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An Improved Dynamic Time Warping Algorithm for Active Sonar Signal 
Matching 

Tongjing Sun*, Hunyuan Wang, Lei Chen, Haoran Xu

Department of Automation, Hangzhou Dianzi University, Hangzhou, China 
*Corresponding Author: stj@hdu.edu.cn

Active sonar signal matching is a critical technique for measuring inter-signal similarity 

and enhancing target detection and classification performance. However, in complex 

underwater environments, noise, reverberation, and prolonged signal durations often degrade 

matching accuracy and computational efficiency. To address these challenges, this paper 

proposes an Adaptive Extremum-aligned Boundary-constrained Dynamic Time Warping 

(AEB-DTW) algorithm, based on the classical Dynamic Time Warping (DTW) framework. The 

algorithm extracts significant extrema from signal envelopes to suppress noise and 

reverberation while capturing salient features. By integrating the position and amplitude of 

extrema, an adaptive weighted matching strategy is introduced to enhance feature 

discrimination. In addition, spline fitting is applied to the residuals of the extremum matching 

path to dynamically generate upper and lower boundary constraints, thus restricting DTW 

computation to a meaningful region and achieving a balance between accuracy and efficiency. 

Experiments using lake-trial active sonar data under signal-to-reverberation ratios (SRRs) from 

0 dB to 30 dB show that AEB-DTW outperforms ED, DTW, and its variants in matching 

accuracy, robustness, and angular resolution, while significantly improving computational 

efficiency, particularly for long-duration signals. 

Keywords: Active sonar signal matching; Dynamic Time Warping (DTW); Time series 

similarity; Adaptive boundary constraints. 

1 Introduction 

Active sonar signals, as a typical type of time-series data, play a crucial role in underwater 

navigation, target detection, and marine resource exploration (Bian et al., 2024; Zhang et al., 

2023; Zhu et al., 2025). In complex marine environments, efficiently and accurately measuring 
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the similarity between signals is a fundamental basis for supporting applications such as target 

detection, localization, feature extraction, and classification using active sonar (Sun et al., 2024; 

Dau et al., 2018). It also has a profound impact on improving the processing efficiency and 

recognition performance of subsequent tasks (Silva et al., 2018). 

Dynamic Time Warping (DTW) is a widely used algorithm for time-series alignment that 

addresses limitations of traditional Euclidean distance (ED) metrics by allowing nonlinear 

temporal warping (Wang et al., 2022; Chen et al., 2017). DTW effectively handles sequences 

of differing lengths, temporal shifts, and amplitude variations, enabling robust and precise 

matching (Li, Guo, 2013). Consequently, it has attracted extensive research attention globally. 

To improve computational efficiency, methods such as LB_Yi, LB_Kim, and LB_Keogh 

have been proposed by Yi et al. (1998), Kim et al. (2001), and Keogh et al. (2005), respectively. 

These methods define lower-bound constraints on sequence distances to exclude dissimilar 

sequences and reduce the search space for matching. Salvador and Chan (2007) introduced the 

Fast-DTW algorithm, which reduces computational cost by projecting sequences into low-

dimensional spaces to approximate the warping path. Lahreche and Boucheham (2021) 

developed LEDTW, which significantly reduces complexity by performing DTW only on local 

extrema. Tang and Gao (2023) proposed EWDTW, incorporating adaptive weighting strategies 

based on local extrema to enhance both efficiency and classification accuracy. Sakoe and Chiba 

(1978) introduced the Sakoe-Chiba band, which constrains the warping path's search area to 

reduce matrix computations. 

For improving alignment accuracy, Jeong et al. (2011) and Li (2021) proposed WDTW 

and TWDTW, which adjust feature weights to enhance alignment precision. Keogh and 

Pazzani (2001) introduced DDTW, which focuses on the trend of sequence variation by 

incorporating first-order derivatives to avoid misalignments. Li et al. (2020) proposed ACDTW, 

which dynamically adjusts the warping window to better match local features. Zhao and Itti 
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(2018) proposed ShapeDTW, which uses local extremum structures to enhance the ability to 

identify complex shapes. Hong et al. (2020) proposed SSDTW, which combines sparse 

representation with spatial structural constraints for efficient high-dimensional sequence 

alignment. 

