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Due to the complexity of the infrasound environment and the high costs associated with 

data collection, frequent acquisition of infrasound data is often impractical, resulting in a 

limited amount of labeled data. To address the challenge of low classification prediction 

accuracy caused by data scarcity, this paper proposes an infrasound prediction model based on 

a Time-series Generative Adversarial Network (TimeGAN) and Coordinated Attention 

Prototype Network (CAPN) (TimeGAN-CAPN). The model begins by introducing TimeGAN, 

where the generative network is trained using a combination of unsupervised and supervised 

learning. This approach enables the network to operate within the latent space of temporal 

features and generate time-series data that closely aligns with the distribution of the original 

data. These generated samples are then combined with the original data to form an augmented 

dataset. Subsequently, the augmented data is input into the CAPN, which enhances the sample 

size per class, allowing for more precise class prototypes and improving the prediction accuracy 

of the model. Furthermore, the quality and diversity of the data generated by TimeGAN are 

quantitatively and qualitatively assessed using Maximum Mean Discrepancy (MMD) and t-

Distributed Stochastic Neighbor Embedding (t-SNE), facilitating a comparison and verification 

of the generated data's performance. Experimental results show that TimeGAN-CAPN 

significantly outperforms the CAPN model in classification tasks with limited infrasound data, 

achieving a 7.15% increase in accuracy. This demonstrates that the proposed method is highly 

effective for predicting infrasound-related disasters, particularly in scenarios with small sample 

sizes. 

Keywords: infrasound signal; time-series generative adversarial network; coordinated 

attention prototype network; maximum mean discrepancy. 
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1. Introduction 

Infrasound (≤20Hz) refers to sound waves with frequencies below the human hearing 

range, and is characterized by long propagation distances and strong penetration ability (Sovilla 

et al., 2025; Lu et al., 2023). Many extreme events, such as earthquakes, tsunamis, and 

explosions, generate infrasound waves. Globally, infrasound monitoring has been widely 

applied in the prediction and prevention of natural disasters. Infrasound event detection is the 

foundation of infrasound monitoring, with its main goal being to extract infrasound events from 

a large amount of background noise and determine the event’s scope (Dong et al., 2024). Event 

detection is significant for subsequent research such as event classification and localization. 

Therefore, improving the effectiveness of event detection has become a key issue in the field 

of infrasound research. 

The importance of infrasound event detection algorithms in infrasound monitoring has led 

to rapid advancements in their technological research. Many scholars have conducted studies 

on infrasound event detection methods, and new methods continue to be introduced. Baeza et 

al. (2022) explored the potential health impacts of infrasound and advocates for improvements 

in housing conditions to mitigate these effects. Watson et al. (2022) reviewed the advancements 

in volcano infrasound research and outlines future directions for further investigation and 

application in volcanic monitoring. Friedrich et al. (2023) examined how infrasound affects the 

perception of low-frequency sounds and its potential influence on human perception and 

response. Hupe et al. (2022) discussed the use of infrasound data products from the 

International Monitoring System for atmospheric studies and various civilian applications. 

Macpherson et al. (2023) explored the use of local infrasound to estimate seismic velocity and 

earthquake magnitudes, offering a new approach for seismic monitoring. Listowski et al. (2022) 

investigated the use of infrasound for remotely monitoring Mediterranean hurricanes, 

highlighting its potential for early detection and tracking. Zajamsek et al. (2023) explored how 

infrasound influences the detectability of amplitude-modulated tonal noise, focusing on its 

impact on human perception. Wilson et al. (2023) presented findings from a long-term 

microphone array deployment in Oklahoma, analyzing infrasound and low-audible acoustic 

detections for various environmental and geophysical applications. Yang et al. (2025) examined 
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the correlation between gas desorption processes and infrasound signals, investigating the 

underlying mechanisms that link the two phenomena. However, the above methods do not 

consider the prediction of infrasound signals in small sample scenarios. 

To address the challenge of low classification prediction accuracy caused by the scarcity 

of labeled infrasound signal samples, this paper proposes an infrasound prediction model based 

on TimeGAN-CAPN. The model first expands the temporal infrasound data using TimeGAN, 

then combines the generated data with the original dataset to train the prediction model, thereby 

enhancing its performance. Subsequently, drawing on the principles of metric learning, a 

coordinated attention mechanism is integrated into the traditional prototype network to extract 

more discriminative feature information, facilitating the accurate construction of metric 

prototypes for various types of infrasound. Inspired by the biological binocular system, a deep 

mutual learning framework is introduced to integrate convolutional neural networks with 

CAPN, further improving the model’s prediction accuracy. Experimental results demonstrate 

that the proposed method outperforms other approaches in classification performance, 

significantly enhancing disaster early warning rates and advancing the practical application of 

infrasound detection algorithms. 

The structure of this paper is as follows: Sec. 2 provides a brief overview of the basic 

theories behind TimeGAN, CAPN, and TimeGAN-CAPN, which are used in this study; Sec. 3 

presents a performance comparison of different methods through experiments; finally, 

conclusions are drawn in Sec. 4. 

2. Methods 

2.1. TimeGAN 

Yoon et al. proposed the TimeGAN by combining the flexibility of unsupervised learning 

with the strong control of the training process in supervised learning (Yoon et al., 2019). Its 

training process is essentially a process of solving the min-max problem of a binary function. 

The model consists of two networks: the reconstruction network and the embedding network; 

and two generative models: the discriminator and the generator. It uses three different loss 

functions: the generation loss function, the supervised loss function, and the unsupervised loss 

function to train the network. 

The Time-GAN model uses gradient descent for parameter optimization, with the 
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generator typically taking random noise and vectors as input. The loss function is expressed as 

follows (Sharma et al., 2024): 

𝐿𝐿𝐺𝐺(𝑍𝑍) = 𝐸𝐸𝑍𝑍~𝑃𝑃𝑍𝑍(𝑍𝑍) �log �1 − 𝐷𝐷�𝐺𝐺(𝑍𝑍)���,               (1) 

where 𝐿𝐿𝐺𝐺(⋅) is the generator’s loss function，𝐸𝐸(⋅) is the embedding network’s expected loss, 

𝐺𝐺(⋅)  is the generator function，𝐷𝐷(⋅)  is the discriminator function, 𝑃𝑃𝑍𝑍(⋅)  is the noise data 

distribution, 𝑍𝑍 is the random variable for noise input. 

