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In the sound field simulation of cabin-sized enclosures, the Schroeder frequency (SF) is still
employed to estimate the crossover frequency (CF) that determines the validity ranges of wave-
based and geometrical acoustic methods. However, because cabin-sized enclosures exhibit distinct
modal behaviors from typical medium- and large-scale rooms, the validity of SF in such enclosures
has not been thoroughly validated. To systematically assess the applicability of SF in cabin-sized
enclosures, this study introduces the modal density-based crossover frequency (MDCF). The
MDCEF employs the same dense modal criterion as SF. Its modal parameters, however, are derived
from numerical eigenfrequency analysis. This contrasts with the SF formula, where these
parameters are determined solely by room volume and reverberation time. Ten models are
constructed for evaluation, grouped into two volume sets: 8 m? (cabin-sized) and 80 m? (common-
sized). Each set comprises five distinct geometrical shapes from rectangular models to simplified
vehicle shapes. The results reveal that, for cabin-sized enclosures under low absorption boundary
conditions, the MDCEF is typically 70 Hz —150 Hz lower than SF; the discrepancies decrease to 20
Hz-50 Hz in 80 m?® rooms. Furthermore, the MDCF varies with room shapes at a constant volume,
whereas the SF remains nearly unchanged. These findings demonstrate that MDCF provides a
more reliable CF estimation for rooms with irregular shapes, and highlights the importance of
considering accurate modal parameters in acoustic analysis of cabin-sized models.
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List of symbols

fsk Schroeder frequency fmbpcr modal density-based crossover frequency

the n—th eigenfrequency under rigid

Jn 1E)(())ru riﬁzryreal part of n —th eigenfrequency e the n.—th eigenfrequency
fe)
Co speed of sound p air density
ny, Ny, N,  modal orders along each axis Ly, Ly, L, room dimensions

4 volume S total surface area
L total edge length fu upper limit frequency

Ny modal number N, simplified modal number

Afy, eigenfrequency spacing Af, simplified eigenfrequency spacing
) modal decay factor Byp half-power bandwidth

Onc the n —th modal decay factor Byp ( fn,c) the n —th half-power bandwidth
§ simplified modal decay factor Byp simplified half-power bandwidth
M modal overlap degree k wavenumber
p sound pressure K stiffness matrix

M mass matrix C damping matrix

Teo reverberation time absorption coefficient
¢ normalized boundary impedance, { = {; + j{, Z boundary acoustic impedance

1. Introduction

In the study of sound field simulation and analysis for cabin-sized enclosures, the crossover
frequency (CF) serves as a critical threshold that defines the optimal transition between wave-
based and geometrical acoustic methods (Kleiner, Tichy, 2014; Rougier, 2018; Siltanen et al.,
2010). Below the CF, the sound field is dominated by a limited set of discrete normal modes, where
the wave-based methods such as the finite element method (FEM) can provide accurate predictions
(Sakuma et al., 2014). Above the CF, the modal density increases, leading to a more even
distribution of sound energy; therefore, geometrical acoustic methods — ray tracing method —
provide accurate predictions with greater computational efficiency (Savioja, Svensson, 2015;

Savioja, Xiang, 2019).



In practice, CF is commonly estimated by the classical Schroeder frequency (SF) formula,
which has been validated mainly in the medium- and large-scale sound fields (Southern ez al., 2011,
2013; Summers et al., 2004). Based on the statistic acoustic theory, the SF is determined by two
parameters: the room volume V , which describes the modal distribution behavior, and
reverberation time T, which characterize the decay rates of all modes (Schroeder, Kuttruff, 1962;
Schroeder, 1987; 1996). Both the modal distribution and the modal decay properties serve as
critical parameters for theoretically determining the CF, and the SF offers a convenient indicator
for CF estimation (Brinkmann ez a/., 2019).