Despite these developments, existing DTW variants still struggle to balance alignment 

accuracy and computational efficiency for active sonar echoes. In complex underwater 

environments, strong reverberation and noise distort signal envelopes, causing unstable 

similarity estimation, while fixed or manually tuned warping constraints fail to adapt to variable 

signal durations. Therefore, the core technical problem addressed in this work is achieving 

robust and efficient similarity matching for active sonar signals under low signal-to-

reverberation ratio (SRR) conditions while preserving key structural features. 

To solve this problem, this study proposes an Adaptive Extremum-aligned Boundary-

constrained Dynamic Time Warping (AEB-DTW) algorithm. The method extracts significant 

extrema to suppress noise and highlight salient envelope structures, introduces adaptive 

weighting to enhance feature discrimination, and constructs dynamic boundary constraints to 

reduce computation while maintaining alignment precision. The main contributions are 

developing a structure-aware matching framework, achieving a robustness–efficiency balance, 

and validating its effectiveness through comprehensive lake-trial experiments against ED, DTW, 

and its variants. 

2 Dynamic Time Warping (DTW) Algorithm 

The core objective of the DTW algorithm is to find an optimal alignment path that 

minimizes the overall distance between two sequences. Let the envelope features of two one-

dimensional active sonar signals be { }1, , , ,i mx x x=X     and { }1, , , ,i ny y y=Y    , with 

lengths m and n, respectively, as shown in Fig. 1(a).  
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To implement this optimal alignment, we turn to the DTW matching process, which is 

illustrated in Fig. 1(b): sequences X and Y are mapped to the horizontal and vertical axes of a 

two-dimensional grid to construct a distance matrix. Using the principle of minimum 

cumulative distance, the shortest path from the bottom-left corner to the top-right corner is 

found, representing the optimal nonlinear alignment between the two sequences. Fig. 1(c) 

shows the pointwise correspondence along the optimal warping path. 

 

Fig. 1. DTW Alignment Effect and Warping Path. 

To compute the DTW distance between sequences X and Y, we first define the point-wise 

distance function between elements ix  and jy : 

 ( ), ,i jd i j x y
β

= −  (1) 

where β +∈  , and 2β =   corresponds to the Euclidean distance. To compute the DTW 

distance between sequences X and Y, an optimal warping path must be identified. Let this 

optimal path be denoted as: 

 ( ) ( ) ( ) ( ){ }1 1 2 2, , , , , , , , , ,k k K Ki j i j i j i j= W  (2) 
where K is the length of the warping path, and each ( ),k ki j   represents a matched pair of 

indices from sequences X and Y, respectively. The warping path W is an ordered set of index 

pairs that aligns the two sequences in a nonlinear manner. Its formal constraints and cost 

computation are described as follows. 
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1) Boundary condition: ( ) ( )1 1, 1,1i j = , and ( ) ( ), ,K Ki j m n= . 

2) Monotonicity: 1k ki i+ ≥ , 1k kj j+ ≥ . 

3) Continuity: ( ) ( ) ( ) ( ){ }1 1, 1,0 , 0,1 , 1,1k k k ki i j j+ +− − ∈ . 

Under these constraints, the DTW distance is calculated as: 

 ( ) ( )
1

, min , .
K

k
DTW d i j

=

 =  
 
∑W

X Y  (3) 

To solve this, a cumulative cost matrix D  is constructed recursively as: 

 ( ) ( ) ( ) ( ) ( ){ }, , min 1, , , 1 , 1, 1 ,D i j d i j D i j D i j D i j= + − − − −  (4) 

where 1,2, ,i m=   ， 1,2, ,j n=   . The initial conditions are set as ( )0,0 0D =  , and 

( ) ( ),0 0,D i D j= = ∞  . Equation (4) indicates that the cumulative distance at a given point 

equals the sum of the current pointwise distance and the minimum cumulative distance from its 

neighboring positions. ( ),D m n  denotes the DTW distance between sequences X and Y, and 

the computational complexity of the algorithm is O(m*n). 

3 The AEB-DTW Algorithm 

The core idea of the AEB-DTW algorithm is to adaptively extract significant extrema from 

active sonar signal envelopes in order to capture key structural features. A weighted matching 

model is constructed using amplitude and phase differences to enhance the discrimination 

ability of extrema alignment. Based on the weighted matching results, a dynamic upper and 

lower boundary constraint is constructed to restrict the DTW search region, thereby enhancing 

both efficiency and robustness.  

