-22.18, 166.85) 53 20
Tsunami 218
130JP (35.31, 140.31) 113 20
152GB (-7.38, 72.48) 66 20
Volcano 130JP (35.31, 140.31) 189 189 20
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Fig. 6. Map of the infrasound station.

3. Experiments
3.1. Experiments setup

The operating system used in this study is Windows 11, with CUDA 10.0 and cuDNN 7.4 for accelerated
training. The hardware used includes an NVIDIA Quadro P4000 (8 GB memory). The network development
framework is TensorFlow 1.14, and programming is done in Python. The CPU used is an Intel(R) Core(TM)
i5-11320H CPU @ 3.20 GHz, 2.5 GHz. As described in Subsec. 2.2, the key parameters of the CAPN are summa-
rized in Table 2. The simulation validation focuses on applying the infrasound signal data to assess the feature
learning performance of the proposed CAPN model. Each infrasound signal consists of 10400 data points. The
dataset is divided into training and testing samples. The input map size for the CAPN model is 128 x 128 x 1.
The number of iterations is set to 60.

Table 2. Parameter of CAPN.

Number of layer Layer type Kernel size Filters
1 Convolution 1 12x12 4
2 Maxpooling 1 5x5 -
3 Convolution 2 Tx7 4
4 Maxpooling 2 5x5 -
5 Convolution 3 5x5 8
6 Maxpooling 3 5x5 -
7 Flatten - -
8 Fully-connected - -
9 Softmax - -

3.2. Data preprocessing

The infrasound data collected in this study are smoothed to effectively eliminate noise. Figure 7a displays
the original infrasound signal, which contains substantial noise. To reduce computational complexity, a moving
average filtering method is applied for smoothing, with the resulting signal shown in Fig. 7b. Details of the
moving average filtering method can be found in (Mitropoulos et al., 2022). A total of 70 % of the smoothed data
are used as the training set, while the remaining 30 % are allocated as the testing set. Finally, data standardization
and normalization are performed using Egs. (9) and (10).
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Fig. 7. Original (a) and preprocessing (b) signal.

3.3. Data generation

To evaluate the quality of the data generated by the model, both fidelity and diversity are taken into account.
Fidelity refers to the degree to which the generated samples resemble the real data, while diversity ensures that
the generated samples do not exhibit excessive similarity to each other. Thus, the performance of the generated
model is assessed from both qualitative and quantitative perspectives.

3.8.1. Discriminator score

The performance of the generative model is quantitatively assessed from the quality and diversity of the
generated samples. In this study, the maximum mean discrepancy (MMD) metric is used to evaluate the generative
model based on the difference in sample distributions. MMD is used to measure the distance between two
distributions in a Hilbert space. Thus, for the generative model, this metric can measure the distance between
the original data distribution P, and the generated data distribution F,;. The smaller the MMD distance, the
more similar the distributions of the original and generated data are, indicating higher quality of the generated
samples and better model performance (WANG et al., 2021).

When calculating the MMD distance, the Gaussian kernel function K (x,y) is used to map the two samples
into a real number:

K(z,y) = exp (= |z - y]*). (22)

The MMD distance Dy (P, Py) is expressed as follows:

Dyivp (P, Pg) =FEy2-p, [K(x,x')] - 2E1¢~Po,y~Pg [K(x, y)] + Ey,y’~P_q [K(yvy,)] (23)

In this experiment, both the original data and generated data have four state types: normal, earthquake,
volcano, and tsunami. Therefore, the distribution of the original data is denoted as P,; i = (1,2,3,4), and the
distribution of the generated data is denoted as Py; i = (1,2,3,4). As shown in Fig. 8, the MMD distance between
the original and generated data is calculated for infrasound data after applying several models, including GAN,
LSTM, GRU, transformer, WGAN, DCGAN, and TimeGAN. Compared to the other generative adversarial
network models, TimeGAN exhibits the smallest MMD distance between the original and generated data. Notably,
for the volcano data, the MMD distance is 1.364 times smaller for TimeGAN than for GAN, indicating that
the distribution of TimeGAN-generated data closely matches the original data distribution, resulting in superior
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Fig. 8. MMD distances between generated data from different models and real data.

model performance. In contrast, the GAN model shows the largest discrepancy between the generated and original
data, making it the least effective model. For the tsunami data, all four generative models show relatively high
performance due to the distinct infrasound characteristics. However, for volcano data, where infrasound features
are less pronounced, all models exhibit the largest MMD distance, suggesting a greater challenge in accurately
modeling such data. Therefore, it can be concluded that TimeGAN generates relatively high-quality samples,
outperforming the other models in terms of data fidelity.