However, the simplifications and assumptions of modal properties in the derivation of SF
impose limitations. The simplified modal distribution formula — originally derived from the
distribution of oblique modes in rectangular rooms — approximates the modal distribution of
enclosures with different shapes solely through their volumes V (Bolt, 1946; Morse, 1968); it not
only undercounts modes but also neglects the effects of room geometry on modal distribution
(Gunawan et al., 2018; Meissner, 2021). The reverberation time Tgy, which characterizes the
modal decay rate, is typically assumed to be frequency-independent value — estimated either from
an average absorption coefficient in analytical simulation or from the 1 kHz one-third octave band
in measurements — to yield a specific SF value (Kuttruff, 2016; Nélisse, Nicolas, 1997). Such a
single global parameter Ty, however, is insufficient to capture the decay behaviors of individual
modes. Because the decay rate of each mode depends on how it interacts with the damping
boundaries: modes that encounter more damping surfaces exhibit faster energy decay than those
encountering fewer damping surfaces (Bastine ef al., 2021; Zheng et al., 2021). For instance, in
rectangular rooms, the oblique modes decay more rapidly than the axial and tangential modes, and

similar variations are also observed in non-rectangular enclosures.



The limitations from the simplified modal parameters become more pronounced in
cabin-sized enclosures. In such enclosures, the number of modes within a given frequency band is
limited and their distribution is sparse (Kleiner, Tichy, 2014; Meissner, 2017). Therefore, any
underestimation using a volume-based formula can lead to substantial relative errors. Moreover,
the premise of reverberation time Ty, is often invalid in cabin-sized enclosures due to the rapid
interaction of sound waves with damping boundaries, which causes faster energy decay (Ferreira
et al., 2016; Rindel, 2015). As a result, these simplified modal parameters introduce significant
errors into the modal analysis of cabin-sized enclosures. Despite these limitations, the SF remains
a reference for estimating the CF in several vehicle acoustics studies (Aretz, Vorliander, 2014b,
2014a; Granier et al., 1996; Pinardi et al., 2021). Hence, it is necessary to reassess the validity of
using SF to estimate CF, as its applicability in this context is insufficiently established.

To address these issues, this study analyzes the modal characteristics of cabin-sized
enclosures, and proposes the modal density-based crossover frequency (MDCF) for CF estimation
using accurate modal parameters. Ten models — comprising two volume sets (8 m* and 80 m?) and
five distinct geometries per set — are simulated via FEM to obtain accurate eigenfrequencies and
modal parameters. By comparing numerically derived modal spacing and bandwidth with
analytical solutions, we quantify the discrepancies between MDCF with SF, and elucidate the
mechanisms underlying these differences in cabin-sized enclosures.

The paper is organized as follows. Section 2 introduces the research models, including the
model shapes, boundary conditions, and numerical simulation setup. Section 3 reviews the
analytical formulas and numerical simulations of modal parameters, details the derivation process
of the SF and MDCEF, and presents the relations between them. Section 4 compares the results

between analytical (SF-based) and numerical (MDCF-based) modal parameters across different



geometries and boundary conditions, and further compares the MDCF and SF. Finally, Sec. 5

concludes with the main findings and academic contributions of MDCEF in vehicle acoustics studies.

2. Research models

The research models comprise two sets of proportionally scaled models with a volume ratio
of 1:10, the small-scale set has a volume of 8 m?, representing vehicle cabins, while the large-scale
set has a volume of 80 m?, representing ordinary meeting rooms. Each volume set contains five
geometrical configurations: three rectangular rooms with dimension ratios (Lx: Ly: Lz) as follows
— Model A (1.00:3.00:4.00), Model B (1.00:1.50:2.50), and Model C (1.00:1.20:1.45) (Rindel,
2021), and two chamfered models: Model D and Model E, created by applying diagonal cuts to

Model B (similar dimensions to actual cabins). Figure 1 provides the exact dimensions and

geometries for the five small-scale models (8 m?).

