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This paper presents the new formula for the distribution of a periodical component of
the temperature in the samples excited by the periodically modulated beam of light. It
was shown that this formula enables the piezoelectric photoacoustic spectra analysis and
interpretations. The in�uence of the backing material on the temperature distributions in
the sample and piezoelectric photoacoustic spectra was presented and analyzed.

1. Introduction

The temperature formulae presented in the paper describe spatial distributions of
periodical contributions of the temperature alongside the thickness of the sample shaped
in the form of a parallel plate placed on the thermally thick backing material. This pe-
riodical temperature contribution is the result of the periodical generation of the heat
�ux in the sample illuminated by the chopped beam of light. The example spatial dis-
tributions of the instantaneous temperature as well as the amplitude and the phase of
the temperature are presented. They are especially important from the point of view
of their in�uence on the photoacoustic spectral characteristics of semiconductor mate-
rials observed both in the microphone and piezoelectric detection used in the �eld of
photoacoustic spectroscopy. Constantly increasing amount of the experimental data of
the piezoelectric photoacoustic spectra of both n and p type Si crystals [1, 2], AIII-BVI
materials for solar cells applications [3], AIII-BV [4, 5] and AII-BVI [6, 7, 8] caused a
necessity of developing interpretation tools especially for the piezoelectric photoacoustic
spectra.

2. Description of the model

The material of a sample and the backing is characterised by the following param-
eters: λ � thermal conductivity, α � thermal di�usivity, µ � thermal di�usion length,
es and eb thermal e�usivities of the sample and the backing respectively, R � thermal
re�ection coe�cient between the sample and the backing, l � thickness of the sample, β

� optical absorption coe�cient. The notations used in the formula are: σ(f) = (1 + i)/µ,
µ = (α/π · f)1/2
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Fig. 1. The schematic diagram of the theoretical situation considered in the paper � The con�guration:
beam of light-sample-backing.

Theoretical considerations performed with the use of the thermal wave interference
method and the con�guration of the objects presented in Fig. 1 lead to the formula for
the spatial temperature distribution.

The formulae presented in this paper were derived on the basis of the thermal wave
interference method proposed by A. Rosencwaig [9] and Benett and Patty [10]. In
these papers the formulae for the temperature of the front side of the samples were de-
rived. They were necessary for the interpretation of the experimental results obtained
with the microphone detection measuring method. This method of detection is sensitive
to the temperature of the front (or rear) side of the sample. The analysis of the piezo-
electric signals however brought about the necessity of the derivation of the temperature
distribution formula for the samples placed on di�erent backing materials as the value
of the piezoelectric signal depends on the temperature distribution in the sample. The
derivation of the spatial temperature distribution formula and the analysis of the in�u-
ence of the temperature distribution in the sample on the piezoelectric photoacoustic
spectra are the subject of the presented paper. The in�uence of the thermal parameters
of the backing materials on the piezoelectric spectra has not been analyzed in literature
in detail so far.

The thermal wave interference method, used in this paper for the purpose of the
derivation of the temperature distribution in the sample, was applied successfully in
the metrology of thermal parameters of di�erent materials [11-15] and in the analysis
of photoacoustic microphone detected spectra [16-18]. This thermal wave interference
method is based on some basic assumptions:

a) The temperature originally generated in the point described by the x coordinate
is given by the formula:

T (x, t) = β · Io · (exp(−β · x)/λ · σ) · exp(i · ω · t).

b) Temperature at the distance d from the point of its generation is described by the
formula:

T (d) = T (x) · exp(−σ · d).
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c) The thermal re�ection coe�cient R between the sample and the backing is deter-
mined by the thermal e�usivities of the sample and the backing as:

R = (es − eb)/(es + eb).

The boundary conditions assumed in this paper are the following.
The thermal re�ection coe�cients for the front (x′ = 0) and rear (x′ = l) sides of the

sample are 1 and R respectively. The diameter of the sample is big enough to neglect the
re�ections from the top and bottom sides of the sample (see Fig. 1). The diameter of the
spot of light is bigger than the thickness of the sample. The steady-state conditions are
ful�lled in that sense that the amplitude and phase of the temperature do not depend
on time.

The distribution of the intensity of light in the sample is described by the formula:

I(x) = I0 · exp(−β · x). (2.1)

Due to the absorption of the in intensity modulated beam of light the corresponding
distribution of the periodical temperature originally generated in the sample appears
T (x, t) (see point a). Next, generated this way, plane thermal waves travel to the left
and to the right in the sample. Their amplitude and phase change as a function of the
propagation distance (see point b). These thermal waves re�ect repeatedly from the
front and rear sides of the sample (see point c) and interfere. Let x is the place of the
generation of the original thermal wave. T (x′, x) are the thermal wave components that
give the resulting temperature T (x′) at the point x′. The �nal temperature distribution
is the result of the integration of all contributions T (x′, x) from all places in a sample
0 < x < l.