Fig. 2 illustrates the processing flow of AEB-DTW. The signal envelope is first extracted 

to highlight major structures and suppress noise (Fig. 2(a)). Then, significant extrema are 
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adaptively identified to form a reduced feature sequence (Fig. 2(b)). These extrema are assigned 

adaptive weights according to their position and amplitude to guide the warping path (Fig. 2(c)). 

Finally, boundary constraints are constructed from the residuals between the matched extrema 

path and the smoothed trend line (Fig. 2(d)). 

 

Fig. 2. Execution Flow of the AEB-DTW Algorithm. 

3.1 Extraction of Significant Extrema 

To extract structurally meaningful local extrema from active sonar signal envelopes, we 

adopt a prominence-based adaptive detection method. For a given sequence 

{ }1, , , ,k mx x x=X    , each point ( )2,3, , 1kx k m= −   is identified as a local maximum if 

1 1k k kx x x− +< > , or a local minimum if 1 1k k kx x x− +> < . 

To determine whether a local extremum is significant, a dynamic threshold is introduced 

based on the statistical characteristics of the signal. Let µ , minx  and maxx  denote the mean, 

minimum, and maximum values of X, respectively. A scaling factor γ  is defined as:  

 min

max min

.x
x x
µγ −

=
−

 (5) 
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Based on this, the prominence threshold δ  is computed as: 

 ( )MAD ,δ γ= ⋅ X  (6) 
where MAD(X) is the mean absolute deviation, which measures average signal fluctuation and 

is robust to outliers. Local extrema are retained only if their prominence exceeds δ, effectively 

suppressing noise-induced oscillations and weak fluctuations.  

The prominence of a local extremum quantifies how much it stands out from its 

surroundings. For a maximum, it is defined as the vertical distance between the peak and the 

lowest point on either side before reaching a higher peak. For a minimum, it is the distance 

between the trough and the highest point between it and a deeper trough.  

Let ( ){ } 1
,

m
i i i

p a
′

=
=EX  and ( ){ }

1
,

n

j j j
q b

′

=
=EY  denote the sequences of significant extrema 

extracted from X and Y, respectively, where ip  and jq are the positions (indices) of the i-th 

and j-th significant extreme points, and ia  and jb  are the corresponding amplitudes. For two 

sequences of lengths m and n, the numbers of significant extrema extracted are m′ and n′, 

respectively, where m m′    and n n′   . As illustrated in Fig. 3, peaks and troughs 

correspond to local maxima and minima of the signal. Only extrema exceeding the adaptive 

saliency threshold are retained, while non-significant extrema caused by noise are excluded. 

The start and end points are added to the extrema sets EX  and EY   to preserve boundary 

characteristics. Although some local extrema are not detected (indicated by arrows in Fig. 3), 

these omissions do not affect the extraction of essential structural features, ensuring algorithmic 

correctness and stability while enabling dimensionality reduction. PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 A

R
C

H
IV

E
S O

F A
C

O
U

ST
IC

S



8 

 

 

Fig. 3. Extraction Process of Significant Local Extrema. 

3.2 Adaptive Weighted Alignment of Significant Extrema 

After extracting significant extrema from both sequences, the next step is to establish 

reliable correspondences. As key structural features, the accurate alignment of these extrema 

provides a foundation for reducing the search space and enhancing the robustness of similarity 

matching. To this end, a weighted alignment strategy is proposed, which jointly models the 

positional and amplitude attributes of each extremum to characterize structural correspondences 

more precisely. Significant extrema are regarded as fundamental matching units, and their fused 

features are used to construct weighted correspondences. The resulting position mappings serve 

as the structural basis for generating boundary constraints, as detailed below. 