Figure 1. Dimensions and geometries of five small-scale models. Rectangular models: Model
A (1.00:3.00:4.00), Model B (1.00:1.50:2.50), Model C (1.00:1.20:1.45). Non-rectangular models:

Model D (one oblique plane), Model E (two oblique planes). Dimensions are in millimeters [mm)].

All interior surfaces are modeled as isotropic and homogeneous boundaries, with a uniform
absorption coefficient a ranging from 0.05 to 0.30. Boundary losses are implemented by locally
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reacting boundaries with Robin boundary conditions (Zheng et al., 2021).
Acoustic eigenmodes are obtained by solving the linearized Helmholtz equation under rigid

or damping boundary conditions via the FEM, the calculation process will be detailed in the next
. ) . Ami
section. The computational mesh element size is set to h < %, where A, = 0.0686 m

corresponds to the wavelength at 1 kHz, ensuring a minimum of five elements per wavelength for

simulation accuracy.

3. Theory and methods

Modal distribution and modal decay are fundamental properties of normal modes. This
section first outlines the theoretical framework of modal theory and the analytical formulas for
modal parameters in rectangular rooms, followed by the derivation of Schroeder frequency (SF).
Based on this framework, the corresponding parameters for non-rectangular rooms are obtained
through numerical eigenfrequency analysis. Subsequently, the modal density-based crossover
frequency (MDCF) is introduced as an alternative estimation method for estimating the CF, and

its differences from the SF formula are compared and discussed.

3.1. Analytical solution of modal parameters and derivation of the Schroeder frequency

For a rectangular room with rigid boundaries, the eigenfrequency formula is given by

(Kuttruff, 2016):

fom e |2 () 4 (2 M
n oy |\, Ly Ly)
where ¢, is the speed of sound in air, Ly,L,,L, are the room dimensions, and ny,n,,n, are

non-negative integers representing the modal orders along each axis. Modes are classified

according to their propagation direction: oblique modes (none of the n,,n,,n, are zero,



representing three-dimensional volume propagation), tangential modes (one of the ny,n,,n, is
zero, indicating two-dimensional surface propagation), and axial modes (two of the n,,n,,n, are

zero, corresponding to one-dimensional axial propagation)
The modal number below an upper frequency f, in rectangular rooms is given by (Maa,

1939):

NG =2V (B) 425 (k) 4 L. & @)

o 8 ¢
where V, S, and L represent the room volume, total surface area, and sum of the room edge
lengths, respectively. Since the first volume-governed term dominates at high frequencies, Eq. (2)

is commonly simplified as (Weyl, 1911):

NG =2 (&) G)

Co
The eigenfrequency spacing, defined as the difference between consecutive eigenfrequencies,
can also be expressed as the number of modes within per unit frequency range. Based on Eq. (3),

the average eigenfrequency spacing is expressed as:

~  (aNs(O\ T 3
Af":( dffu ) :4m(/)f,f' (4)

Under non-rigid boundary conditions, modal energy decays over time. The decay rate is
typically quantified by the decay factor &, following the relation of E(t) = Eye~2%t. The decay
factor can be derived from the time required for the sound level decreases by 60 dB, known as Tg.

Thus, the decay factor is given by (Kuttruff, 2016):

S — 3 ln(lO)' (5)

Teo

In the frequency region, the half-power bandwidth — defined as the frequency range where

energy decays from peak to half-peak — is related to the decay factor by (Kuttruff, 2016):



>

Bup = s (6)

By substituting the Eq. (5) into Eq. (6), the half-power bandwidth can be expressed as:

_3In(10)

Byp = : (7

TL"TGO

The modal overlap degree is defined as the ratio of half-power bandwidth and eigenfrequency

spacing, can be calculated as (Dance, Van Buuren, 2013):

— Bup
M =75 (8)

