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Active sonar signal matching is a critical technique for measuring inter-signal similarity
and enhancing target detection and classification performance. However, in complex
underwater environments, noise, reverberation, and prolonged signal durations often degrade
matching accuracy and computational efficiency. To address these challenges, this paper
proposes an Adaptive Extremum-aligned Boundary-constrained Dynamic Time Warping
(AEB-DTW) algorithm, based on the classical Dynamic Time Warping (DTW) framework. The
algorithm extracts significant extrema from signal envelopes to suppress noise and
reverberation while capturing salient features. By integrating the position and amplitude of
extrema, an adaptive weighted matching strategy is introduced to enhance feature
discrimination. In addition, spline fitting is applied to the residuals of the extremum matching
path to dynamically generate upper and lower boundary constraints, thus restricting DTW
computation to a meaningful region and achieving a balance between accuracy and efficiency.
Experiments using lake-trial active sonar data under signal-to-reverberation ratios (SRRs) from
0 dB to 30 dB show that AEB-DTW outperforms ED, DTW, and its variants in matching
accuracy, robustness, and angular resolution, while significantly improving computational

efficiency, particularly for long-duration signals.

Keywords: Active sonar signal matching; Dynamic Time Warping (DTW); Time series

similarity; Adaptive boundary constraints.

1 Introduction

Active sonar signals, as a typical type of time-series data, play a crucial role in underwater
navigation, target detection, and marine resource exploration (Bian et al., 2024; Zhang et al.,

2023; Zhu et al., 2025). In complex marine environments, efficiently and accurately measuring



the similarity between signals is a fundamental basis for supporting applications such as target
detection, localization, feature extraction, and classification using active sonar (Sun et al., 2024;
Dau et al., 2018). It also has a profound impact on improving the processing efficiency and
recognition performance of subsequent tasks (Silva et al., 2018).

Dynamic Time Warping (DTW) is a widely used algorithm for time-series alignment that
addresses limitations of traditional Euclidean distance (ED) metrics by allowing nonlinear
temporal warping (Wang et al., 2022; Chen et al., 2017). DTW effectively handles sequences
of differing lengths, temporal shifts, and amplitude variations, enabling robust and precise
matching (Li, Guo, 2013). Consequently, it has attracted extensive research attention globally.

To improve computational efficiency, methods such as LB_Yi, LB_Kim, and LB_Keogh
have been proposed by Yi et al. (1998), Kim et al. (2001), and Keogh et al. (2005), respectively.
These methods define lower-bound constraints on sequence distances to exclude dissimilar
sequences and reduce the search space for matching. Salvador and Chan (2007) introduced the
Fast-DTW algorithm, which reduces computational cost by projecting sequences into low-
dimensional spaces to approximate the warping path. Lahreche and Boucheham (2021)
developed LEDTW, which significantly reduces complexity by performing DTW only on local
extrema. Tang and Gao (2023) proposed EWDTW, incorporating adaptive weighting strategies
based on local extrema to enhance both efficiency and classification accuracy. Sakoe and Chiba
(1978) introduced the Sakoe-Chiba band, which constrains the warping path's search area to
reduce matrix computations.

For improving alignment accuracy, Jeong et al. (2011) and Li (2021) proposed WDTW
and TWDTW, which adjust feature weights to enhance alignment precision. Keogh and
Pazzani (2001) introduced DDTW, which focuses on the trend of sequence variation by
incorporating first-order derivatives to avoid misalignments. Li et al. (2020) proposed ACDTW,

which dynamically adjusts the warping window to better match local features. Zhao and Itti



(2018) proposed ShapeDTW, which uses local extremum structures to enhance the ability to
identify complex shapes. Hong ef al. (2020) proposed SSDTW, which combines sparse
representation with spatial structural constraints for efficient high-dimensional sequence
alignment.

Despite these developments, existing DTW variants still struggle to balance alignment
accuracy and computational efficiency for active sonar echoes. In complex underwater
environments, strong reverberation and noise distort signal envelopes, causing unstable
similarity estimation, while fixed or manually tuned warping constraints fail to adapt to variable
signal durations. Therefore, the core technical problem addressed in this work is achieving
robust and efficient similarity matching for active sonar signals under low signal-to-
reverberation ratio (SRR) conditions while preserving key structural features.