 ( )
( )
( )
( )

1,
, min , 1 ,

1, 1

E

E b i j a i j E

E

D i j
D i j a b p q D i j

D i j
ω ω

−= ⋅ − + ⋅ − + −
 − −

 (7) 

where ( )1a rω λ= +   and 1b aω ω= −    represent the weighting coefficients for positional 

and amplitude differences, respectively. Here, 0.6=λ   is a weighting constant used to 

establish a stable numerical relationship between the two components. The ratio r  reflects the 

relative difference between amplitude and position, and is computed as follows: 

 ,x y

x y

p p
a a

∆ + ∆
=
∆ + ∆

r  (8) 
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where xp∆  , xa∆  , yp∆  , and ya∆  respectively represent the position average difference 

change rate and the amplitude average difference change rate of the extreme value sequences 

EX  and EY . The average change rates of the position and amplitude of the significant extreme 

value points are defined as follows:  

 ( ) ( )1

1

11 ,
1

N

i

pos i pos i
p

N L

−

=

+ −
∆ =

− ∑  (9) 

 ( ) ( )
1

1

1 1 ,
1

N

i
a value i value i

N

−

=

∆ = + −
− ∑  (10) 

where ( ) 2L m n= +   is the normalized length of the time axis, N  represents the number of 

significant extreme value points, ( )pos i  and ( )value i represent the position and amplitude of 

the i-th significant extreme value point. For EX , N m′=  , ( ) ipos i p=  , ( ) ivalue i a=  . 

Similarly, for EY , N n′= , ( ) ipos i q= , ( ) ivalue i b= . 

Through the above-mentioned distance measurement, an optimal warping path will be 

obtained. Let the extremum alignment path be denoted by ( ){ } 1
,

T
k k k

p q
=

=EW  where T is the 

number of aligned pairs in the path; k Xp P∈  (with { }1 2, , ,X mP p p p ′=   being the position 

set of significant extrema in EX ) and k Yq P∈  (with { }1 2, , ,Y nP q q q ′=   being the position 

set of significant extrema in EY ) are the temporal positions of significant extrema in EX  and 

EY  , respectively. The path EW  satisfies the standard DTW constraints and is derived by 

minimizing the weighted distance metric, thus establishing the structural correspondence 

between the two extremum sequences.  

3.3 Dynamic Time Warping with Boundary Constraints 

To improve efficiency and robustness, AEB-DTW incorporates boundary constraints using 
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matched significant extrema as anchors. Weighted extrema alignments are treated as 2D points, 

to which a smoothing spline is fitted; residuals define discrete upper and lower boundaries, 

which are linearly interpolated over the reference sequence. This confines the DTW path to a 

meaningful region, reducing computational load and misalignments. The extrema path captures 

global trends, while the residual-based envelope reflects local variations, enabling semantically 

meaningful alignment under noise. As shown in Fig. 4, AEB-DTW produces fewer spurious 

matches than standard DTW. 

 

Fig. 4. Comparison of Alignment Effects Between DTW and AEB-DTW. 

The construction process of the upper and lower boundaries is as follows: First, the 

significant extremum matching path EW  is treated as discrete points in the two-dimensional 

coordinate space. These points, shown as the red dots in Fig. 5(a), have coordinates ( ),k kp q  

that denote the positions of significant extrema in sequences X and Y, respectively. Then, a 

smoothing spline is applied to these points to obtain the fitted curve ( )f k . This curve captures 

the positional alignment trend between the two sequences and predicts the corresponding 

position kq  in Y for each kp  in X. 

Subsequently, the absolute residuals between the actual matched points and the fitted curve 

are calculated, and the 95th percentile of these residuals, denoted as 95res , is used as the width 

of the constraint band. Using this width, discrete upper and lower boundary points are 

constructed, which are then extended to the full index range of the reference sequence via linear 
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interpolation. This results in the complete boundary functions LB  and UB , as illustrated in 

Fig. 5(b). 

The construction of the discrete upper and lower boundaries is as follows: 

 ( ) ( )( )( )95min ,max , ,k k kU q rm eB f p sp = +  (11) 

 ( ) ( )( )( )95max 1,min , .k k kL q reB f p sp = −  (12) 

At this stage, the upper and lower boundary functions are only defined at the discrete points 

kp  and have not yet covered the entire range of the reference sequence. To address this, linear 

interpolation is applied to the sets of boundary points ( )( ),k kp LB p   and ( )( ),k kp UB p  , 

respectively, resulting in continuous functions that are fully defined over the index range of the 

reference sequence. The interpolated functions ensure that at each time index i, a valid upper 

and lower constraint boundary is provided. Accordingly, the DTW path search region is finally 

constrained within the following area: 