T (x′) =

l∫

0

T (x′, x) dx. (2.2)

Fig. 2. Schematic presentation of the four thermal wave contributions to the temperature T2(x′) � at
the point x′. X-notes the place of the original generation of the temperature. An assumption x > x′.
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The temperature T2(x′) for R = 1 can be expressed as:

T2(x′) =

l∫

x′

(T1(x) + T2(x) + T3(x) + T4(x)) dx, (2.3)

T2(x′) =
β · I0

λ · σ · (1− exp(−2 · σ · l)) ·
l∫

x′

[
exp(−σ · (x− x′)) + exp(−σ · (x + x′))

+ exp(−σ · (2 · l − x− x′)) + exp(−σ · (2 · l − x + x′))
]
· exp(−β · x) dx. (2.4)

On the other hand the total contributions to the temperature at the point x′ coming from
the points of the original heat generation whose coordinates ful�l the condition x < x′

are described by the function (2.5).

T1(x′) =
β · I0

λ · σ · (1− exp(−2 · σ · l)) ·
x′∫

0

[
exp(−σ · (x′−x))+exp(−σ · (2 · l−x−x′))

+ exp(−σ · (x + x′)) + exp(−σ · (2 · l + x− x′))
]
· exp(−β · x) dx. (2.5)

The total temperature at the point characterised by the x′ coordinate is thus deter-
mined as:

T (x′, t) = T (x′) · exp(i · ω · t) where T (x′) = (T1(x′) + T2(x′))/2. (2.6)

After the computations the following �nal formula was obtained:

T (x′) =
β · I0

2 · λ · σ · (1− exp(−2 · σ · l)) · [M(x′) + N(x′)] , (2.7)

where M(x′) and N(x′) are given by the following formulae:

M(x′) =
[exp(σ · x′) + exp(−σ · x′)]·[exp((−σ − β) · x′)− exp((−σ − β) · l)]

β + σ

+
exp(−2 · σ · l) ·[exp(σ · x′) + exp(−σ · x′)]·[exp((σ − β) · x′)− exp((σ − β) · l)]

β − σ
(2.8)

N(x′) =
[exp(−σ · x′) + exp(−2 · σ · l + σ · x′)]·[1− exp((−σ − β) · x′)]

β + σ

+
[exp(−σ · x′) + exp(−2 · σ · l + σ · x′)]·[1− exp((σ − β) · x′)]

β − σ
. (2.9)

This temperature distribution formula (2.7) � (2.9) is limited to the samples placed on a
thermally insulating backing material such as for example air backing. This temperature
distribution formula derived for R = 1 is presented here because this kind of backing
material is recommended in the piezo photoacoustic experiments.
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The temperature distribution formula for much more general case for the thermal
re�ection coe�cient R between the backing and the sample was next derived, following
the steps presented for R = 1, and is presented below.

T2(x′) =
β · I0

λ · σ · (1−R · exp(−2 · σ · l)) ·
l∫

x′

[
exp(−σ · (x− x′)) + exp(−σ · (x + x′))

+ R · exp(−σ · (2 · l− x− x′)) + R · exp(−σ · (2 · l− x + x′))
]
· exp(−β · x) dx. (2.10)

T1(x′) =
β · I0

λ · σ · (1−R · exp(−2 · σ · l)) ·
x′∫

0

[
exp(−σ ·(x′−x))+R ·exp(−σ ·(2 · l−x−x′))

+ exp(−σ · (x + x′)) + R · exp(−σ · (2 · l + x− x′))
]
· exp(−β · x) dx. (2.11)

T (x′, t) = T (x′) · exp(i · ω · t) T (x′) = (T1(x′) + T2(x′))/2. (2.12)

T (x′) =
β · I0

2 · λ · σ · (1−R · exp(−2 · σ · l)) · [M(x′) + N(x′)] . (2.13)

M(x′) =
[exp(σ · x′) + exp(−σ · x′)]·[exp((−σ − β) · x′)− exp((−σ − β) · l)]

β + σ

+
R · exp(−2 ·σ · l)·[exp(σ · x′) + exp(−σ · x′)][exp((σ−β) ·x′)− exp((σ−β) · l)]

β− σ
. (2.14)

N(x′) =
[exp(−σ · x′) + R · exp(−2 · σ · l + σ · x′)]·[1− exp((−σ − β) · x′)]

β + σ

+
[exp(−σ · x′) + R · exp(−2 · σ · l + σ · x′)]·[1− exp((σ − β) · x′)]

β − σ
. (2.15)

3. Specific temperature distributions

The temperature distribution T (x′) (2.13) � (2.15) is in fact depending on several
material and experimental parameters, introduced earlier, so it can be written as:

T (x′) = T (x′, α, R, β, l, f). (3.1)

This temperature distribution formula derived above given by expressions (2.13) � (2.15)
was next veri�ed and compared with well known temperature characteristics at some
characteristic points of the sample and experimental con�gurations i.e. at the front and
rear sides of the sample. In the mathematical sense they are special cases of the general
formula presented in this paper. The comparison comprised the following special cases
presented in Fig. 3.
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Fig. 3. Special characteristic cases of the temperature distribution formula.

