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The energetic aspect of sound radiation by a clamped annular plate has been con-
sidered. The total sound power, active and reactive, was computed using the impedance
approach, which makes possible to correctly design some acoustic systems. The plate was
excited by the external pressure of an axisymmetric and time-harmonic distribution on
the plate's surface. The Kelvin-Voigt theory of a visco-elastic plate was employed. The
results of a modal analysis of an annular plate's in-vacuo motion were used.

1. Introduction

An accurate examination of the energetic aspect of some forced vibrations and
the sound radiation produced by any surface sound sources is necessary for designing
any acoustic systems correctly. The impedance and far �eld approaches are employed to
�nd the complex total sound power of the source. So far, some free vibrations of rect-
angular [1, 2] and circular [2 � 4] or annular [2, 5] plates have been examined in detail.
Laura and Romanelli performed a vibration analysis of an annular anisotropic plate
supported in di�erent ways in [6]. Amabili, Frosali and Kwak used Rayleigh-Ritz
approach to �nd the exact shapes of the higher modes of some free vibrations of annular
plates coupled with �uids in [7, 8]. Additionally, the active potential and kinetic energies
were presented in the form of integrals.

It is necessary to determine the modal sound power, active and reactive, if we want
to �nd the total sound power. So far, several investigations have been carried out in
this �eld e.g. Levine and Leppington have found the �e�ective damping� factor for
a clamped circular plate [9] which is an equivalent magnitude to the standardized active
sound power. Rdzanek computed the modal reactive and mutual sound power of such
a plate [10] and later employed the impedance approach to determine the complex total
acoustic impedance of a forced circular plate in �uid [11]. The sound radiation from
forced harmonic vibrations of a clamped circular plate was also analysed by Alper
and Magrab [12]. Some analytical formulations for sound radiation by an annular disk
in the form of multiple expansion series have been given by Lee and Singh in [13].
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Some disk rotation e�ects were taken into account. The complex modal sound power
of a clamped annular plate was derived by Rdzanek Jr. and Engel [14] in the form
of some asymptotic formulae valid for high frequencies. Rdzanek Jr. also considers the
mutual sound power of the plate [15]. Since evaluating some integrals describing sound
radiation by a source leads to some hyper-singularities (cf. [16]) it is necessary to �nd some
procedures for their regularization, which was undertaken by many authors, e.g. Schenck
proposed a combined Helmholtz integral equation method to circumvent some di�culties
appearing while solving the Dirichlet interior problem (cf. [17]). His method was further
developed by Seybert and Rengarajan in [18] and then considerably improved by
Chien, Rajiyah and Atluri in [19]. The authors proposed an e�ective method to
regularize the hyper-singular integral found in the Burton and Miller formulation
(given in [16]). Certain identities were employed for the hyper-singular integrals arising in
an associated integral equation for the Laplace equation in the interior domain.Ginsberg
and Chen employ the method of variational principles to �nd the sound pressure and
transverse de�ection of an excited disk in two di�erent ba�es � in�nite and �nite [20].
This method is used by many author to solve some similar problems, e.g. in [20 � 24].

So far, the complex total sound power of a forced and clamped annular plate in �uid
has not been derived analytically. Particularly, its reactive part has not yet been dis-
cussed in the literature. This paper tries to �ll the gap. The results of a modal analysis
of the plate's in-vacuo modes [14, 15], such as the asymptotic and integral formulae
for the standardized active and reactive sound power make the basis of the analysis.
The asymptotic formulae are valid for high frequencies. For the other frequencies the
integral formulae were used. The in�uence of some fundamental plate's geometric and
material factors on the total sound power has been examined in detail, the factors taken
into account being the internal friction ηT , the quotient of external and internal radii
s = r2/r1, thickness h and density %. The results obtained are illustrated by some fre-
quency characteristic graphs of the modulus and the phase's cosine of the magnitudes
considered.