According to Schroeder’s study, when the modal overlap degree reaches or exceeds 3 — that
is, when the eigenfrequencies spacing is less than one-third of the bandwidth —it represents the
dense modal distribution (Schroeder, 1996). This criterion can be reformulated as the condition

where the half-power bandwidth equals three times of eigenfrequency spacing, expressed as:

Byp = 3 X Afy. )
By substituting the expressions for eigenfrequency spacing from Eq. (4) and half-power

bandwidth from Eq. (7), Schroeder frequency is expressed as:

for = 2065.8 /TLV" ~ 2000 /% (10)

Therefore, the SF provides a general formula, based on room volume V and decay parameter

Teo, to estimate the CF, which marks the transition from discrete to dense modal distribution.

3.2. Numerical modal analysis and the definition of modal density-based crossover frequency

However, in a non-rectangular enclosure with complex boundary conditions, the analytical
eigenfrequency formula Eq. (1) is no longer applicable. In practice, the FEM and other numerical

simulation methods can provide a viable and efficient way to predict the eigenfrequency, as



obtaining exact eigenvalues by measurements is often impractical. The FEM solves for the

eigenfunctions by discretizing the continuous governing equations (Sakuma e al., 2014). All
models in this study are analyzed using the FEM to ensure comparability.

The governing equation (Helmholtz equation) in acoustic eigenmode analysis takes the form:

Vp + k?p =0, (11)

where k = Cﬁ is the wavenumber. Through the Galerkin weighted residual method, the
0

continuous equation Eq. (11) is discretized into a generalized matrix eigenproblem, with
eigenfunctions @ and corresponding eigenvalues k:

[K— k*M]® = 0, (12)
where K;; = [, VD; - VD; dQ is element of stiffness matrix K,and M;; = [ D;D; dQ is element
of the mass matrix M. And D; and D; represent shape functions for nodes i and j, and Q is

the computational volume domain.
Based on the numerical eigenfrequency solutions, the eigenfrequency spacing is calculated
as the difference between consecutive eigenfrequencies. Compared to Eq. (4), this approach is the

fundamental and yields randomly fluctuating results rather than an averaged trend:

Afn = fo = fa-1- (13)

Under damping boundary conditions with a specific acoustic impedance Z, the governing
equation is modified as:

(K—k*M + C0)® =0, (14)

where C;; = iw7p ) ¢DiD; dS is element of the damping matrix €, p is the ambient air density, and

S is the computational surface domain. Consequently, the n-th eigenfrequency is expressed as:

, On,c
fn,c = fn —l-=, (15)
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where the imaginary part represents the mode-specific decay factor &, ., which varies with the
modal propagation direction and boundary conditions. Substituting &, . into Eq. (6) yields the

mode-specific half-power bandwidth:

BHP(fn,c) = % (16)

Applying the same criterion: ‘three modes within a half-power bandwidth Byp’, the modal

density-based crossover frequency (MDCF) is defined from the numerical eigenfrequency

solutions. As illustrated in Fig. 2, for each eigenfrequency f,£ic), the number of modes Nf(i) within

its corresponding half-power bandwidth Bpyp (fn(lc)) is counted. The MDCEF is identified as the

lowest eigenfrequency for which the half-power bandwidth contains three or more modes, and all
subsequent frequencies also satisfy this condition. The half-power bandwidth and its center

frequency correspond to the imaginary and real parts of the complex eigenfrequency in Eq. (15).

:| Byp contains < 3 modes
l: Byp contains > 3 modes

- (1 - (2 . - (k 3 .
Bup(fo) Bup (fuc®) By Bur(ac)  Bur (™) Bur (1)
Y T T = e >
I ‘I l ;. ‘ o A ' e 2
! ! ! 1 T il
- s .
.f;’.é(l) .fH.L(Z) f;‘hf[/) jf‘l.lf{ ) .‘f;i‘((ln f)l L(q)
' | . i 1 |
| | |
| | |
| >
D B _qr_ T T T I
N=1 NP=1 NP=2 NfY=3 NP=3 NV=5

Eigenfrequency distribution (Hz)

Figure 2. Definition of modal density-based crossover frequency: the MDCF is the lowest
eigenfrequency whose half-power bandwidth contains three or more modes, with all subsequent

frequencies also meeting this criterion.

