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Acoustic resonators are useful for damping low frequencies. In cylindrical silencers (mufflers), the imple-
mentation of the resonance concept consists in selecting such a length of the expansion chamber (EC) that
a wave of opposite phase is created in it, and with this opposite phase the incident wave is damped. Based
on the plane wave theory (1D) and simple analytical calculations, it is possible to approximately determine
the shortest length of the EC for a selected frequency; such a chamber represents the simplest silencer. Its ef-
ficiency is measured by the transmission loss (TL) value; increasing the TL value indicates that the silencer
efficiency increases as well. The efficiency was improved in two ways: first, in single EC, by adding inlet, outlet,
or both horizontal extensions, and second, by adding another EC. In the first case, the influence of the length of
the horizontal extensions on TL was analyzed. In the second study, another dedicated EC was added, and the
influence of the width and orifice diameter of the transverse partition on TL was analyzed. All analytical results
were confirmed experimentally. The results indicate that, first of all, a simple silencer (single EC) is found to
damp a dedicated frequency. In addition, simple changes in the structure of such a silencer significantly increase
its efficiency.
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horizontal inlet/outlet extensions to a single D-EC.
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1. Introduction

Acoustic silencers are used in many areas of
live, e.g., in the automotive industry, HVAC ducts,
and firearms (MUNJAL, 1987; NILSSON et al., 2021;
KARAMI et al., 2024). They are mainly dissipative si-
lencers, which work on the phenomenon of successive
reflection of sound waves and the conversion of their
energy into heat.

General requirements for the design of silencers are
described in many studies (e.g., POTENTE, 2005; RAH-
MAN et al., 2005; MUNJAL, 2013; 2014; JOKANDAN
et al., 2023). The desirable properties of a silencer are,
above all, simple construction, small size and sound
attenuation over a wide frequency range. To meet the
first two requirements the main challenge is to reduce
the volume of the silencer’s expansion chamber (EC),
in practice its length.

Generally, the effectiveness of a silencer is mea-
sured, by, e.g., the transmission loss (TL) coefficient
(LEE et al., 2020). There are many analytical and
numerical methods to calculate TL (at the silencer
design stage), as well as experimental TL measure-
ments on a real silencer. Among analytical methods,
1D (in simple structures), 2D (cylindrical wave), and
3D (three-dimensional wave) theories are used. Also,
numerical methods such as FEM/BEM (SELAMET,
RADAVICH, 1997; STREK, 2010; Cul, HUANG, 2012;
WEI, Guo, 2016) and computational programs, e.g.,
SYSNOISE, COMSOL, and ANSYS (Swamy et al.,
2014), are widely used. In the aforementioned meth-
ods, only the problem of reflection is taken into ac-
count, while other aspects of sound propagation in
silencers are omitted (RAHMAN et al., 2005). Three
experimental methods are also used, i.e., the ‘tradi-
tional’ laboratory method, the four-pole transfer ma-
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trix method and the three-point method; they are com-
pared in (BILAWCHUK, FYFE, 2003; TAO, SEYBERT,
2003; ZALTE, SATURE, n.d.).

The TL of a single circular EC can be in-
creased through a variety of simple internal config-
uration. For example, the TL value was analyzed
depending of the following parameters: EC length
(SELAMET, RADAVICH, 1997), surface absorption co-
efficient (Cuiu, CHANG, 2014), locations of horizontal
partitions (SELAMET et al., 1998; Yu, CHENG, 2015),
horizontal inlet/outlet extensions (CHAITANYA, MUN-
JAL, 2011; MUNJAL, 2013; RAFIQUE et al., 2022), and
also multi-chamber silencers with transverse partitions
(SELAMET et al., 2003; YU, CHENG, 2015; YU et al.,
2015; XIANG et al., 2016). In the mentioned studies,
the influence of silencer structure on TL in a certain
frequency range was considered.

The aim of this article is to demonstrate that it
is possible to build a structurally simple silencer for
a dedicated frequency, using of course conclusions from
previous studies. This is important because, apart from
starting and breaking, mechanical devices typically
generate noise at an approximately constant frequency.
Such a silencer should be therefore most effective at
this dedicated frequency compared to other similar de-
signs. Assuming that an objective function is TL, max-
imizing TL will indicate the optimal silencer for the
dedicated frequency.