2. Internal friction and damping from the air column

The plate examined, of internal radius r1 and external radius r2 > r1, is forced by
the axisymmetric and time-harmonic external pressure whose distribution on the plate's
surface is Re

[
f(r) exp(−iωt)

]
, where r1 ≤ r ≤ r2 and f(r) ∈ R. It is assumed that the

vibration amplitude is small enough to describe the vibrations by a linear di�erential
equation. The Kelvin-Voigt theory of a visco-elastic homogeneous and isotropic plate
has been used. The plate ful�ls the following relation between the stress σ and the
deformation ε: σ = Eε (1− iωε′), where ε′ = ω0ηT is a dimensionless factor of the plate's
internal friction standardized by the plate's fundamental eigenfrequency ω0, ω = ω/ω0

� dimensionless frequency of the external pressure, ωn � the plate's n-th eigenfrequency,
where n = 0, 1, 2, ... . The plate's eigenvalues xn = knr1 have been given in [14] for
several values of the geometric factor s, where k4

n = ω2
n%h/B′ ∈ R is the structural

wavenumber, %, h are the plate's density and thickness, B′ = Eh3
/[

12(1 − ν2)
]
is its
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sti�ness, E � Young modulus, ν � Poisson ratio, ηT = R′/B′ � the plate's internal friction
factor.

2.1. The plate's transverse de�ection expansion into a series of eigenfunctions

The plate's equation of motion can be written in the amplitude form for some time-
harmonic processes

(
k−4

B ∇4
r − 1

)
η(r)− i

ε0

c
φ(r) =

f(r)
ω2%h

, (1)

where ω is the frequency of the plate's exciting pressure, ν(r) = −iωη(r), k4
B = ω2%h/B ∈

C is the structural visco-elastic wavenumber, B = B′ (1 − i ω ε′) is visco-elastic plate's
sti�ness, ε0 = ε0/ω is the plate's damping factor from the air column, where ε0 =
%0c/%hω0 and %0 is the density of the air column. The plate's transverse de�ection am-
plitude

η(r) =
+∞∑
n=0

cnξn(r), cn ∈ C, (2)

is the solution of the non-homogeneous equation of the plate's motion (1) which may be
expanded into a series to an orthonormal system of eigenfunction amplitudes

ξn(r) = An [J0(knr) + BnI0(knr)− CnN0(knr)−DnK0(knr)] , (3)

providing solutions of the homogeneous equation of the plate's motion
(
k−4

n ∇4
r − 1

)
ξn(r) = 0. (4)

The eigenfunctions ξn satisfy the orthogonality condition (cf. [25, 26]). They have been
presented in [14] together with constants An = [(s2 − 1)/2]1/2/gn, Bn, Cn, Dn where
gn = [s2C ′0

2(sxn)− C ′0
2(xn)]−1/2, C ′ν(x) = Jν(x)− CnNν(x), x ∈ {xn, sxn}, ν ∈ {0, 1}.

Further we use the acoustic potential presented in the polar coordinates

φ(r, z) =
∫

S

v(r0) G(r, r0, z) dS0, (5)

where

G(r, r0, z) =
1
2π

eik|~r−~r0|

|~r − ~r0
=

i

2π

+∞∫

0

τγ−1J0(τr)J0(τr0)eiγz dτ (6)

is a Green function in a Hankel's representation (cf. [27, 28]), z ≥ 0 and γ = [k2− τ2]1/2.

2.1.1. The solution of the algebraic equation system

Finding the complex expansion coe�cients cn is equivalent to solving the non-homo-
geneous equation of motion (1) of a vibrating plate. By inserting Eq. (2) to Eq. (5) we
can write the acoustic potential on the plate's surface (z = 0) as

φ(r) = ω

+∞∫

0

τγ−1J0(τr)
+∞∑
n=0

cn Mn(τ) dτ, (7)
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where

Mn(τ) =

r2∫

r1

ξn(r) J0(kr sin ϑ)r dr. (8)

Some transformations of Eq. (1) lead to

cm (k−4
B k4

m − 1)− iε0

+∞∑
n=0

cnPnm = fm, n, m ∈ N, (9)

where

Pnm =
2k

r2
2 − r2

1

+∞∫

0

τγ−1 Mn(τ)Mm(τ)dτ (10)

is the standardized mutual sound power of a pair of two interacting in-vacuo modes of
the plate (0, n) and (0,m), n 6= m. If n = m we get the standardized sound power of the
n-th in-vacuo mode of the plate

Pn =
2k

r2
2 − r2

1

+∞∫

0

τγ−1 M2
n(τ) dτ (11)

and

fm =
2

ω2%h (r2
2 − r2

1)

r2∫

r1

f(r) ξm(r) r dr (12)

is the m-th expansion coe�cient of the external exciting pressure. The indices n, m in
the equation system (9) belong to the same set of natural numbers and therefore we can
interchange them. It is useful to employ some dimensionless magnitudes for our numerical
computations and therefore we introduce such dimensionless coe�cients as

cm = cm ω2%h/fmax, fm = fm ω2%h/fmax, (13)

which transform the equation system (9) into its matrix form
{
[k−4

B (kkT)2 − 1] I− iε0P
}

c = f (14)

where I is a unity matrix, kkT denotes the square of a diagonal matrix of vector k,

k =




k0

k1

k2

...