 ( ) ( ) ( ) [ ]{ }, , 1, .B i j LB i j UB i i m= ≤ ≤ ∈  (13) 

Within this region, the DTW alignment path P must satisfy the standard DTW conditions 

of boundary, monotonicity, and continuity. The AEB-DTW distance is finally computed as: 

 ( ) ( )
( ),

, min , ,i jB i j
AEB DTW d x y

⊆
∈

− = ∑P P
X Y  (14) 

where ( ),i jd x y   is the local distance function between points ix   and jy  , as defined in 

standard DTW. This boundary-constrained DTW framework not only significantly reduces 

computational overhead, but also improves alignment reliability by preventing implausible 

matches. 
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Fig. 5. Formation Process of the Boundary Constraint. 

4 Performance Validation Based on Measured Data 

4.1 Overview of Measured Data 

The lake trial was conducted on October 25, 2024, at the Moganshan Reservoir in Deqing 

County, Huzhou City, Zhejiang Province. The test target was a submarine-like model. The 

transmitted signal was a linear frequency modulated (LFM) pulse with a frequency range of 10 

kHz to 20 kHz, a pulse width of 4 ms, and a sampling rate of 500 kHz. 

As shown in Fig. 6(a), the experiment employed a bistatic sonar configuration, with the 

transmitter and hydrophone separated by 7 m, and the target located 14 m from the hydrophone, 

all positioned in the same horizontal plane at a water depth of approximately 5 m. Fig. 6(b) 

shows a photograph of the experimental data acquisition system. The dry-end electronic 

equipment on the transmitting side includes a power amplifier, a signal source, and an 

oscilloscope, while that on the receiving side includes a data acquisition unit and a computer. 

The transmitting device is a transmitting transducer, and the receiving device is a receiving 

hydrophone. 

The target was mounted on a servo-driven platform rotating uniformly counterclockwise. 

The platform completed a 180° turn in about 3 minutes; with a pulse repetition interval of 0.6 
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s, this corresponds to a rotation speed of approximately 1°/s and an azimuth step of about 0.6° 

per transmission. Consequently, the 300 recorded echoes form a full 180° azimuth scan of the 

target, with each echo corresponding to a fixed angular increment relative to the transmitter–

receiver baseline. 

 

Fig. 6. Experimental Setup and Equipment Configuration. 

The signal processing procedure is illustrated in Fig. 7(a). The Original Signal refers to the 

segment extracted from the raw measurements that contains the target echo. Sparse 

reconstruction is first applied to this segment to enhance signal quality. The envelope of the 

reconstructed signal is then obtained to characterize overall amplitude variation and improve 

stability, providing a reliable input for subsequent matching. Fig. 7(b) shows the matched-

filtering results of reconstructed signals from different bearing angles. The matched-filter 

responses reveal the target’s attitude variations with bearing, thereby supporting the rationality 

of the subsequent matching results. 
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Fig. 7. Signal Processing Flow. 

4.2 Validation of Matching Accuracy and Anti-Interference Capability 

To evaluate the robustness of the algorithm under different interference conditions, echo 

signals with specified SRRs were synthesized from sparsely reconstructed lake-trial echoes. 

Each measured echo was first processed by the sparse reconstruction procedure described in 

Section 4.1. The main reflection of a high signal-to-noise ratio (SNR) reconstructed echo was 

then used as the clean target signal, and a late-time segment of the same reconstructed record 

containing diffuse reverberation served as the reverberation component. SRR values from 0 dB 

to 30 dB in 2 dB steps were obtained by linearly superimposing these two signals and scaling 

the reverberation amplitude to the desired level. This preserves the measured reverberation 

characteristics while allowing precise SRR control. Fig. 8 illustrates one example of the 

construction process, showing the reconstructed target echo, the extracted reverberation 

segment, and the synthesized mixed echo. Datasets at other SRR levels are generated in the 

same way. 

 

Fig. 8. Waveform Example of a Sonar Mixed Echo (SRR = 2 dB). 