2. TL of the cylindrical EC

Due to the purpose of silencers, it is advisable to
predict the maximum TL at the design stage. It turns
out that the most important parameter is the geometry
of the EC. For a given diameter of a cylindrical EC, the
remaining task is to determine its length (BILAWCHUK,
FYFE, 2003).

To define TL, we first define the sound power trans-
mission coefficient (TC), at, = Wout/Win, where Wy, =
Wout is the outgoing (transmitted) acoustic power, and
Win is the incident (incoming) acoustic power. The TL
is then expressed in terms of the TC (in dB), (BARRON,
2003; SWAMY et al., 2014):

TL = 10logyg (Win/Wout) = 10log(1/as). (1)

For a plane wave, at the inlet and outlet one has:

p2
Wout = Oimsoutv (2)
220

2
Win = pisinv
22’0
where 2y = pc is the characteristic impedance, S is
the surface area, p;, and p.,: are the average (root
mean square (RMS)) pressures at the inlet and outlet,
respectively.
Hence,
Win _ ii (3)
Gty Wout pgut Sout .
Primary approach to sound transmission through
the EC is the 1D theory (SELAMET, RADAVICH, 1997;

BARRON, 2003; TAO, SEYBERT, 2003; ZHANG et al.,
2020; RAFIQUE et al., 2022). After some calculations,
the following useful equation is obtained:
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where, see Fig. 1, S, = 772, v = 1,2, 3 are the cross-
sectional areas of the inlet, EC, and outlet, and u,;
and u, . denote the incident and reflected plane waves,

respectively.
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Fig. 1. Plane wave transmission through the EC.

Note that the TL, Eq. (1), reaches a maximum if
1/ay, is also a maximum. For this to happen, sin®(kly)
ought to be one. So:

kfgzg+n7r, n=012,.. (5)

Hence,

€2:(1+2n)%, n=0,1,2,.. (6)

The minimum chamber length ¢,,;, is for n = 0:
Crmin = M4 = c/(4f). (7)

In this way, the minimal length of the EC is obtained,
for which the TL reaches its maximum values. How-
ever, note that the 1D theory is valid only up to the
‘cut off’ frequency (POTENTE, 2005).

In fact, sound transmission through a single EC
is somewhat different from what the 1D theory sug-
gests. As indicated in (KanaG, J1, 2008; CHAITANYA,
MunNJAL, 2011), the difference between 1D analysis
and experimental, 3D, or numerical analyses is due to
the presence of three-dimensional waves. Therefore, as
pointed out in (YU, CHENG, 2015), the 1D model can
be used to approximately calculate the TL maxima,
but only if the cross-section of the EC is sufficiently
small.

3. Numerical calculations and experiments

The construction of a structurally simple silencer
for a dedicated frequency was realized in the following
steps:

1) Based on the 1D theory, the minimum length
of the EC was found. Due to the inaccuracies of
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this theory, this length was then experimentally
corrected, so the length of the dedicated expan-
sion chamber (D-EC) was obtained.

2) The TL was increased by adding horizontal in-
let /outlet extensions to a single D-EC.

3) The TL was further increased by adding another
D-EC, which was achieved by adding a transverse
partition to the corresponding EC length:

— the influence of the transverse partition
widths was determined at a fixed orifice di-
ameter,

— the influence of the transverse partition ori-
fice diameters was determined at a fixed
width.

All measurements below were performed using the
Briiel & Kjeer set, based on the four-pole matrix.
They were conducted for frequencies f = {1,2,3,
4,5,6} x 103 Hz, while results were presented at
selected frequencies, i.e., f = {1,3,5} x 103 Hz.

3.1. Attached length of the EC - D-EC

The influence of the single EC length l,in, Eq. (7),
on the TL was analyzed, where

lonin = {8.5,2.83,1.7} - 102 m.