The input variables for the discriminator are synthetic data and real data to be distinguished, 

and the loss function is expressed as (Vuletic et al., 2024) : 

𝐿𝐿𝐷𝐷(𝑥𝑥) = 𝐸𝐸𝑋𝑋~𝑃𝑃𝑖𝑖(𝑥𝑥)[log𝐷𝐷 (𝑥𝑥)] + 𝐸𝐸𝑋𝑋~𝑃𝑃𝐺𝐺(𝑥𝑥)�log�1 − 𝐷𝐷(𝑥𝑥)��       (2) 

where 𝐿𝐿𝐷𝐷(⋅)  is the real data variable, 𝑖𝑖  is the fake data variable, 𝑃𝑃𝑖𝑖(⋅) is the real data 

distribution, 𝑥𝑥 is the input random variable. 

2.2. CAPN 

The CAPN model is shown in Fig. 1. It consists of two parallel views: in the global view, 

a convolutional neural network (CNN) is used to capture inter-class relationships, while in the 

local view, a prototype network with a coordinated attention mechanism focuses more on 

matching details (Jiang et al., 2025). The two views are then aggregated through a deep mutual 

learning framework, implicitly exploring useful knowledge from each other. The training 

process aims to find the best hyperparameter settings and leverage prior knowledge to better 

train specific test tasks. Finally, during the testing process, the collaborative features from both 

views are combined to perform classification tasks, thereby improving the accuracy of few-shot 

classification prediction. The model is mainly divided into three parts: the global view, the local 

view, and cross-view mutual learning. 

Fig. 1. Structure of CAPN. 
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2.2.1. The global view 

In the global view, a one-dimensional convolutional network is used for training. 

Specifically, for a given task 𝛤𝛤，a global learner 𝐴𝐴∅𝐺𝐺  is trained to map each data sample 𝑥𝑥𝑖𝑖 in 

the 𝛤𝛤  set to a high-dimensional space. The probability distribution of 𝑥𝑥𝑖𝑖  is expressed as 

follows (Zhang et al., 2024): 

 𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑦𝑦|𝑥𝑥𝑖𝑖) = 𝜎𝜎 �𝐴𝐴∅𝐺𝐺(𝑥𝑥𝑖𝑖)�, (3) 

where 𝜎𝜎  is the softmax activation function. It serves to combine the extracted features for 

nonlinear activation, outputting the probability distribution of each class, which is then used for 

classification.  

The loss function is calculated using cross-entropy, i.e., the negative logarithm of the 

probability 𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑦𝑦|𝑥𝑥𝑖𝑖). Therefore, the loss function for the global view is as follows (Tang 

et al., 2023): 
 𝐿𝐿global = 𝐸𝐸(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝑇𝑇 ⋅ ∑ 𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 log𝑃𝑃 (𝑦𝑦𝑖𝑖 = 𝑦𝑦|𝑥𝑥𝑖𝑖). (4) 

 

2.2.2. The local view 

In the local view, a prototype network is used to match each query sample with the class 

prototype from the support set in the embedding space. Therefore, in the local view, a prototype 

network with a coordinated attention mechanism is applied. 

This model consists of three parts: feature embedding, prototype generation, and feature 

distance-based classification. The structure is shown in Fig. 2. The first step is to use a feature 

embedding module with an attention mechanism for feature embedding. Support set and query 

set samples are passed through the convolutional layers. By adding the coordinated attention 

mechanism, both spatial and channel information are extracted, and by embedding position 

information in channel attention, accurate position details and long-range dependencies are 

captured. This allows the feature embedding to focus more on useful local feature information, 

enhancing the feature representation ability of the feature embedding network. The second step 

is to compute the class prototype features by averaging the feature maps of samples from the 

same class. The mean feature serves as the class prototype feature. The third step is to measure 

the distance between the category prototype features learned by the feature embedding network 
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6 

and the query sample features using a selected distance metric, such as Euclidean distance. 

According to the principle that similar samples are close and dissimilar samples are far apart, 

the closest prototype to the query set output is selected as the predicted result, and the network 

is trained until it meets the required model and label prototypes. Classification prediction is 

then performed using the saved optimal coordinated attention prototype network. 

Fig. 2. Structure of CAPN for the classification prediction. 

2.2.3. The cross-view mutual learning 

In addition to learning within each individual view, the global and local views also 

mutually promote each other through cross-view interaction in the deep mutual learning 

network. Specifically, for each view, in addition to completing its own training task, the view 

also minimizes the imitation loss from the other view. This imitation loss uses the Kullback-

Leibler divergence to quantify the match between the prediction probabilities of the two 

networks, which aids in implicit knowledge transfer. The mutual loss is shown in Eq. (5), which 

includes two sub-items (Ji et al., 2020): 

𝐿𝐿mutual = 𝐷𝐷𝐾𝐾𝐾𝐾�𝐹𝐹1‖𝐹𝐹𝑔𝑔� + 𝐷𝐷𝐾𝐾𝐾𝐾�(𝐹𝐹𝐺𝐺‖𝐹𝐹1)� (5) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝐹𝐹1‖𝐹𝐹𝑔𝑔� = 𝐹𝐹1 𝑙𝑙𝑙𝑙𝑙𝑙
𝐹𝐹1
𝐹𝐹𝑔𝑔

 (6) 

𝐷𝐷𝐾𝐾𝐾𝐾�𝐹𝐹𝑔𝑔�𝐹𝐹1� = 𝐹𝐹𝑔𝑔 𝑙𝑙𝑙𝑙𝑙𝑙
𝐹𝐹𝑔𝑔
𝐹𝐹1

(7) 

where 𝐹𝐹()  represents the feature distribution computed by 𝜎𝜎(𝐴𝐴∅(𝑥𝑥)) , and the interaction 

problem is considered from the perspective of feature distribution consistency. The learning in 

Euclidean space focuses on relative relationships rather than hard constraints like mean square 

error. This is because overly strong supervision signals are not conducive to preserving the 

specificity of both views.  
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Thus, the final loss function of the model is given by (Ruddick et al., 2024): 

 𝐿𝐿total = 𝛼𝛼𝐿𝐿global + 𝛽𝛽𝐿𝐿�11 + 𝛾𝛾𝐿𝐿mutual, (8) 

where 𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾  are the weighting factors. The optimal loss weights 𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾  are 

determined through a systematic hyperparameter tuning process using grid search combined 

with cross-validation. This paper explores various combinations of 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 within a pre-

defined range, informed by prior work on similar models and the characteristics of infrasound 

data. The model’s performance is evaluated based on classification accuracy and loss using a 

validation set, with the aim of balancing the three loss terms – reconstruction loss, supervised 

loss, and unsupervised loss – while avoiding overfitting. After multiple iterations, the values 

that resulted in the highest overall performance are selected, ensuring the model effectively 

captured both temporal and discriminative features of the infrasound signals. 