In addition, the MMD metric is also used to evaluate the diversity of the generated samples, albeit with
a slightly different focus. Here, the goal is to measure the variability between the sample distributions within the
generated data. Specifically, the MMD distance between the distributions of individual samples is calculated, and
the mean of these distances is taken as the internal MMD distance of the generated data. A higher value of this
distance indicates greater variability between the samples, reflecting higher diversity in the generated data and
superior performance of the GAN.

Let the number of distribution samples be 1, and let P; and P; represent the source distributions of two
different samples (WANG et al., 2021). The MMD distance is given by

DMMD(Pi7Pj) =2- QEIrLNPL',ijPj [K(ml,x])]z # 7. (24)

Then, the internal MMD distance of the generated data, which measures the diversity within the samples,

is given by

1 N- N
D, = D P, P;). 25
1+2+...+N—1; Z wnp (P F5) (25)

In the experiment, the internal MMD distances of the generated data from three classical generative adversarial
networks and the proposed TimeGAN model are calculated, with the results presented in Fig. 9. The analysis
reveals that, among the seven generative models, TimeGAN produces data with the largest internal MMD
distance, indicating that it generates data with higher diversity. This is particularly evident in the tsunami data. In
contrast, GAN and WGAN perform the worst in generating diverse samples. For example, in the tsunami case, the
internal MMD distance of the data generated by GAN is 0.0024 smaller than that of TimeGAN, WGAN is 0.002
smaller, and LSTM is 0.0018 smaller than TimeGAN. These results demonstrate that TimeGAN outperforms
other models in terms of generating diverse and varied infrasound samples.

A comprehensive analysis of the MMD metric reveals that, in most cases, GAN, WGAN, and LSTM models
only offer rough approximations of the original data, with limited quality and diversity in the generated samples.
In contrast, TimeGAN, DCGAN, transformer, and GRU models generate data with higher quality and greater
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Fig. 9. Internal MMD distances of generated data from different models.

diversity. To further validate the effectiveness of TimeGAN in infrasound prediction, a detailed performance
comparison is conducted between these models.

3.8.2. Visualization

In the previous MMD analysis, TimeGAN and DCGAN demonstrated superior performance, and thus, these
two models are the focus of further analysis. To qualitatively evaluate the effectiveness of the proposed method,
the t-SNE and PCA techniques are applied to visualize the distribution of the generated and original sam-
ples in a two-dimensional space. Figure 10 presents the results of the PCA and t-SNE visualizations, where
red points represent the feature distribution of the real infrasound data, and blue points represent the feature
distribution of the generated infrasound data. The closer the two sets of points are to each other, the bet-
ter the model’s performance, indicating that the distribution of the generated samples closely matches that of
the real data.

From the analysis, the feature distribution of the data generated by TimeGAN closely aligns with the feature
profile of the original data, demonstrating a high degree of similarity. In contrast, DCGAN fails to generate
certain features that are present in the original data, resulting in a mismatch between the feature distribution
of the generated and original data. When augmenting time-dependent data, TimeGAN significantly outperforms
DCGAN, showcasing its superior performance in capturing temporal dynamics.

3.4. Infrasound prediction

Considering that the model is designed for infrasound prediction tasks with small sample sizes, the generated
samples must be as effective as the real data samples. These samples should serve to augment the dataset, ensuring
that each sample contains sufficient information to improve the performance of the infrasound prediction model.
The generated data is combined with the original data, with the amount of synthetic data being twice the
size of the original dataset. Additionally, three consecutive data points are grouped together to form a single
sample. The synthesized dataset is then used to train the diagnostic model, which is subsequently tested on
a separate test set. The infrasound prediction accuracy after training is used as an evaluation metric to assess
whether the inclusion of the generated data enhances the model’s predictive capability, particularly in small
sample scenarios.