Using this method, 16 datasets were constructed with SRRs ranging from 0 dB to 30 dB 

in 2 dB increments. For each dataset, 50 test samples with known azimuth angles were 
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uniformly selected from the target’s 0°–180° rotation range, with an angular interval of 

approximately 3.6°. During the similarity matching phase, each test sample was compared with 

all other samples within the same SRR dataset using a distance-based metric. The sample 

yielding the minimum cumulative distance was defined as the “optimal matching sample,” and 

the matching error was calculated as the absolute azimuth difference between the two samples. 

A match was regarded as correct if the azimuth error was less than 10°. This threshold is 

motivated by the observation that, for the considered target and measurement geometry, the 

echo characteristics vary only weakly over azimuth intervals of about ±5°, so angular errors 

within 10° do not lead to perceptible differences in the envelope features used for matching and 

are acceptable in practical active sonar applications. 

The matching accuracy under each SRR condition was defined as the ratio of correctly 

matched samples to the total number of test samples, serving as a quantitative indicator of the 

algorithm’s robustness to reverberation. Table 1 summarizes the comparative results for AEB-

DTW against ED, DTW, and its variants. If two or more methods achieve the same maximum 

value under a specific SRR condition, each is credited with one win in the overall count. AEB-

DTW achieves over 50% accuracy at SRR = 0–2 dB and exceeds 80% when SRR ≥ 24 dB, 

consistently outperforming all baselines in most conditions. 

Table 1. Comparison of Matching Accuracy for Different Algorithms 

SRR
s 

AEB-
DTW 

DT
W 

DDT
W 

WDT
W 

Sakoe-
Chiba 

LEDT
W 

EWD
TW 

ED shapeD
TW 

0 0.54 0.44 0.2 0.54 0.42 0.32 0.36 0.58 0.42 
2 0.68 0.4 0.34 0.44 0.42 0.28 0.4 0.52 0.32 
4 0.62 0.46 0.4 0.46 0.48 0.34 0.54 0.68 0.46 
6 0.7 0.48 0.44 0.54 0.52 0.36 0.44 0.68 0.42 
8 0.72 0.46 0.38 0.64 0.52 0.42 0.52 0.7 0.32 
10 0.76 0.44 0.36 0.6 0.44 0.36 0.74 0.72 0.46 
12 0.74 0.68 0.42 0.72 0.66 0.48 0.7 0.76 0.46 
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14 0.72 0.74 0.34 0.78 0.80 0.5 0.78 0.8 0.68 
16 0.76 0.66 0.42 0.68 0.7 0.4 0.8 0.78 0.66 
18 0.8 0.78 0.48 0.78 0.74 0.44 0.86 0.7 0.7 
20 0.82 0.7 0.44 0.72 0.66 0.44 0.76 0.78 0.74 
22 0.78 0.64 0.4 0.72 0.66 0.5 0.78 0.78 0.7 
24 0.84 0.7 0.46 0.82 0.64 0.5 0.78 0.78 0.74 
26 0.86 0.64 0.46 0.82 0.6 0.46 0.76 0.8 0.72 
28 0.82 0.74 0.48 0.78 0.7 0.46 0.76 0.8 0.72 
30 0.84 0.7 0.48 0.8 0.74 0.54 0.76 0.76 0.68 

Mea
n 

0.750 
0.60

3 
0.406 0.677 0.605 0.425 0.671 

0.72
6 

0.575 

Win
s 

11 0 0 0 1 0 3 3 0 

To provide a more intuitive comparison of matching accuracy under different SRR 

conditions, Fig. 9 presents pairwise comparisons between AEB-DTW and ED, DTW, and its 

variants. Each subplot contains 16 circular markers, representing the matching accuracy under 

16 distinct SRR levels. The horizontal and vertical coordinates of each marker correspond to 

the accuracies of AEB-DTW and the compared algorithm, respectively. Markers on the diagonal 

line indicate equal accuracy under a given SRR; those below the diagonal indicate that AEB-

DTW outperforms the baseline method, while those above indicate that the baseline method 

achieves higher accuracy than AEB-DTW.  

The overall distribution of these points indicates that AEB-DTW tends to deliver superior 

performance across the tested reverberation conditions. As shown in Fig. 9, it demonstrates 

higher robustness to reverberation than the other evaluated algorithms. 
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Fig. 9. Matching Accuracy of AEB-DTW vs. ED, DTW, and Its Variants. 