2.3. The proposed approach 

The TimeGAN-CAPN infrasound prediction model proposed in this paper is illustrated in 

Fig. 3. It consists of three main components: data preprocessing, data generation, and 

infrasound prediction. In the data preprocessing phase, missing values in the sensor-collected 

data are imputed using the nearest neighbor interpolation method. The data is then normalized 

using min-max normalization, ensuring consistent dimensions and complete features, which 

enhances its usability. In the data generation phase, a TimeGAN model is constructed, and the 

collected data samples are fed into the generative model. Through an adversarial process 

between the generator and discriminator in the latent space, the loss function is computed to 

update the model parameters, ultimately generating high-quality infrasound data samples. 

These generated samples are then combined with the original data to form an augmented dataset. 

In the infrasound prediction phase, the synthesized dataset is split into a training set and a test 

set. The training set is used to train the CAPN-based infrasound prediction model. The final 

model is then applied to infrasound prediction tasks for early disaster detection. 

 

2.3.1. Data preprocessing 

The collected infrasound dataset contains valuable infrasound characteristics but is 

presented in various forms, lacking uniformity, which makes it unsuitable for direct use in 

machine learning models. Consequently, data preprocessing is essential to extract useful 
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parameters and convert the infrasound data into a standardized format that can be effectively 

recognized by learning algorithms. Initially, missing values are imputed to ensure the 

completeness of the dataset. Following this, the input vectors are normalized to standardize the 

units, thereby preventing issues such as disproportionately large feature weights that could lead 

to increased model training time or gradient explosion problems. 

 

 
Fig. 3. Framework of the proposed approach. 

In the experiments, the nearest neighbor interpolation method is used to fill missing data. 

The nearest neighbor interpolation method uses the previous and next values of the missing 

data. Let the value at time 𝑡𝑡1 be 𝑥𝑥1, at time 𝑡𝑡2 be 𝑥𝑥2, and at time 𝑡𝑡3 be 𝑥𝑥3. The missing 

value 𝑥𝑥2 can be expressed as follows (Sehar et al., 2025): 

 𝑥𝑥2−𝑥𝑥1
𝑥𝑥3−𝑥𝑥1

= 𝑦𝑦2−𝑦𝑦1
𝑦𝑦3−𝑦𝑦1

 (9) 

For normalization, the min-max normalization method is used to map the results to the 

interval �0，1�, as shown in Eq. (10). The original data 𝑥𝑥 is normalized to 𝑥𝑥∗, where 𝑥𝑥min 

and 𝑥𝑥max are the minimum and maximum values in the original data, respectively (Mitropoulos 

et al., 2022): 

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 A

R
C

H
IV

E
S O

F A
C

O
U

ST
IC

S



9 

𝑥𝑥∗ = 𝑥𝑥−𝑥𝑥min
𝑥𝑥minmax

. (10) 

2.3.2. Data generation 

In the data generation phase, the TimeGAN model is composed of four primary 

components: the embedding network, the recovery network, the sequence generator, and the 

sequence discriminator. The embedding and recovery networks fall under the autoencoder 

category, while the sequence generator and discriminator are part of the generative adversarial 

network framework. As a result, TimeGAN involves joint training of both the autoencoding and 

adversarial components. In the autoencoding section, the embedding network maps high-

dimensional data into a lower-dimensional vector, or latent space, to capture essential feature 

information. The recovery network then reconstructs the data from this latent space back to its 

original dimensionality, minimizing the reconstruction loss LR to optimize the representation of 

the latent space. Following the principle that the dynamics of complex systems are often driven 

by a smaller set of lower-dimensional factors, the adversarial component trains the sequence 

generator and discriminator within the latent space produced by the embedding network. This 

approach alleviates the challenges associated with high-dimensional data during the adversarial 

training process. 
The embedding and recovery functions achieve the mapping from feature space to latent 

space, enabling the adversarial network to learn the potential time characteristics of the data 

through low-dimensional representations. Let 𝐻𝐻𝑆𝑆 represent the latent vector space containing 

time-related feature 𝑆𝑆, and similarly, let 𝐻𝐻𝑋𝑋 represent the latent vector space for static feature 

𝑋𝑋. The role of the embedding function 𝑒𝑒 is to encode real-time sequences into the latent space, 

defined as 𝑆𝑆 × ∏𝑡𝑡𝑋𝑋 → 𝐻𝐻𝑆𝑆 × ∏𝑡𝑡𝐻𝐻𝑋𝑋. This function uses a recurrent neural network (RNN) to 

perform the mapping, encoding both static and temporal features into low-dimensional latent 

vectors ℎ𝑆𝑆, ℎ1:𝑇𝑇 = 𝑒𝑒(𝑆𝑆,𝑋𝑋1:𝑇𝑇) that are easier for the network to learn. The embedding function 

is expressed as (Ruddick et al., 2024): 

� ℎ𝑆𝑆 = 𝑒𝑒𝑆𝑆(𝑆𝑆)
ℎ𝑡𝑡 = 𝑒𝑒𝑋𝑋(ℎ𝑆𝑆, ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡)

, (11) 

where 𝑒𝑒𝑆𝑆: 𝑆𝑆 → 𝐻𝐻𝑆𝑆  is the embedding function for static features, aimed at converting static 

features 𝑆𝑆 into low-dimensional static features ℎ𝑆𝑆 through mapping, and 𝑒𝑒𝑋𝑋:𝐻𝐻𝑆𝑆 × 𝐻𝐻𝑋𝑋 × 𝑋𝑋 →

𝐻𝐻𝑋𝑋  is the RNN-based embedding function for temporal features, aiming to map temporal 

features 𝑋𝑋𝑡𝑡 into low-dimensional static features ℎ𝑡𝑡. It follows causal ordering, meaning each 
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step’s output depends only on the preceding information.  

The recovery function 𝛾𝛾 performs decoding, defined as 𝐻𝐻𝑆𝑆 × ∏𝑡𝑡𝐻𝐻𝑋𝑋 → 𝑆𝑆 × ∏𝑡𝑡𝑋𝑋. It uses 

a feedforward neural network (FNN) to restore the low-dimensional latent code back into high-

dimensional static and temporal features 𝑆̃𝑆,𝑋𝑋�1:𝑇𝑇 = 𝛾𝛾(ℎ𝑆𝑆, ℎ1:𝑇𝑇) (Ruddick et al., 2024): 

 � 𝑆̃𝑆 = 𝛾𝛾𝑆𝑆(ℎ𝑆𝑆)
𝑋𝑋�𝑡𝑡 = 𝛾𝛾𝑋𝑋(ℎ𝑡𝑡)

, (12) 

where 𝛾𝛾𝑆𝑆:𝐻𝐻𝑆𝑆 → 𝑆𝑆is the recovery function for static features, which is the inverse mapping of 

ℎ𝑆𝑆, and similarly, 𝛾𝛾𝑋𝑋:𝐻𝐻𝑋𝑋 → 𝑋𝑋represents the recovery network for temporal feature embeddings, 

which is the inverse mapping of ℎ𝑡𝑡. 