The results shown in Fig. 11 represent the accuracy after 60 iterations of the model. From the figure, it can
be observed that the data generated by the classical GAN-CAPN and LSTM-CAPN model reduces the accuracy
by 5.76 % and 3.64 % compared to CAPN, which decreases the performance of the infrasound prediction model.
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88 %
86.23 %
86 %
84 % 83.16 %
. 82.01 %
8% s061% 8096%  BL16%
80 %
8% 76.97 %
6% 74.85 %
74 %
72 %
70 %
68 %
o~ &~ o~ o~ o~ ~ ~ &~
® ® » » » » » w
C < S o < <o o S
= N & ¢ & S &
< & < & S RS 9
& Q &
& &S

Fig. 11. Comparison of diagnostic accuracy after sample augmentation.

Apart from the GAN-CAPN and LSTM-CAPN model, datasets that were not augmented with a generative
model perform poorly in infrasound prediction after training. Compared to the DCGAN-CAPN, WGAN-CAPN,
Transformer-CAPN, and GRU-CAPN models, the TimeGAN-CAPN model generates higher-quality data by con-
sidering the internal temporal correlations in the data, effectively addressing the issue of insufficient information
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in the samples. The prediction accuracy improved by 5.62 % compared to when no augmentation was performed.
Therefore, using the TimeGAN model to augment the infrasound data and inputting the augmented data into the
CAPN infrasound prediction model can significantly improve the infrasound prediction accuracy.

Table 3 shows a comparison of the classification performance of eight methods for infrasound signals. The
experimental results indicate that TimeGAN-CAPN achieves the best overall classification Precision, reaching
84.62 %. In addition, TimeGAN-CAPN also significantly outperforms the other seven classification methods in
terms of Fl-score and Recall, with values of 86.02 % and 87.26 %, respectively.

Table 3. Comparison of classification results for four types of infrasound events
by different classification networks [%)].

Method F1-score Recall Precision
CAPN 80.07 79.62 79.16
GAN-CAPN 74.39 73.68 73.07
LSTM-CAPN 76.27 75.89 75.25
GRU-CAPN 80.29 79.68 78.97
Transformer-CAPN 80.76 80.92 79.13
WGAN-CAPN 81.96 82.17 80.86
DCGAN-CAPN 83.11 84.06 81.71
TimeGAN-CAPN 86.02 87.26 84.62

Further analysis shows that, compared to other classification networks, TimeGAN-CAPN exhibits higher
classification accuracy and more stable classification performance in infrasound classification. To provide a com-
prehensive evaluation of its performance, Fig. 12 presents the ROC curve for different methods. From the figure,
it is evident that the AUC value of TimeGAN-CAPN reaches 0.8451, significantly higher than the other seven

networks, further validating its superior performance in the infrasound signal classification task.
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Fig. 12. ROC curve of different classification methods.

To analyze the infrasound recognition performance, eight classification models were evaluated using 6-fold
cross-validation to obtain the accuracy of real labels and predicted labels from six validation runs. The confu-
sion matrix for infrasound classification is shown in Fig. 13. From the perspective of single-class classification
performance, TimeGAN-CAPN demonstrates significant advantages in classifying earthquake, tsunami, and vol-
canic infrasound signals. This result thoroughly confirms the robustness and generalization ability of the proposed

method in handling different types of infrasound signals.
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Fig. 13. Confusion matrix for infrasound classification.
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4. Conclusion and future work

To further enhance the accuracy of infrasound disaster prediction, this paper proposes the TimeGAN-CAPN
prediction model. The TimeGAN-CAPN model combines unsupervised and supervised learning, where the au-
toencoder component provides an embedding space for temporal features. The generative component operates
within this embedding space to produce high-quality sequential data. By augmenting the sample data, the model
increases the information content, and these new samples are then input into the CAPN to more effectively
capture class prototypes, further improving prediction performance. The quality and diversity of the generated
data are quantitatively and qualitatively assessed using the MMD metric and visualization methods, demon-
strating that TimeGAN-CAPN generates data that closely approximates the original distribution. Comparative
experiments highlight the superior predictive performance of TimeGAN-CAPN.

Although the TimeGAN-CAPN model improves infrasound prediction accuracy, it does not transform data
into two-dimensional images as seen in traditional fault diagnosis models due to the limited quantity and lack
of periodicity in the data. As a result, the TimeGAN-CAPN model is specifically tailored for infrasound data.
Future research could explore the use of transfer learning techniques to apply the trained model to different
disaster datasets, thereby improving the model’s generalizability.
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