Furthermore, the TL was calculated according to
Eq. (1), using the following parameters: 1 = 0.003 m,
ro = 0.018 m, 71 = r3, hence S; = S3 = 2.827-107° m?,
Sy =1.0179-1073m?, ko = k = (270f) /¢, lmin = A/4. The
results are presented in Fig. 2.
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Fig. 2. TL for a single EC, solid line — calculated values
Eq. (1); dashed line — measured values.

As can be seen in Fig. 2, the experimental results
do not agree with the 1D theory, which predict the TL
maximum occurs at the dedicated frequency. So, in or-
der to account for the influence of three-dimensional
wave effects, the length ¢,;, ought to be increased by
some length ¢, so that the chamber length ¢ = ¢,,;, + ¢,

corresponds exactly to a quarter-wave length; this ad-
justed length leads to the D-EC.

The attached length ¢, can be estimated based
on numerical calculations, such as the finite element
method (FEM) (KOMKIN et al., 2012), or through the-
oretical considerations (SELAMET, RADAVICH, 1997;
KaANG, Ji, 2008). In this study, ¢, was determined ex-
perimentally. For this purpose, the TL was measured
as a function of frequency for different values of ¢,
Fig. 3.
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Fig. 3. Influence of different ¢, values on the maximum TL
at selected frequencies: a) 1000 Hz, b) 3000 Hz, ¢) 5000 Hz.
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For each frequency, the value of ¢, was chosen,
which produced a TL value closest to its maximum.
So, these results were ¢, = {40,23,10,7,5,0} mm for
f=1{1,2,3,4,5,6} x 10° Hz, respectively. From discrete
£, values, based on an approximation theory, an empir-
ical formula was derived, as a function of frequency f,
i.e., £y = £o(f). This relationship is given based on an
approximation theory and depicted in Fig. 4:

4 .
Lo =—4.6895 + %

1 1 1 1 LN

0
1000 2000 3000 4000 5000 6000 7000
S1Hz]

Fig. 4. Approximate value of £, as a function of frequency f.

3.2. Influence of the horizontal inlet/outlet extensions
on a single D-EC

First, the influence of the length ¢, ; or £, , or both
of the horizontal extensions of the D-EC on the TL
was analyzed. These considerations are similar to those
published in (SELAMET et al., 2003; L.ApkaA, 2007;
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Fig. 5. Cross-section of the silencer with the horizontal inlet
extension £, ; (a); effect of £,; = {10,20,30,40} mm on the
TL, f =1000Hz (b).

CHAITANYA, MUNJAL, 2011; MUNJAL, 2013; XIANG
et al., 2016; CHANG et al., 2019; ZHAO, L1, 2022) but
here they refer to the dedicated frequency.

At a frequency of 1000 Hz, the same horizontal ex-
tensions length ¢, ; = 30 mm (first case) or £, , = 30 mm
(second case) resulted in the same TL increase of about
9dB; further increase in these lengths did not yield
additional TL increase (Figs. 5 and 6). Whereas, us-
ing both horizontal extensions of the inlet and outlet
lengths ¢, ; = ¢, ; = 40mm (third case) produced a TL
increase of about 21dB (Fig. 7). However, if in the
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Fig. 6. Cross-section of the silencer with the horizontal out-
let extension £, , (a); effect of £, , = {10, 20, 30,40} mm on
the TL, f =1000Hz (b).
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tal inlet and outlet extensions ¢,; and {p. (a); effect
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f =1000Hz (b).
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3.3. Influence of the second D-EC f = 5000 Hz.

The simplest way to increase the TL of a silencer
at the dedicated frequency is to connect two D-ECs in
series. This is possible by inserting a transverse parti-
tion into the EC of the appropriate length, so that two
D-ECs are formed. However, the geometric parameters
of this partition also affect the TL value.