In the autoencoding part, the embedding function maps high-dimensional static and 

temporal features into a low-dimensional latent space, and the recovery function maps them 

back to high-dimensional features. Therefore, the embedding function and recovery function 

are reversible mappings existing between feature space and latent space. They can accurately 

represent the high-dimensional reconstructed data 𝑆̃𝑆,𝑋𝑋�1:𝑇𝑇 using high-dimensional original data 

𝑆𝑆,𝑋𝑋1:𝑇𝑇 and low-dimensional latent vectors ℎ𝑆𝑆,ℎ1:𝑇𝑇 . The reconstruction loss 𝐿𝐿𝑅𝑅  of the 

autoencoder part is shown in Eq. (13), which represents the autoencoder’s understanding of the 

intrinsic patterns in the input data  (JI et al., 2020). By optimizing the reconstruction, the 

autoencoder can generate higher-quality low-dimensional latent representations: 

 𝐿𝐿𝑅𝑅 = 𝐸𝐸𝑆𝑆,𝑋𝑋1:𝑇𝑇~𝑃𝑃 ��𝑆𝑆 − 𝑆̃𝑆�
2

+ ∑ �𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡�𝑡𝑡 2
�. (13) 

During TimeGAN’s training, two types of data are input into the sequence generator. In 

the open-loop mode, the low-dimensional data ℎ�𝑆𝑆,ℎ�1:𝑇𝑇 generated by the generator is input into 

the sequence generator to obtain the next generated vector ℎ�𝑡𝑡 . Then, by optimizing the 

unsupervised loss 𝐿𝐿𝑈𝑈 , the probability of correctly classifying the real data ℎ𝑆𝑆, ℎ1:𝑇𝑇  and 

generated data ℎ�𝑆𝑆, ℎ�1:𝑇𝑇 is increased (Ji et al., 2020): 

𝐿𝐿𝑈𝑈 = 𝐸𝐸𝑆𝑆,𝑋𝑋1:𝑇𝑇~𝑃𝑃[log 𝑦𝑦𝑆𝑆 + ∑ log 𝑦𝑦𝑡𝑡𝑡𝑡 ] + 𝐸𝐸𝑆𝑆,𝑋𝑋1:𝑇𝑇~𝑃𝑃�log(1 − 𝑦𝑦�𝑆𝑆) + ∑ �1 − log𝑦𝑦�𝑡𝑡�𝑡𝑡 �.   (14) 

Due to insufficient adversarial feedback from the sequence discriminator, the sequence 

generator does not fully capture the conditional distribution of the time steps in the real data. 

Therefore, TimeGAN introduces supervised loss to further constrain the model and alternates 

training in the closed-loop mode. The low-dimensional temporal latent sequence ℎ1:𝑡𝑡−1 

encoded by the embedding network is input into the sequence generator to obtain the latent 

vector for the next time step. Then, the supervised loss is optimized using the maximum 

likelihood method, which reflects the similarity between the data generated by the sequence 

generator and the data encoded by the autoencoder. This loss measures the difference between 
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distributions 𝑝𝑝�𝐻𝐻𝑡𝑡|𝐻𝐻𝑆𝑆,𝐻𝐻1,𝑡𝑡−1� and 𝑝̂𝑝�𝐻𝐻𝑡𝑡|𝐻𝐻𝑆𝑆,𝐻𝐻1,𝑡𝑡−1�. The supervised loss 𝐿𝐿𝑆𝑆 obtained using 

the maximum likelihood method (Tang et al., 2023): 

𝐿𝐿𝑆𝑆 = 𝐸𝐸𝑆𝑆,𝑋𝑋1:𝑇𝑇~𝑃𝑃[∑ ‖ℎ𝑡𝑡 − 𝑔𝑔𝑋𝑋(ℎ𝑆𝑆, ℎ𝑡𝑡−1, 𝑧𝑧𝑡𝑡)‖2𝑡𝑡 ] .           (15) 

At each training step, the difference between the next latent vector from the embedding 

function and the next latent vector synthesized by the sequence generator needs to be evaluated. 

Although the unsupervised loss 𝐿𝐿𝑈𝑈 can guide the sequence generator to create real sequences, 

the supervised loss 𝐿𝐿𝑆𝑆 ensures that it generates smooth transitions. 

2.3.3. Infrasound prediction 

The specific process of the coordinated attention mechanism is shown in Fig. 4, which 

includes two steps: information embedding and attention generation.  

 
Fig. 4. Schematic of the coordinated attention generation process 

The information embedding component plays a crucial role in enhancing the attention 

module's ability to capture a higher-quality global receptive field while preserving the accuracy 

of positional encoding. In traditional channel attention, global pooling is commonly used to 

encode spatial information. However, this approach often compresses global spatial data into 

channels, making it challenging to retain precise positional information. To address this issue, 

the information embedding operation decomposes the global average pooling step by pooling 

separately along both the horizontal and vertical axes of the input features. This technique 

aggregates features from both spatial directions, resulting in two feature maps that retain 

directional information. As shown in Fig. 5, by performing transformations along both 

directions, long-range dependencies along one spatial axis and positional information along the 

other are captured by the attention module, enabling the network to more effectively localize 
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key targets. 

 
Fig. 5. Schematic of the coordinated attention information embedding operation. 

 
Specifically, in the horizontal direction, the global average pooling operation uses a 

pooling kernel of size 𝐻𝐻 × 1 to compress the input feature 𝑋𝑋 dimensions from 𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶 

to 𝐻𝐻 × 1 × 𝐶𝐶 (Tang et al., 2023): 

 𝑍𝑍𝑐𝑐ℎ(ℎ) = 1
𝑊𝑊
∑ 𝑥𝑥0≤𝑎𝑎≤𝑊𝑊 𝐶𝐶 (ℎ,𝑎𝑎), 𝑧𝑧𝐶𝐶ℎ ∈ 𝑅𝑅𝐶𝐶∗𝐻𝐻∗1. (16) 

In the vertical direction, the global average pooling operation uses a pooling kernel of 

1 × 𝑊𝑊size to compress the input feature dimensions from 𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶 to 𝐻𝐻 × 1 × 𝐶𝐶 (Zhang 

et al., 2024): 

 𝑍𝑍𝑐𝑐𝑤𝑤(𝑤𝑤) = 1
𝐻𝐻
∑ 𝑥𝑥0≤𝑏𝑏≤𝐻𝐻 𝐶𝐶 (𝑏𝑏,𝑤𝑤), 𝑧𝑧𝐶𝐶𝑤𝑤 ∈ 𝑅𝑅𝐶𝐶∗1∗𝑊𝑊. (17) 

The attention generation operation aims to fully utilize the positional information encoded 

in the embedding operation and capture the regions of interest and relationships between 

channels. Specifically, the feature maps from the two directions, 𝑍𝑍𝐶𝐶ℎ and 𝑍𝑍𝐶𝐶𝑤𝑤, are concatenated 

along the channel dimension, and then convolution operations are applied using a shared 

convolutional transformation function 𝐹𝐹1 , obtaining intermediate feature maps 𝑓𝑓 , 𝑓𝑓 ∈

𝑅𝑅
𝐶𝐶
𝑟𝑟×(𝐻𝐻+𝑊𝑊), which encode both horizontal and vertical directions (Zhang et al., 2024): 

 𝑓𝑓 = 𝛿𝛿 �𝐹𝐹1��𝑧𝑧ℎ, 𝑧𝑧𝑤𝑤��� , 𝑓𝑓 ∈ 𝑅𝑅
𝐶𝐶
𝑟𝑟∗1∗(𝐻𝐻+𝑊𝑊), (18) 

where 𝛿𝛿 is the non-linear activation function Relu，�⋅， ⋅� represents the concatenation along 

the spatial dimension. 