As shown in Fig. 2, light gray blocks represent bands that do not satisfy the dense modal

criterion, such as Byp ( fn(’i)); while dark gray blocks satisfy this criterion. Since the BHP( n(lé))
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centered at the eigenfrequency f,ff? contains three modes of Nf(k), and all subsequent frequency

bands also satisfy this condition, it follows that fypcr = fn(lé)

3.3. Comparison of Schroeder frequency and modal density-based crossover frequency

Both of SF and MDCF employ ‘3-mode within a Bpyp’ criterion, but they differ in the
employed parameters and derivation process. Table 1 summarizes the modal parameters used in
the derivation of SF and MDCF.

Table 1. Modal parameters employed in derivation process of SF and MDCF’

Parameter Schroeder frequency Modal density-based crossover frequency
. = cs . . .
Eigenfrequency Afy = MV" 2 simplified formulas (rectangular Afy = fn — fn—1, numerical results (any
spacing shape) geometrical shapes)

Half-power

s _ 3ln(0) .  Sne ]
bandwidth Bup = m-Tso » with global decay Teo BHP(fn.C) = , mode-dependent
4. Results

The modal parameters obtained from numerical simulations and analytical formulas are

compared in the following section.

4.1. Eigenmode distributions under rigid walls

Figure 3 presents the comparison of eigenfrequency spacing under rigid boundary condition.
The numerical results Af,, from Eq. (13) in 8 m? and 80 m?® rooms are shown as green- and blue-
marked lines, respectively; while analytical results Af, from Eq. (4) are presented by black

dashed and dotted lines. The gray shaded areas indicate the discrepancies between the two methods.
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Eigenfrequency spacing (Hz)

25
20
15

8 m®: A f, by Eq.(13)

- 8m’: Af, by Eq.(4)

Discrepancy area

80 m*: A f; by Eq.(13)
80 m*: Af, by Eq.(4)

100 200 300
Eigenfrequency (Hz)

Figure 3. Eigenfrequency spacing from numerical results Af,, from Eq. (13) and analytical

results Af, from Eq. (4) in 8 m? rooms (green marked lines, black dashed lines) and 80 m* rooms

(blue marked lines, black dotted lines). Gray regions denote discrepancies between them.

Overall, discrepancies are observed across all models, and are more pronounced in small-
scale rooms (8 m?). In the low-frequency range, the eigenfrequency spacings obtained from the
analytical results are higher than that from the numerical results, and gradually consistent. For
example, below 200 Hz, the average difference between the two methods range from 10 Hz—20
Hz in 8 m? rooms; and from 3 Hz—10 Hz in 80 m? rooms.

Regarding the shape-dependent discrepancies in 8 m*® rooms, Model A exhibits the largest
deviation, with differences up to 20 Hz. Models B and E also show substantial discrepancies, with
maximum deviations of 10 Hz—15 Hz. Models C and D display smaller differences, with deviations
around 10 Hz. These results indicate that the analytical method becomes less accurate in small-

scale enclosures, ultimately affecting the analysis of modal overlap and crossover frequency.

4.2. Half-power bandwidth under damping boundaries

Figure 4 compares the half-power bandwidths under a uniform absorption boundary condition

12



(a = 0.20). The numerical bandwidths Bpyp (fn'c) from Eq. (16) for 8 m* and 80 m? rooms are

presented by green- and blue-marked lines, respectively; and analytical results Byp from Eq. (7)

are shown as black dashed and dotted lines. The gray areas quantify the deviations between the

two methods.