First, for a selected baffle width of h = 5mm and
with the orifice diameter dy equal to the inlet and out-
let diameters, i.e., dy = 2r; = 2r3 = 6 mm, the TLs
of a single D-EC and of two D-ECs were compared,
Fig. 14.
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f =5000 Hz.
70 L=
/¢4-'-— b N
6() |- .
- =
el \\

ol / N\ |
o /\ |
=
—
=30+ RalS 4

/7 N

’ ‘\
0r . —— 1000 Hz
== 1000Hz
j— 3000 Hz
o 1 —= 3000 Hz
I —— 5000 Hz
0 ‘ ‘ ‘ ‘ == 5000 Hz

0 1000 2000 3000 4000 5000 6000

S Hz]

Fig. 14. Influence of the number of D-ECs on the TL at
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— two D-EC.

It can be seen that an increase in the number of
D-ECs from one to two causes an increase in the TL;
this conclusion is qualitatively obvious. Furthermore,
the double D-EC does not significantly shift the maxi-
mum TL, and it still functions as a dedicated silencer.
Moreover, with an increase of dedicated frequency, the
difference in maximum TL between one D-EC and dou-
ble D-EC also increases, i.e., at 1000 Hz — the difference
is about 7dB, at 3000 Hz — about 17 dB, and at 5000 Hz
— about 19dB.

Next, the effect of the transverse partition width
h between the D-ECs on the TL is analyzed. It is as-
sumed that the partition orifice, as well as the inlet
and outlet diameters, are the same as aforementioned;
the results are depicted in Fig. 15.

As can be seen from Fig. 15, assuming a fixed trans-
verse partition orifice diameter dg, the transverse par-
tition width h between the D-ECs influences the TL
value at the dedicated frequency. In the analyzed fre-
quencies, the optimal width A is about A = 10mm,
while a TL increase is about 7dB-8 dB.
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Fig. 15. Effect of the transverse partition width h [mm)],
do = 6 mm, between D-ECs on the TL for selected frequen-
cies: a) 1000 Hz, b) 3000 Hz, ¢) 5000 Hz.

Finally, the influence of the transverse partition ori-
fice diameter dy between the D-ECs on the TL is ana-
lyzed. It is assumed that the partition orifice width is
h = 5mm, with the inlet and outlet diameters as afore-
mentioned; the results are presented in the Fig. 16.
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the TL for selected frequencies: a) 1000 Hz, b) 3000 Hz,
¢) 5000 Hz.

From Fig. 16, it follows that assuming a fixed trans-
verse partition width A, the smallest orifice diameter dg
of the transverse partition between the D-ECs provides
the largest TL value at the dedicated frequency; here
it is dgp = 6 mm. However, the smallest diameter is dic-

tated by technical operating conditions. By doubling
the diameter dy, e.g., from 6 mm to 12.5mm, the TL
value decreases by 10dB-8dB and the TL maximum
slightly shifts towards higher frequencies.

4. Summary and general conclusions

It was shown that it is possible to build a simple
silencer to damp noise at a dedicated frequency; it may
even consist of a single EC. The effectiveness of such
a silencer can also be easily increased, for example, by
adding horizontal extensions to the inlet, the outlet, or
both. Another simple method to improve noise reduc-
tion efficiency is to connect identical silencers in series.
The most important conclusions from this study are as
follows:

1) The plane wave theory gives a basis for determin-
ing the EC length for the dedicated frequency,
and by adding an additional length, the D-EC
is obtained. The D-EC is the simplest silencer
for a dedicated frequency. The attached length
was obtained from an empirical formula based on
approximation theory for discrete experimentally
obtained data.

2) For all analyzed frequencies, horizontal extension
lengths, either ¢,; or ¢, ,, different for different
frequencies, gave a TL increase of about 9dB.
A similar increase in TL was obtained for hori-
zontal inlet and outlet extensions, provided that
their combined length is the same as in the first
and second case. Only at 1000 Hz, this increase is
slightly greater.

3) Increasing the number of D-ECs obviously in-
creases the TL. Moreover, as the dedicated fre-
quency increases, the TL also increases.

4) For a fixed orifice diameter dy of the transverse
partition between the D-ECs, there is an optimal
width h that maximizes the TL value at the ded-
icated frequency.

5) For a fixed width h of the transverse partition be-
tween the D-ECs, the smallest orifice diameter d
provides the largest maximum TL value at the
dedicated frequency. However, the smallest diam-
eter dy is most often imposed due to technical rea-
sons.
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