Then, the intermediate feature map 𝑓𝑓 is split along the spatial dimensions into two feature 

maps 𝑓𝑓ℎ and 𝑓𝑓𝑤𝑤, 𝑓𝑓ℎ ∈ 𝑅𝑅
𝑐𝑐
𝑟𝑟×𝐻𝐻,𝑓𝑓𝑤𝑤 ∈ 𝑅𝑅

𝑐𝑐
𝑟𝑟×𝑊𝑊. Each feature map is upsampled using convolution 

operations 𝐹𝐹ℎ  and 𝐹𝐹𝑤𝑤 , obtaining two directional attention weights 𝑔𝑔ℎ  and 𝑔𝑔𝑤𝑤 , 𝑔𝑔ℎ ∈

𝑅𝑅𝐶𝐶×𝐻𝐻×1,𝑔𝑔𝑤𝑤 ∈ 𝑅𝑅𝐶𝐶×1×𝑊𝑊, as follows (Jiang et al., 2025): 

 𝑔𝑔ℎ = 𝜎𝜎 �𝐹𝐹ℎ�𝑓𝑓ℎ��, (19) 
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 𝑔𝑔𝑤𝑤 = 𝜎𝜎�𝐹𝐹𝑤𝑤(𝑓𝑓𝑤𝑤)�. (20) 

Finally, the attention weights 𝑔𝑔ℎ and 𝑔𝑔𝑤𝑤are multiplied with the original features 𝑥𝑥𝐶𝐶 to 

obtain the scaled features 𝑦𝑦𝐶𝐶 (Jiang et al., 2025) : 

 𝑦𝑦𝐶𝐶(𝑎𝑎, 𝑏𝑏) = 𝑥𝑥𝐶𝐶(𝑎𝑎, 𝑏𝑏) × 𝑔𝑔𝐶𝐶ℎ(𝑎𝑎) × 𝑔𝑔𝐶𝐶𝑤𝑤(𝑏𝑏). (21) 

2.4. Data det 

This study utilizes infrasound data provided by the international monitoring system (IMS) 

with support from the Comprehensive Nuclear-Test-Ban Treaty Beijing National Data Center. 

A total of 611 infrasound data sets are collected from six distinct infrasound sensor arrays 

located globally. These data sets are categorized into three types of infrasound events: 

Earthquake, Tsunami, and Volcano. All infrasound recordings have a sampling frequency of 20 

Hz. Table 1 presents the details of the infrasound data collected from various regions, while 

Fig. 6 illustrates the geographical distribution of the infrasound stations. 
Table 1. Information of infrasound data.  

Event type Data source     

(IMS Station Code)  

Geographic 

coordinate 

Number of  

signals 

Total Sampling  

frequency [Hz] 

Earthquake 

I14CL 

I30JP 

I59US 

(–33.65, –78.79) 

(35.31,140.31) 

(19.59, –155.89) 

74 

124 

6 

203 

20 

20 

20 

Tsunami 

I10CA 

I22FR 

I30JP 

I52GB 

(50.20, –96.03) 

(–22.18,166.85) 

(35.31,140.31) 

(–7.38,72.48) 

4 

53 

113 

66 

218 

20 

20 

20 

20 

Volcano  I30JP (35.31,140.31) 189 189 20 

 

Fig. 6. Map of the infrasound station. 
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3. Experiments

3.1 Experiments setup 

The operating system used in this study is Windows 11, with CUDA 10.0 and cuDNN 7.4 

for accelerated training. The hardware used includes an NVIDIA Quadro P4000 (8 GB memory). 

The network development framework is TensorFlow 1.14, and programming is done in Python. 

The CPU used is an Intel(R) Core(TM) i5-11320H CPU @ 3.20 GHz, 2.5 GHz. As described 

in Subsec. 2.2, the key parameters of the CAPN are summarized in Table 2. The simulation 

validation focuses on applying the infrasound signal data to assess the feature learning 

performance of the proposed CAPN model. Each infrasound signal consists of 10 400 data 

points. The dataset is divided into training and testing samples. The input map size for the 

CAPN model is 128 × 128 × 1. The number of iterations is set to 60. 

Table 2. Parameter of CAPN. 

Number of layer Layer type Kernel size Filters 

1 Convolution 1 12 × 12 4 

2 Maxpooling 1 5 × 5 –

3 Convolution 2 7 × 7 4 

4 Maxpooling 2 5 × 5 –

5 Convolution 3 5 × 5 8 

6 Maxpooling 3 5 × 5 –

7 Flatten – –

8 Fully-connected – –

9 Softmax – –

3.2 Data preprocessing 

The infrasound data collected in this study are smoothed to effectively eliminate noise. Fig. 

7a displays the original infrasound signal, which contains substantial noise. To reduce 

computational complexity, a moving average filtering method is applied for smoothing, with 

the resulting signal shown in Fig. 7b. Details of the moving average filtering method can be 

found in (Mitropoulos et al., 2022). A total of 70 % of the smoothed data are used as the training 
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set, while the remaining 30 % are allocated as the testing set. Finally, data standardization and 

normalization are performed using Eqs. (9) and (10). 

 

a) 

  
b) 

Fig. 7. Original (a) and preprocessing (b) signal.  

3.3 Data generation 

To evaluate the quality of the data generated by the model, both fidelity and diversity are 
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taken into account. Fidelity refers to the degree to which the generated samples resemble the 

real data, while diversity ensures that the generated samples do not exhibit excessive similarity 

to each other. Thus, the performance of the generated model is assessed from both qualitative 

and quantitative perspectives. 

3.3.1. Discriminator score 
The performance of the generative model is quantitatively assessed from the quality and 

diversity of the generated samples. In this study, the maximum mean discrepancy (MMD) 

metric is used to evaluate the generative model based on the difference in sample distributions. 