Example speci�c cases of the general temperature distribution formula (2.13) � (2.15)
A) Temperature on front and rear surface of a sample

Ad I. Temperature of the front surface of the sample. T (x = 0, l, β, R) [10]

TF =
β · I0

λ · σ ·




1− exp(−(β + σ) · l)
σ + β

+
R · exp(−2 · σ · l)(1− exp(−(β − σ) · l))

β − σ

1−R · exp(−2 · σ · l)


. (3.2)

Ad II. Temperature of the rear surface of the sample T (x = l, l, β, R = 1)

TR =
β · I0

λ · σ ·




exp(−σ · l) · (1− exp(−(σ + β) · l))
σ + β

1− exp(−2 · σ · l)

+

exp(−σ · l) · (1− exp((σ − β) · l))
β − σ

1− exp(−2 · σ · l)


. (3.3)
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Ad III. Temperature of the front surface of a half-in�nite sample T (x = 0, l =
∞, β) [16]

T ∗(0) =
β · I0

λ · σ · (β + σ)
. (3.4)

Ad IV. Temperature of a front surface of an opaque sample thermally thin
T (x = 0, l, β = ∞, R = 1) [12].

T ∗(0) =
I0

λ · σ ·
cosh(σ · l)
sinh(σ · l) . (3.5)

Temperature of the rear surface of an opaque sample thermally thin T (x = l, l,
β = ∞, R = 1) [12].

T ∗(l) =
I0

λ · σ ·
1

sinh(σ · l) . (3.6)

B) Other speci�c temperature distributions.

Ad. V. Temperature distribution in an opaque half in�nite sample T (x, l = ∞, β =
∞)

T ∗(X ′) =
I0

λ · σ · exp(−σ ·X ′). (3.7)

Ad. VI. Temperature distribution in a half in�nite sample T (x, l = ∞, β)

T ∗(X ′) =
β · I0

λ · σ ·
[
exp(−σ ·X ′) + exp(−β ·X ′)

β + σ
+

exp(−σ ·X ′)− exp(−β ·X ′)
β − σ

]
. (3.8)

Ad. VII. Temperature distribution in an opaque sample. T (x, l, β = ∞, R = 1).

T ∗(X ′) =
I0

λ · σ ·
[
exp(σ · (l −X ′)) + exp(−σ · (l −X ′))

exp(σ · l)− exp(−σ · l)
]
. (3.9)

Ad. VIII. Temperature distribution in a �nite transparent sample, T (x, l, β ≈ 0,
R = 1).

T ∗(x) =
I0

λ · σ2
. (3.10)

As an illustration of the application of the equation (2.13) � (2.15), for the temperature
spatial distribution, the example diagrams of the distributions of the amplitude and phase
of the temperature computed for the semiconductor sample of the thickness l = 0.1 cm,
thermal di�usivity α = 0.1 cm2/s, optical absorption coe�cient β = 100 cm−1, the fre-
quency of modulation f = 16 Hz and the R parameter equal 1 or −1 are presented below
in Fig. 4. The characteristics presented below are typical for almost all semiconductor
materials when excited below the energy gap of a given semiconductor in the region of so
called Urbach tail region connected with the thermal broadening of the absorption band.

Description of the Y -axis in Fig. 5. Amplitude = |T (x′)| (3.11)

Phase =
180
π
· arg (T (x′)) Temperature = Re [T (x′) · exp(i · ω · t)] . (3.12)

The analysis of the appropriate temperature distributions can lead to the interpre-
tation of di�erent e�ects observed in the photoacoustic measurements. These e�ects are
the result of speci�c temperature distributions. They are illustrated in Fig. 5.



Fig. 4. Example temperature distributions in the sample for two thermal re�ection coe�cients values
R = 1 (insulating backing) and R = −1 (thermally conducting backing). Amplitude a) and phase c)
distributions of the temperature in the sample when R = 1. Amplitude b) and phase d) distributions of
the temperature in the sample when R = −1. e) Instantaneous temperature distribution in the sample
for t = 0 (solid), t = T/4 (dot), t = T/2 (dash), t = 3T/4 (dash-dot) and R = 1. f) Instantaneous
temperature distribution in the sample for the same moments of time as in point e) but for R = −1.