4.3 Evaluation of Similarity Measurement Based on Angular Resolution 

In active sonar signal recognition, angular resolution measures an algorithm’s ability to 

distinguish echoes from different azimuths. To evaluate this, a dataset with an SRR of 24 dB 

was used. The 90° echo, representing the median azimuth and exhibiting stable structural 

features, was selected as the reference. For each algorithm, distances between the reference and 

other azimuth samples were computed and normalized to the range [0, 1]. The normalized 

distances were then divided into nine 20° intervals to balance angular granularity and statistical 

robustness. Within each interval, the mean normalized distance was calculated, and its absolute 

deviation from 1 was taken as the interval similarity, providing an intuitive measure of signal 
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discriminability—larger deviations indicate stronger angular separability. Interval-wise 

similarity profiles for all algorithms are shown in Fig. 10. 

DTW shows poor angular resolution due to minimal similarity variation, while DDTW, 

being insensitive to amplitude, produces abnormally high similarity in low-angle regions. 

WDTW and Sakoe-Chiba DTW are constrained by fixed weights or rigid boundaries, limiting 

their performance in high-angle scenarios. ED and EWDTW offer only basic angular 

discrimination, as ED is restricted to equal-length sequences, and EWDTW relies heavily on 

hyperparameter tuning. LEDTW and ShapeDTW also exhibit limited sensitivity to angular 

differences. In contrast, AEB-DTW effectively distinguishes signals with large angular 

separations while maintaining robustness to local variations. Its adaptive extrema extraction 

and boundary constraints enable smoother similarity transitions across angles, thereby 

enhancing angular resolution. 

 

Fig. 10. Angular Resolution Comparison of AEB-DTW and Baseline Methods. 

4.4 Comparison of Algorithm Runtime 
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Fig. 11 shows the comparison of average runtime between AEB-DTW and ED, DTW, and 

its variants across 16 SRR datasets. Although ED has the shortest runtime, it is only applicable 

to sequences of equal length and cannot handle asynchronous time axes. LEDTW and EWDTW 

only account for extrema features without considering structural relationships between extrema, 

thus lacking global alignment capacity. Among algorithms that support global asynchronous 

alignment, AEB-DTW demonstrates the best runtime efficiency, verifying its computational 

advantages. 

AEB-DTW shows a clear runtime advantage over other global alignment algorithms, as 

indicated by its lower average computation time in Fig. 11. Although its runtime is slightly 

higher than LEDTW and EWDTW, it remains about one order of magnitude lower than DTW 

and achieves higher matching accuracy (see Table 1), demonstrating a favorable balance 

between efficiency and accuracy. 

  

Fig. 11. Average Running Time Comparison. 

5 Conclusion 

This paper proposes the AEB-DTW algorithm to mitigate the sensitivity of sonar signal 
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matching to reverberation and the high computational cost of long-duration echoes. The method 

extracts salient local extrema using an adaptive threshold and aligns them via a joint time–

amplitude weighting strategy. Dynamic boundary constraints derived from the extrema 

alignment path restrict the DTW search region, improving matching efficiency and robustness 

to structural distortions. 

The main findings of the experimental evaluation can be summarized as follows: (1) 

compared with classical distance-based methods, AEB-DTW achieves higher matching 

accuracy and stronger robustness to interference; under strong interference conditions with an 

SRR value of 2 dB, the algorithm still achieves around 70% matching accuracy, demonstrating 

strong resilience to reverberation; (2) angular-resolution-based similarity evaluation shows that 

AEB-DTW is more sensitive to azimuth changes and can effectively distinguish echoes 

originating from different bearing angles, thereby improving the angular discrimination 

capability of active sonar echo matching; and (3) among algorithms that support global 

asynchronous alignment, AEB-DTW exhibits the shortest runtime, confirming its significant 

computational efficiency and indicating that it can reduce computational cost while maintaining 

high matching performance. 

Overall, the algorithm improves both matching accuracy and angular discrimination ability 

while reducing computational cost, providing an efficient and reliable solution for active sonar 

echo matching and one-dimensional time-series alignment. Future work will explore multi-

target scenarios, nonlinear target motion, variable acoustic environments, and the integration 

with deep learning methods to further enhance adaptability and recognition performance. 
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