MMD is used to measure the distance between two distributions in Hilbert space. Thus, for the 

generative model, this metric can measure the distance between the original data distribution 

𝑃𝑃𝑜𝑜 and the generated data distribution 𝑃𝑃𝑔𝑔. The smaller the MMD distance, the more similar the 

distributions of the original and generated data are, indicating higher quality of the generated 

samples and better model performance. 

When calculating the MMD distance, the Gaussian kernel function 𝐾𝐾(𝑥𝑥,𝑦𝑦) is used to 

map the two samples into a real number (Wang et al., 2021): 

 𝐾𝐾(𝑥𝑥,𝑦𝑦) = exp(−‖𝑥𝑥 − 𝑦𝑦‖2). (22) 

The MMD distance 𝐷𝐷MMD�𝑃𝑃𝑜𝑜 ,𝑃𝑃𝑔𝑔� is expressed as Eq. (23) (Wang et al., 2021) : 

𝐷𝐷MMD�𝑃𝑃𝑜𝑜 ,𝑃𝑃𝑔𝑔� = 𝐸𝐸𝑥𝑥,𝑥𝑥′~𝑃𝑃𝑜𝑜[𝐾𝐾(𝑥𝑥, 𝑥𝑥 ′)] − 2𝐸𝐸𝑥𝑥~𝑃𝑃𝑜𝑜,𝑦𝑦~𝑃𝑃𝑔𝑔[𝐾𝐾(𝑥𝑥,𝑦𝑦)] + 𝐸𝐸𝑦𝑦,𝑦𝑦′~𝑃𝑃𝑔𝑔[𝐾𝐾(𝑦𝑦,𝑦𝑦 ′)].  (23) 

 
Fig. 8. MMD distances between generated data from different models and real data. 

 

In this experiment, both the original data and generated data have four state types: normal, 

earthquake, volcano, and tsunami. Therefore, the distribution of the original data is denoted as 

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 A

R
C

H
IV

E
S O

F A
C

O
U

ST
IC

S



17 
 

𝑃𝑃𝑜𝑜𝑜𝑜,𝑖𝑖 = (1,2,3,4), and the distribution of the generated data is denoted as 𝑃𝑃𝑔𝑔𝑔𝑔,𝑖𝑖 = (1,2,3,4). As 

shown in Fig. 8, the MMD distance between the original and generated data is calculated for 

infrasound data after applying several models, including GAN, LSTM, GRU, Transformer, 

WGAN, DCGAN, and TimeGAN. Compared to the other generative adversarial network 

models, TimeGAN exhibits the smallest MMD distance between the original and generated 

data. Notably, for the volcano data, the MMD distance is 1.364 times smaller for TimeGAN 

than for GAN, indicating that the distribution of TimeGAN-generated data closely matches the 

original data distribution, resulting in superior model performance. In contrast, the GAN model 

shows the largest discrepancy between the generated and original data, making it the least 

effective model. For the tsunami data, all four generative models show relatively high 

performance due to the distinct infrasound characteristics. However, for volcano data, where 

infrasound features are less pronounced, all models exhibit the largest MMD distance, 

suggesting a greater challenge in accurately modeling such data. Therefore, it can be concluded 

that TimeGAN generates relatively high-quality samples, outperforming the other models in 

terms of data fidelity. 

In addition, the MMD metric is also used to evaluate the diversity of the generated samples, 

albeit with a slightly different focus. Here, the goal is to measure the variability between the 

sample distributions within the generated data. Specifically, the MMD distance between the 

distributions of individual samples is calculated, and the mean of these distances is taken as the 

internal MMD distance of the generated data. A higher value of this distance indicates greater 

variability between the samples, reflecting higher diversity in the generated data and superior 

performance of the GAN. 

Let the number of distribution samples be 1, and let 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  represent the source 

distributions of two different samples. The MMD distance is given by (Wang et al., 2021): 

 𝐷𝐷MMD�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 2 − 2𝐸𝐸𝑥𝑥𝑖𝑖~𝑃𝑃𝑖𝑖,𝑥𝑥𝑗𝑗~𝑃𝑃𝑗𝑗�𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��, 𝑖𝑖 ≠ 𝑗𝑗. (24) 

Then, the internal MMD distance of the generated data, which measures the diversity 

within the samples, is given by (WANG et al., 2021): 

 ( )1

1 1

1 ,
1 2 1

N N
r MMD i ji j i

D D P P
N

−

= = +
=

+ + + − ∑ ∑


. (25) 

In the experiment, the internal MMD distances of the generated data from three classical 

generative adversarial networks and the proposed TimeGAN model are calculated, with the 

results presented in Fig. 9. The analysis reveals that, among the seven generative models, 

TimeGAN produces data with the largest internal MMD distance, indicating that it generates 
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data with higher diversity. This is particularly evident in the tsunami data. In contrast, GAN and 

WGAN perform the worst in generating diverse samples. For example, in the tsunami case, the 

internal MMD distance of the data generated by GAN is 0.0024 smaller than that of TimeGAN, 

WGAN is 0.002 smaller, and LSTM is 0.0018 smaller than TimeGAN. These results 

demonstrate that TimeGAN outperforms other models in terms of generating diverse and varied 

infrasound samples. 

 

 
Fig. 9. Internal MMD distances of generated data from different models. 

 

A comprehensive analysis of the MMD metric reveals that, in most cases, GAN, WGAN, 

and LSTM models only offer rough approximations of the original data, with limited quality 

and diversity in the generated samples. In contrast, TimeGAN, DCGAN, Transformer, and GRU 

models generate data with higher quality and greater diversity. To further validate the 

effectiveness of TimeGAN in infrasound prediction, a detailed performance comparison is 

conducted between these models. 

3.3.2. Visualization 

In the previous MMD analysis, TimeGAN and DCGAN demonstrated superior 

performance, and thus, these two models are the focus of further analysis. To qualitatively 

evaluate the effectiveness of the proposed method, the t-SNE and PCA techniques are applied 

to visualize the distribution of the generated and original samples in a two-dimensional space. 

Figure 10 presents the results of the PCA and t-SNE visualizations, where red points represent 

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 A

R
C

H
IV

E
S O

F A
C

O
U

ST
IC

S



19 
 

the feature distribution of the real infrasound data, and blue points represent the feature 

distribution of the generated infrasound data. The closer the two sets of points are to each other, 

the better the model’s performance, indicating that the distribution of the generated samples 

closely matches that of the real data. 

 

 

Fig. 10. WGAN and TimeGAN data visualization.  

From the analysis, the feature distribution of the data generated by TimeGAN closely aligns 

with the feature profile of the original data, demonstrating a high degree of similarity. In contrast, 

DCGAN fails to generate certain features that are present in the original data, resulting in a 

mismatch between the feature distribution of the generated and original data. When augmenting 

time-dependent data, TimeGAN significantly outperforms DCGAN, showcasing its superior 

performance in capturing temporal dynamics. 