25 Model-A 25 Model-B 25 Model-C
AAAA HAMMA A
20 UV “A“ZO A A A4 sasmasma 20 Aata 2 A a4
4 A A -
15 w24t My N 5 ”n /A t L8PS s '.‘,15 A AAA MALVAL LAMAS
— / & N Ay 3 ) 'Y
N A
Z 10 _ gepvomemermimm
5 Py e o e 1" ' )
B S Sedssidniedadiesiiodsnisd BE GAGLLGLLALLLRGRGG LG B e
% 0 0 0
% 0 100 200 300 0 100 200 300 0 100 200 300
o
S
g Model-D Model-E
2 25 25 T -
o " s 8m’: Byp(f,,) by Eq.(16)
w 20 A as 20 4 Aa 35
- A \f“vﬁm A A | - - - 8m’: By, by Equ(7
g 5 . A.AA*A‘ ‘t R 5{*:15 . A;‘:‘H‘,Q A:"‘f” AAA‘” 1 by Eq.(7)
A A \ . -

e Discrepancy area

) ‘
,;,;ﬁﬁwmwm = 80 m’ By(f,.) by Eq.(16)

........ 80 m*: B 1 by Eq.(7)

0 100 200 300 0 100 200 300
Eigenfrequency (Hz)

Figure 4. Half-power bandwidth of numerical results Byp ( fn,c) from Eq. (16) and analytical

results Byp from Eq. (7) in 8 m® rooms (green marked lines, black dashed lines) rooms and 80
m? rooms (blue marked lines, black dotted lines). The boundary absorption coefficient is 0.20, and

Tso in analytical Byp is obtained by Eyring Ty, formula. Gray regions denote discrepancies

between them.

Across all models, the bandwidths obtained numerically are consistently higher than those
from the analytical formula, and this discrepancy is more pronounced in 8 m* rooms. For instance,
in 8 m? rooms, deviations exceed 10 Hz at certain eigenfrequencies; whereas the discrepancy is
narrower in 80 m® rooms. Moreover, the numerical results exhibit frequency-dependent variations:
at low frequencies, they show a scattered distribution due to varying modal damping; whereas at
high frequencies, they stabilize to a maximum owing to the dominance of oblique modes. In

contrast, the analytical results remain constant across the frequency range.



As for the shape-dependent discrepancies in 8 m? rooms, Model C has the largest deviation
(nearly 15 Hz), followed by Models B and E (up to 10 Hz), and Model D (slightly less than 10
Hz). Model A exhibits the smallest discrepancy. These results demonstrate that the analytical
formula underestimates the modal damping, and that the discrepancies between numerical and

analytical results among different model shapes are more pronounced in small-scale enclosures.

4.3. Modal overlap degree

The ratio of half-power bandwidth to eigenfrequency spacing is the modal overlap degree,
which determines the final crossover frequency. Figure 5 compares the modal overlap degree under

BHP(fTL,C)

the boundary condition of uniform absorption a = 0.20. Green and blue lines represent ar

obtained by numerical results for 8 m* and 80 m?® rooms, respectively; while black dashed and

dotted lines show IZ% obtained by analytical formula. Gray areas indicate where modal overlap

n

degree reach or exceed three. Vertical solid and dashed lines indicate the MDCF and SF for 8 m?
rooms (green) and 80 m? rooms (blue). Above the MDCF and SF, the modal overlap degree

exceeds three.
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Figure 5. The modal overlap degree of numerical modal parameters (%ff”'c)) and analytical

modal parameters (i%) in 8 m* rooms (green marked lines, black dashed lines) and 80 m?* rooms

(blue marked lines, black dotted lines). The boundary absorption coefficient is 0.20. The vertical
lines represent the MDCF (solid lines) and SF (dashed lines) in 8 m? rooms (green) and 80 m?

rooms (blue), indicating the frequency beyond which the bandwidth contains more than 3 modes.