, P =




P00 P01 P02 · · ·
P10 P11 P12 · · ·
P20 P21 P22 · · ·
...

...
... . . .




, c =




c0

c1

c2

...




, f =




f0

f1

f2

...




, (15)

and vector c is the solution of Eq. (14).
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2.1.2. The distribution of the external exciting pressure

It has been assumed that the plate is excited by an external time-harmonic pressure
of the surface density Re

[
f(r) exp(−iωt)

]
. If its amplitude distribution is

f(r) =

{
fmax if r ∈ {a, b},

0 otherwise,
(16)

where r1 ≤ a < b ≤ r2, then we get

fm =
fmax

ω2%h

2
r2
2 − r2

1

b∫

a

ξm(r) r dr (17)

from Eq. (12). We make use of the integral formula u
∫ r E0(ur) r dr = r E1(ur) [29], where

En is an n-th order cylindrical function. This results in

fm =
√

2√
s2 − 1

fmax

ω2%h

1
xmgm

×
{

s
b

r2

[
J1

(
sxm

b

r2

)
− Cm N1

(
sxm

b

r2

)]
− a

r1

[
J1

(
xm

a

r1

)
− Cm N1

(
xm

a

r1

)]

+ s
b

r2

[
Bm I1

(
sxm

b

r2

)
+ Dm K1

(
sxm

b

r2

)]

− a

r1

[
Bm I1

(
xm

a

r1

)
+ Dm K1

(
xm

a

r1

)]}
. (18)

If all the plate's surface is excited by the pressure of the homogeneous amplitude distri-
bution, i.e. r1 = a < b = r2, then the excitation coe�cients will be reduced to

fm = fm

fmax

ω2%h
, where fm =

2
√

2√
s2 − 1

s2C ′1
2(sxm)− C ′1

2(xm)
xmgm

. (19)

3. The total sound power

3.1. Analytical formulations

The total sound power Π will be further expressed by the expansion coe�cients cn

and the standardized mutual sound power Pnm. The insertion of ν(r0) = −iωη(r0) and
(2) to formula (8) results in

W (τ) W ∗(τ) = ω2
+∞∑
n=0

+∞∑
m=0

cnc∗m Mn(τ)Mm(τ). (20)

The total sound power in the Hankel's representation (cf. [14, 15])

Π = π%0ck

+∞∫

0

τγ−1 W (τ)W ∗(τ) dτ = πω2%0c
r2
2 − r2

1

2

+∞∑
n=0

+∞∑
m=0

cnc∗mPnm (21)
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is derived from Eqs. (10), (11), (20) and (21). The reference sound power, when k→∞, is

Π(∞) = πω2%0c

+∞∑
n=0

+∞∑
m=0

cnc∗m

r2∫

r1

ξn(r) ξm(r) r dr = πω2%0c
r2
2 − r2

1

2

+∞∑
n=0

c2
n, (22)

which is used to standardize the total sound power as follows

P =
Π

Π(∞)
=

+∞∑
n=0

+∞∑
m=0

cnc∗mPnm

+∞∑
n=0

c2
n

. (23)

The expansion coe�cients cn are determined by solving the algebraic equation system
(14). The standardized mutual sound power Pnm is computed with the asymptotic or
integral formulae given in [14, 15].

The total sound power Π can also be expressed by a single expansion series. For that
purpose the equation system (14) must be multiplied by c∗m and summed up for index m

from 0 to +∞
+∞∑
n=0

+∞∑
m=0

cnc∗mPnm =
i

ε0

+∞∑
m=0

c∗m
[
fm − cm (k−4

B k4
m − 1)

]
(24)

which, inserted to formula (20), gives

Π = πω2%0c
i

ε0

r2
2 − r2

1

2

+∞∑
m=0

c∗m
[
fm − cm (k−4

B k4
m − 1)

]
. (25)

In one particular case i.e., when the in�uence of the air column on the plate's motion
can be neglected, and ε0 = %0(%kh)−1 ¿ 1, we get a basic relation

cn = fn

/
(k−4

B k4
n − 1) (26)

from the algebraic equation system (14).

3.2. The frequency characteristics
of the plate's response

The frequency characteristics have been determined in the domain of the angle fre-
quency standardized by the plate's fundamental eigenfrequency, i.e.