3.4 Infrasound prediction 

Considering that the model is designed for infrasound prediction tasks with small sample 

sizes, the generated samples must be as effective as the real data samples. These samples should 
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serve to augment the dataset, ensuring that each sample contains sufficient information to 

improve the performance of the infrasound prediction model. The generated data is combined 

with the original data, with the amount of synthetic data being twice the size of the original 

dataset. Additionally, three consecutive data points are grouped together to form a single sample. 

The synthesized dataset is then used to train the diagnostic model, which is subsequently tested 

on a separate test set. The infrasound prediction accuracy after training is used as an evaluation 

metric to assess whether the inclusion of the generated data enhances the model’s predictive 

capability, particularly in small sample scenarios. 

The results shown in Fig. 11 represent the accuracy after 60 iterations of the model. From 

the figure, it can be observed that the data generated by the classical GAN-CAPN and LSTM-

CAPN model reduces the accuracy by 5.76 % and 3.64 % compared to CAPN, which decreases 

the performance of the infrasound prediction model. Apart from the GAN-CAPN and LSTM-

CAPN model, datasets that were not augmented with a generative model perform poorly in 

infrasound prediction after training. Compared to the DCGAN-CAPN, WGAN-CAPN, 

Transformer-CAPN, and GRU-CAPN models, the TimeGAN-CAPN model generates higher-

quality data by considering the internal temporal correlations in the data, effectively addressing 

the issue of insufficient information in the samples. The prediction accuracy improved by 5.62 % 

compared to when no augmentation was performed. Therefore, using the TimeGAN model to 

augment the infrasound data and inputting the augmented data into the CAPN infrasound 

prediction model can significantly improve the infrasound prediction accuracy. 

Fig. 11. Comparison of diagnostic accuracy after sample augmentation. 
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Table 3 shows a comparison of the classification performance of eight methods for 

infrasound signals. The experimental results indicate that TimeGAN-CAPN achieves the best 

overall classification Precision, reaching 84.62 %. In addition, TimeGAN-CAPN also 

significantly outperforms the other seven classification methods in terms of F1-score and Recall, 

with values of 86.02 % and 87.26 %, respectively. 

Table 3. Comparison of classification results for four types of infrasound events by different 

classification networks [%]. 

Method F1-score Recall Precision 

CAPN 80.07 79.62 79.16 

GAN-CAPN 74.39 73.68 73.07 

LSTM-CAPN 76.27 75.89 75.25 

GRU-CAPN 80.29 79.68 78.97 

Transformer-CAPN 80.76 80.92 79.13 

WGAN-CAPN 81.96 82.17 80.86 

DCGAN-CAPN 83.11 84.06 81.71 

TimeGAN-CAPN 86.02 87.26 84.62 

Further analysis shows that, compared to other classification networks, TimeGAN-CAPN 

exhibits higher classification accuracy and more stable classification performance in infrasound 

classification. To provide a comprehensive evaluation of its performance, Fig. 12 presents the 

ROC curve for different methods. From the figure, it is evident that the AUC value of 

TimeGAN-CAPN reaches 0.8451, significantly higher than the other seven networks, further 

validating its superior performance in the infrasound signal classification task.           PRE-P
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Fig. 12. ROC curve of different classification methods. 

To analyze the infrasound recognition performance, eight classification models were 

evaluated using 6-fold cross-validation to obtain the accuracy of real labels and predicted labels 

from six validation runs. The confusion matrix for infrasound classification is shown in Fig. 13. 

From the perspective of single-class classification performance, TimeGAN-CAPN 

demonstrates significant advantages in classifying earthquake, tsunami, and volcanic 

infrasound signals. This result thoroughly confirms the robustness and generalization ability of 

the proposed method in handling different types of infrasound signals. 
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Fig. 13. Confusion matrix for infrasound classification. 

4. Conclusion and future work

To further enhance the accuracy of infrasound disaster prediction, this paper proposes the 

TimeGAN-CAPN prediction model. The TimeGAN-CAPN model combines unsupervised and 

supervised learning, where the autoencoder component provides an embedding space for 

temporal features. The generative component operates within this embedding space to produce 

high-quality sequential data. By augmenting the sample data, the model increases the 

information content, and these new samples are then input into the CAPN to more effectively 

capture class prototypes, further improving prediction performance. The quality and diversity 

of the generated data are quantitatively and qualitatively assessed using the MMD metric and 

visualization methods, demonstrating that TimeGAN-CAPN generates data that closely 

approximates the original distribution. Comparative experiments highlight the superior 

predictive performance of TimeGAN-CAPN. 

Although the TimeGAN-CAPN model improves infrasound prediction accuracy, it does 

not transform data into two-dimensional images as seen in traditional fault diagnosis models 

due to the limited quantity and lack of periodicity in the data. As a result, the TimeGAN-CAPN 

model is specifically tailored for infrasound data. Future research could explore the use of 

transfer learning techniques to apply the trained model to different disaster datasets, thereby 

improving the model’s generalizability.  

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 A

R
C

H
IV

E
S O

F A
C

O
U

ST
IC

S



25 

Fundings 

This work was supported by the Project Supported by the Chongqing Natural Science 

Foundation General Project (Grant No. CSTB2025NSCQ-GPX0115), the Scientific and 

Technological Research Program of Chongqing Municipal Education Commission (Grant No. 

KJQN202403106), and the ‘Spark’ Program Project for Teachers’ Independent Innovation at 

Chongqing Polytechnic University of Electronic Technology (Grant No. 25XJJSCX11).  

Acknowledgments 

Many thanks for the Comprehensive Nuclear-Test-Ban Treaty Beijing National Data 

Center providing the data.  

References 

1. BAEZA MOYANO D., GONZALEZ LEZCANO R. A. (2022), Effects of infrasound on health:

Looking for improvements in housing conditions, International Journal of Occupational

Safety and Ergonomics, 28(2): 809-823, doi: 10.1080/10803548.2020.1831787.

2. DONG H., LIU S., LIU D., TAO Z., FANG L., PANG L., ZHANG Z. (2024), Enhanced

infrasound denoising for debris flow analysis: Integrating empirical mode decomposition

with an improved wavelet threshold algorithm, Measurement, 235: 114961, doi:

10.1016/j.measurement.2024.114961.

3. FRIEDRICH B., JOOST H., FEDTKE T., VERHEY J. L. (2023), Effects of infrasound on the

perception of a low-frequency sound, Acta Acustica, 7: 60, doi: 10.1051/aacus/2023061.

4. HUPE P., CERANNA L., LE PICHON A., MATOZA R. S., MIALLE P. (2022), International

monitoring system infrasound data products for atmospheric studies and civilian applications,

Earth System Science Data Discussions, 2022: 1-40, doi: 10.5194/essd-14-4201-2022.