This analysis is critical for determining the MDCF and SF. Overall, modal overlap degree
from numerical results is consistently higher than that from analytical results under current
boundary condition; correspondingly, MDCEF is generally lower than the SF in all models except
Model C, where a sudden drop in modal bandwidth containing fewer than three modes results in a
higher MDCF.

Notably, the difference between MDCF and SF is more pronounced in 8 m3 rooms. For
example, Model D exhibits the largest gap, around 140 Hz (MDCF =220 Hz and SF~360 Hz),

followed by Model E is approximate 100 Hz, Model B is around 60 Hz, and Model-A is around

15



40 Hz. In contrast, 80 m3 rooms show narrower gaps between MDCF and SF, around 1540 Hz.

Based on this methodology, results for other boundary conditions could be derived similarly and

will be presented in the next section.

4.4. Modal density-based crossover frequency

Based on the forefront analysis, the MDCF can be determined. Figure 6 compares MDCF
with SF in 8 m® and 80 m?® rooms for the boundary absorption coefficients in the range of [0.05,
0.30]. The MDCEF is represented by marked lines and SF is represented by dashed lines.

Model-A Model-B Model-C

0 0 0
0.05 0.1 0.15 0.2 0.25 0.05 0.1 015 0.2 0.25 0.05 0.1 015 0.2 0.25

Model-D 800 Model-E

©
o
o

-

—4—8m’: MDCF
—4—380 m*: MDCF
- = =8m’:SF
- = =80 m’ SF

Crossover frequency (Hz)

(2]
o
o

600
L

N
o
o

400

-

4

N
o
o

200

0 0
0.05 0.1 0.15 02 0.25 0.05 01 015 0.2 0.25
Absorption coefficient

Figure 6. The modal density-based crossover frequency (MDCF) and Schroeder frequency
(SF) in 8 m? (green solid- and dashed-lines) and 80 m? (blue solid- and dashed-lines) rooms, when

boundary absorption coefficient is from 0.05 to 0.30.

The results show that the MDCEF is generally lower than the SF in most cases. Notably, larger
discrepancies are observed in 8 m*® rooms than 80 m?® rooms. For instance, at a = 0.20, the
differences of MDCF and SF exhibit an average of 55 Hz and peak of 145 Hz in 8 m?® rooms,

whereas in 80 m® rooms, the average gap is 25 Hz, and the peak gap is 50 Hz. As analyzed above,

16



discrepancies in eigenfrequency spacing and half-power bandwidth between numerical and
analytical results lead to differences between the MDCF and the SF These include: the MDCF
accounts for actual modal distribution, considering all simulated eigenmodes, and the SF relies on
volume-related eigenmodes that overestimate eigenfrequency spacing, particularly in small-scale
rooms; and numerical Bpyp is consistently wider than analytical predictions, with this discrepancy
amplified in smaller enclosures. These findings explain the mechanisms underlying the
discrepancies between the SF and the MDCF when estimating the CF, and quantitatively specify

these differences.

5. Conclusion

This study investigates modal characteristics of cabin-sized enclosures by analyzing two key
parameters that determine the crossover frequency (CF) — modal distribution and modal decay —
using both numerical simulations and analytical formulations. The modal density-based crossover
frequency (MDCF), derived from numerical simulations, is proposed and compared with the
Schroeder frequency (SF). Based on ten models with two volumes and five different geometrical
shapes, the results show that the MDCEF varies with room shapes at a constant volume. Furthermore,
the MDCEF is lower than SF approximately 70 Hz—150 Hz in cabin-sized rooms; while the
differences decrease to 20 Hz—50 Hz in larger rooms. Consequently, MDCF provides a more
reliable CF estimation for irregularly shaped rooms, and highlights the necessity of incorporating
accurate modal parameters in the modal analysis of cabin-sized enclosures. Additionally, the
difference in modal decay rates across modal types is analyzed, providing theoretical insights
relevant to low-frequency equalization. Future work should include experimental validation to

deepen the understanding of modal properties in cabin-sized enclosures.
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