ω = ω/ω0 (27)

which is dimensionless. We introduce some of the plate's material parameters

ε0 =
%0c

%hω0
, ε′ = ω0ηT , (28)
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Modulus, |P ′| Phase cosine, cos ϕ′

Fig. 1. The modulus |P ′| and phase cosine cos ϕ′ of the standardized total sound power of an annular
plate, where h = 1e− 3 [m].

independent from frequency ω together with some further relations to be used to plot
the graphs in Figs. 1 � 3:

k−4
B k4

m − 1 = −1 + x−4
0 x4

m ω−2
(
1− iε′ω

)
and ω0 = x2

0r
−2
1

√
B′/%h. (29)

The total sound power Π, determined by Eq. (20), is standardized by the conventional
magnitude

Π ′ = πr2
1%0c

(
fmax

%hω0

)2

, (30)
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Modulus, |P ′| Phase cosine, cos ϕ′

Fig. 2. The modulus |P ′| and phase cosine cos ϕ′ of the standardized total sound power of an annular
plate, where ε′ = 1e− 6.

which leads to the dimensionless sound power

P ′ = Π/Π ′ =
s2 − 1
2ω2

+∞∑
n=0

+∞∑
m=0

cnc∗mPnm. (31)

The magnitude is a function of the plate's excitation frequency ω and some parameters
independent from ω such as s, ε0, ε′.
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Modulus, |P ′|

Fig. 3. The modulus |P ′| of the standardized mutual sound power of an annular plate, where
h = 1e− 3 [m], ε′ = 1e− 6.

3.3. Numerical computations and their discussion

The equation system (14) was solved by a combined method of reduction and suc-
cessive approximations to derive the frequency characteristics of the sound power. The
reduction consists in making the assumption that n,m < ∞, i.e. the number of equation
in the system and the number of terms taken into account in all the expansion series
occurring in the equations are �nite.

The total sound power is standardized by the sound power of a model plate, which is
produced of elastic steel (cf. Table 1). This approach makes it possible to �nd some fre-
quency characteristics independent from the plate's material and geometric parameters.
If we wanted to employ the characteristics to determine the sound power of a plate of
any parameters, we would have to multiply their values by the values adequate for the
plate (cf. Eq. (31)).

The frequency characteristics represent the modulus |P ′| (cf. Figs. 1(a), (c), (e)) and
phase cosine cos ϕ′ (cf. Figs. 1(b), (d), (f)) of the standardized total sound power P in the
domain of the external excitation frequency ω. The values of the model plate's material
and geometric parameters have been presented in Tabs. 1 and 2. The eigenfrequencies
of the model plate ωn (cf. Table 3) are derived from the eigenvalues xn, given in several
papers (e.g. [2, 5, 14]), by ωn = x2

nr−2
1 (B′/%h)1/2.
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Table 1. The material and geometric parameters of the model plate.

parameter value
area S0 = 13.8 e − 3m2

thickness h = 1.0 e − 3m
Poisson ratio ν = 0.3

sound velocity c = 340m/sec
Young modulus E = 205.0 e + 9Pa

air density %0 = 1.293 kg/m3

steel density % = 7700 kg/m3

excitation amplitude fmax = 10 Pa

Table 2. The plate's radii r1, r2 for its area S0 = 0.0138 m2 and di�erent values
of the geometric parameter s.

s 1.1 1.2 1.5 2.0 3.0 5.0
r1 0.1447 0.1000 0.0593 0.0383 0.0235 0.0135
r2 0.1592 0.1200 0.0890 0.0766 0.0704 0.0677

Table 3. The eigenfrequencies ωn of the model plate.

s 1.1 1.2 1.5 2.0 3.0 5.0
×103 [rad./sec.]

ω0 166.722 87.318 39.659 23.754 15.784 11.790
ω1 459.588 240.719 109.375 65.564 43.624 32.616
ω2 900.987 471.926 214.465 128.611 85.639 64.097
ω3 1489.386 780.134 354.557 212.661 141.663 106.095
ω4 2224.893 1165.399 529.675 317.730 211.703 158.610
ω5 3107.500 1627.717 739.819 443.814 295.754 221.638

Table 4. The plate's thickness h, which is standardized by the square root of its area
S0 = 13.8 e− 3 [m2].