5. JIANG Y. H., QIU Z. J., ZHENG L. J., DONG Z. L., JIAO W. D., TANG C., SUN J. F., XUAN

Z. Y., (2025), Recursive prototypical network with coordinate attention: A model for few-

shot cross-condition bearing fault diagnosis, Applied Acoustics, 231: 110442, doi:

10.1016/j.apacoust.2024.110442.

6. JI Z., LIU X., PANG Y., OUYANG W., LI X. (2020), Few-shot human-object interaction



26 

recognition with semantic-guided attentive prototypes network, IEEE Transactions on Image 

Processing, 30: 1648-1661, doi: 10.1109/TIP.2020.3046861. 

7. LU Q. B., LI M. (2023), VMD and CNN-based classification model for infrasound signal.

Archives of Acoustics, 48(3): 403-412, doi: 10.24425/aoa.2023.145247.

8. LISTOWSKI C., FORESTIER E., DAFIS S., FARGES T., DE CARLO M., GRIMALDI F., PICHON

A. L., VERGOZ J., HEINRICH P., CLAUD C. (2022), Remote monitoring of mediterranean

hurricanes using infrasound, Remote Sensing, 14(23): 6162, doi: 10.3390/rs14236162.

9. MACPHERSON K. A., FEE D., COLWELL J. R., WITSIL A. J. (2023), Using local infrasound

to estimate seismic velocity and earthquake magnitudes, Bulletin of the Seismological Society

of America, 113(4): 1434-1456, doi: 10.1785/0120220237.

10. MITROPOULOS S., TOULAS V., DOULIGERIS C. (2022), A prototype network monitoring

information system: modelling, design, implementation and evaluation, International

Journal of Information and Communication Technology, 21(2): 111-136, doi:

10.1504/IJICT.2022.124807.

11. RUDDICK K. G., BRANDO V. E., CORIZZI A., DOGLIOTTI A. I., DOXARAN D., GOYENS

C., KUUSK J., VANHELLENONT Q., VANSTEENWEGEN D., BIALEK A., DE VIS P.,

LAVIGNE H., BECK M., FLIGHT K., GAMMARU A., GONZALEZ VILAS L., LAIZANS K.,

ORTENZIO F., PERNA P., PIEGARI E., RUBINSTEIN L., SINCLAIR M., VAN DER ZANDE D.

(2024), WATERHYPERNET: a prototype network of automated in situ measurements of

hyperspectral water reflectance for satellite validation and water quality monitoring,

Frontiers in Remote Sensing, 5: 1347520, doi: 10.3389/frsen.2024.1347520.

12. SOVILLA B., MARCHETTI E., KYBURZ M. L., KOHLER A., HUGUENIN P., CALIC I.,

KOHLER M. J., SURINACH E., PEREZ-GUILLEN C. (2025), The dominant source mechanism

of infrasound generation in powder snow avalanches, Geophysical Research Letters, 52(2):

e2024GL112886, doi: 10.1029/2024GL112886.

13. SHARMA S. K., ALENIZI A., KUMAR M., ALFARRAJ O., ALOWAIDI M. (2024), Detection

of real-time deep fakes and face forgery in video conferencing employing generative

adversarial networks, Heliyon, 10(17): e37163, doi: 10.1016/j.heliyon.2024.e37163.

14. SEHAR U., XIONG J., XIA Z. (2025), Automatic tooth labeling after segmentation using

prototype-based meta-learning, Machine Intelligence Research, 51: 1-14, doi:



27 
 

10.1007/s11633-024-1520-6. 

15. TANG T., WANG J., YANG T., QIU C., ZHAO J., CHEN M., WANG L. (2023), An improved 

prototypical network with L2 prototype correction for few-shot cross-domain fault diagnosis, 

Measurement, 217: 113065, doi: 10.1016/j.measurement.2023.113065. 

16. VULETIC M., PRENZEL F., CUCURINGU M. (2024), Fin-gan: Forecasting and classifying 

financial time series via generative adversarial networks, Quantitative Finance, 24(2): 175-

199, doi: 10.1080/14697688.2023.2299466. 

17. WATSON L. M., IEZZI A. M., TONEY L., MAHER S. P., FEE D., MCKEE K., ORTIZ H. D., 

MATOZA R. S., GESTRICH J. E., BISHOP J. W., WITSIL A. J. C., ANDERSON J. F., JOHNSON 

J. B. (2022), Volcano infrasound: Progress and future directions, Bulletin of Volcanology, 

84(5): 44, doi: 10.1007/s00445-022-01544-w. 

18. WILSON T. C., PETRIN C. E., ELBING B. R. (2023), Infrasound and low-audible acoustic 

detections from a long-term microphone array deployment in Oklahoma, Remote Sensing, 

15(5): 1455, doi: 10.3390/rs15051455. 

19. WANG W., LI H., DING Z., NIE F., CHEN J., DONG X., WANG Z. (2021), Rethinking 

maximum mean discrepancy for visual domain adaptation, IEEE Transactions on Neural 

Networks and Learning Systems, 34(1): 264-277, doi: 10.1109/TNNLS.2021.3093468. 

20. YANG S., CHENG Y., LEI Y., LU Z., CHENG X., WANG H., ZHU K. (2025), Correlation 

between and mechanisms of gas desorption and infrasound signals, Natural Resources 

Research, 34(1): 515-537, doi: 10.1007/s11053-024-10417-2. 

21. YOON J., JARRETT D., VAN DER SCHAAR M. (2019), Time-series generative adversarial 

networks, Advances in neural information processing systems, 32:1-11. 

22. ZAJAMSEK B., HANSEN K. L., NGUYEN P. D., LECHAT B., MICIC G., CATCHESIDE P. 

(2023), Effect of infrasound on the detectability of amplitude-modulated tonal noise, Applied 

Acoustics, 207: 109361, doi: 10.1016/j.apacoust.2023.109361. 

23. ZHANG B., XU M., ZHANG Y., YE S., CHEN Y. (2024), Attention-ProNet: A prototype 

network with hybrid attention mechanisms applied to zero calibration in rapid serial visual 

presentation-based brain–computer interface, Bioengineering, 11(4): 347, doi: 

10.3390/bioengineering11040347. 


	1. Introduction
	2. Methods
	2.1. TimeGAN
	2.2. CAPN
	2.2.1. The global view
	2.2.2. The local view
	2.2.3. The cross-view mutual learning

	2.3. The proposed approach
	Fig. 6. Map of the infrasound station.

	3. Experiments
	3.1 Experiments setup
	3.2 Data preprocessing
	3.3 Data generation
	3.3.1. Discriminator score
	3.3.2. Visualization
	3.4 Infrasound prediction

	4. Conclusion and future work
	References