T � is the period of modulation of light corresponding the f = 16 Hz.
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Fig. 5. Photoacoustic e�ects being the result of speci�c temperature distributions.

4. Piezo-photoacoustic spectra

The formula describing the temperature distribution in the sample T (x) is important
because the value of the piezoelectric photoacoustic signal is determined by this temper-
ature distribution. Two main parts of the Jackson and Amer [19] and Blonskij [20]
equations contain the temperature distribution formulae. The S1 function (4.1) describes
that part of the piezoelectric signal that is connected with the linear thermal expansion
of the sample. The S2 function (4.1) describes that part of the piezoelectric signal that
is connected with thermoelastic bending of the sample.

S1 ∼=
l∫

0

T (x) dx S2 ∼=
l∫

0

(l/2− x) · T (x) dx. (4.1)

The total piezoelectric signal called the full-drum e�ect being the superposition of the
piston S1 and drum S2 contributions can be expressed by the following formula being
so called modi�ed Jackson & Amer equation.

S = −

1

l
·

l∫

0

T (x) · dx− 1
2 · r2

·
l∫

0

(
l

2
− x

)
· T (x) · dx


, (4.2)

where r = l/2
√

3
The sign minus (or plus) in front of the equation (4.2) depends on the way of connecting
of the piezoelectric transducer to the measuring equipment.

The amplitude and phase characteristics of the piezoelectric photoacoustic signal
contributions, S1 and S2, versus the optical absorption coe�cient presented in Fig. 6
and the full drum S e�ect amplitude and phase characteristics presented in Fig. 7 were
computed for the following parameters: α = 0.08 cm2/s, f = 36 Hz, l = 0.08 cm, R = 1,
−1 and the temperature distribution formula given by equations (2.13) � (2.15).

The piezoelectric photoacoustic amplitude spectrum presented in Fig. 7a) exhibits
three characteristic features that can be observed in most experimental piezoelectric
photoacoustic spectra met in the literature of piezoelectric photoacoustic spectroscopy.
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a) b)

c) d)

Fig. 6. Amplitude versus the optical absorption coe�cient for the piston signal S1 (solid line) and the
drum signal S2 (dash line) for R = 1 (a) and for R = −1 (b). Phase versus the optical absorption
coe�cient for the piston signal S1 (solid line) and the drum signal S2 (dash line) for R = 1 (c) and for

R = −1 (d).

They are the following: a peak appearing in the region of small optical absorption followed
by a dip and next the saturation region for the high values of the optical absorption
coe�cient.

The origin of these characteristic features can be observed in Fig. 6a). They are, in
general, the result of the crossing of the piston S1 and drum S2 spectral characteristics.
For low optical absorption coe�cients the piston contribution S1 is always bigger than the
drum contribution S2. As the total piezoelectric signal S is proportional to the di�erence
S1− S2 then the characteristic peak appears in this optical absorption region. The dip
observed in Fig. 7a) is the result of the intersection of S1 and S2 spectral characteristics.
The depth of the dip depends only on the phase of the drum S2 signal as the phase of
the piston S1 signal is practically always −90 deg. The computer simulations indicated
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a) b)

Fig. 7. a) Amplitude versus the optical absorption coe�cient of the full drum (piezo e�ect) S for R = 1
(solid line) and R = −1 (dash line). b) Phase versus the optical absorption coe�cient of the full drum

(piezo e�ect) S for R = 1 (solid line) and R = −1 (dash line).

that with the increase of the frequency of modulation the phase of the drum S2 signal
shifts from −30 deg to −90 deg and the dip becomes deeper.

For the higher values of the optical absorption coe�cients both the piston and drum
S1 and S2 signals exhibit the saturation e�ect i.e. their values do not depend on the
value of the optical absorption coe�cient and the drum contribution S2 is greater than
the piston contribution S1.

4. Conclusions

This paper presents the derivation of the formula for the spatial distribution of the
periodical contribution of the temperature generated in the sample excited by the in
intensity modulated beam of light. The presented formula describes the temperature dis-
tribution in the sample placed on thermally and optically thick backing material. The
backing material is described by the thermal re�ection coe�cient R. The in�uence of
the thermal properties of the backing material (R = 1, R = −1) on the amplitude,
phase and instantaneous temperature distributions is shown and discussed. The origin
of the characteristic features observed in the experimental piezoelectric photoacoustic
spectra is explained with the derived temperature distribution formula as a result of
the di�erence of the piston and drum spectral characteristics. The comparison of the
presented temperature distribution with other speci�c distributions known from the lit-
erature is shown and discussed. The presented formula enables the computations of the
piezoelectric photoacoustic spectra obtained for samples placed on di�erent backing ma-
terials.
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