h 1.0e − 2 5.0e − 4 2.0e − 4 1.0e − 4 5.0e − 5
h [m] 1.2e − 3 5.9e − 5 2.4e − 5 1.2e − 5 5.9e − 6
h 2.0e − 5 1.0e − 5 5.0e − 6 2.0e − 6 1.0e − 6
h [m] 2.4e − 6 1.2e − 6 5.9e − 7 2.4e − 7 1.2e − 7

We can see some �oscillations� of the modulus and phase cosine in the excitation
frequency domain when s approaches unity (cf. Figs. 1(a), (b), 2(a), (b), where s =
1.2, and [13, 14]), which does not appear in the case of a circular plate (cf. [7 � 9, 11,
12, 20]). Let us look at the phenomena closer. When s approaches in�nity the plate
becomes similar in shape to a circular plate and the �oscillations� do not appear or
are small enough to be ignored. In the opposite case, when s approaches unity, the
plate approaches the shape of an annulus and its clamped edges are very close each
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other, which results in some very strong mechanical interactions between them and some
apparent �oscillations� in the frequency characteristics. Also the number of �oscillations�
in the frequency domain depends on the geometric parameter s. The �oscillation� number
increases with the decrease in s.

The dimensionless parameter ε′ represents the internal friction of the plate. If it has
a considerably small value the maxima of the modulus around the successive eigenfre-
quencies are sharp and strong (cf. Figs. 1(a), (c), (e)). The power phase cosine is almost
independent from ε′ (cf. Figs. 1(b), (d), (f)).

The dependance of the total sound power on the plate's thickness standardized by
the square root of the plate's area

h ≡ h√
S0

=
h

r1

√
π(s2 − 1)

(32)

has also been illustrated. It is easy to notice that an increase in the plate's thickness re-
sults in stronger and sharper maxima of the power modulus around the plate's successive
eigenfrequencies (cf. Figs. 2(a), (c), (e)). The power phase cosine is almost independent
from the plate's thickness for small values of s and the dependance becomes stronger with
an increase in value of s (cf. Figs. 2(b), (d), (f)). If the plate's thickness decreases then
the maxima progressively vanish and the level of the modulus decreases, as expected, and
the maxima are shifted towards the low frequencies. This may be accounted for by the
regularity that the thicker plate, the greater its sti�ness and the stronger and sharper the
maxima of the total sound power modulus. On the other hand, a considerably thin plate
cannot produce any strong and sharp maxima and some deviations such as a decrease in
frequency of the maxima locations can appear.

Figure 3 shows some sample values of the modulus of the mutual sound power sepa-
rated from the total sound power. Let us insert the Kronecker delta values δνn and δµm

to Eq. (31)

P ′nm = Πnm/Π ′ =
s2 − 1
2ω2

+∞∑
ν=0

+∞∑
µ=0

δνnδµmcνc∗µPνµ (33)

to perform the separation, which gives the formula for the separated mutual sound power

P ′nm =
s2 − 1
2ω2 cnc∗mPnm. (34)

4. Concluding remarks

If the stream of the sound power density p~v passing through the hemisphere around
the sound source is positive within some ranges of frequency the source losses some energy.
In the opposite case, the source absorbs some energy for the remaining frequencies. Those
phenomena are related with some reciprocal interactions between the two di�erent modes
of the plate (cf. [10, 15]), which results in the positive or negative gain of the plate's total
sound power by its modes for some frequency ranges.

It is easy to see that the sound power of the plate's successive modes gives the main
contribution to the plate's total sound power, which is particularly clear around the
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plate's successive eigenfrequencies (cf. Fig. 3) while the contribution from the mutual
sound power is considerably smaller. These �ndings are valid for light �uids like the
air, i.e. when %0 ¿ %. The greatest contributions come from the plate's modes of the
lowest indices and from the modes of which the eigenfrequency ωn is close to the plate's
excitation frequency ω. The contribution from the mutual sound power of a pair of two
di�erent modes increases when their indices are close to each other. The contribution
is also considerably bigger if both indices are either odd or even. Otherwise, i.e. if one
index is odd and the other is even, the contribution is considerably smaller (cf. Fig. 3),
the phase cosine characteristic is strongly non-uniform, and the �non-oscillating� parts
of the mutual sound power vanish (cf. [15]). The contribution from the higher modes
is considerably smaller, because the expansion series into the plate's eigenfunctions in
Eqs. (21), (23) and (25) are rapidly convergent. That is why that contribution can be
ignored with no considerable error introduced to the total sound power. This is useful for
some numerical computations, because for practical use a �nite number of equations and
a �nite number of terms in expansion series can be taken into account when the equation
system (14) is to be solved numerically.
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