To solve this problem, this study proposes an Adaptive Extremum-aligned Boundary-
constrained Dynamic Time Warping (AEB-DTW) algorithm. The method extracts significant
extrema to suppress noise and highlight salient envelope structures, introduces adaptive
weighting to enhance feature discrimination, and constructs dynamic boundary constraints to
reduce computation while maintaining alignment precision. The main contributions are
developing a structure-aware matching framework, achieving a robustness—efficiency balance,
and validating its effectiveness through comprehensive lake-trial experiments against ED, DTW,

and its variants.

2 Dynamic Time Warping (DTW) Algorithm

The core objective of the DTW algorithm is to find an optimal alignment path that
minimizes the overall distance between two sequences. Let the envelope features of two one-

dimensional active sonar signals be X={x,--,x,--,x,} and Y={y,---,y,---,»,}, with

lengths m and n, respectively, as shown in Fig. 1(a).



To implement this optimal alignment, we turn to the DTW matching process, which is
illustrated in Fig. 1(b): sequences X and Y are mapped to the horizontal and vertical axes of a
two-dimensional grid to construct a distance matrix. Using the principle of minimum
cumulative distance, the shortest path from the bottom-left corner to the top-right corner is
found, representing the optimal nonlinear alignment between the two sequences. Fig. 1(c)

shows the pointwise correspondence along the optimal warping path.
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Fig. 1. DTW Alignment Effect and Warping Path.
To compute the DTW distance between sequences X and Y, we first define the point-wise
distance function between elements x, and y,:

d(i.j)=|x -], (1)

where fell”, and =2 corresponds to the Euclidean distance. To compute the DTW

distance between sequences X and Y, an optimal warping path must be identified. Let this

optimal path be denoted as:

W:{(ilsjl)a(izajz)a'"n(ikajk)a(iKajK)}a (2)
where K is the length of the warping path, and each (i, ) represents a matched pair of

indices from sequences X and Y, respectively. The warping path W is an ordered set of index
pairs that aligns the two sequences in a nonlinear manner. Its formal constraints and cost

computation are described as follows.



1) Boundary condition: (i, j,)=(1,1),and (i, j;)=(m,n).
2) Monotonicity: i, =i, j,,, 2= ],.

3) Continuity: (i, —i, j., —Jj;) €{(1,0),(0,1),(L,1)}.

Under these constraints, the DTW distance is calculated as:
K
DTW (X,Y)= m&n{Zd(i,j)}. (3)
k=1
To solve this, a cumulative cost matrix D is constructed recursively as:
D(i,j)=d (i, j)+min{D(i-1,j),D(i,j—-1),D(i—1,j-1)}, (4)
where i=1,2,---,m , j=1,2,---,n. The initial conditions are set as D(0,0) =0, and

D(i,0)=D(0, j)=o. Equation (4) indicates that the cumulative distance at a given point

equals the sum of the current pointwise distance and the minimum cumulative distance from its

neighboring positions. D(m,n) denotes the DTW distance between sequences X and Y, and

the computational complexity of the algorithm is O(m*n).

3 The AEB-DTW Algorithm

The core idea of the AEB-DTW algorithm is to adaptively extract significant extrema from
active sonar signal envelopes in order to capture key structural features. A weighted matching
model is constructed using amplitude and phase differences to enhance the discrimination
ability of extrema alignment. Based on the weighted matching results, a dynamic upper and
lower boundary constraint is constructed to restrict the DTW search region, thereby enhancing
both efficiency and robustness.

Fig. 2 illustrates the processing flow of AEB-DTW. The signal envelope is first extracted

to highlight major structures and suppress noise (Fig. 2(a)). Then, significant extrema are
5



adaptively identified to form a reduced feature sequence (Fig. 2(b)). These extrema are assigned
adaptive weights according to their position and amplitude to guide the warping path (Fig. 2(c)).
Finally, boundary constraints are constructed from the residuals between the matched extrema

path and the smoothed trend line (Fig. 2(d)).
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Fig. 2. Execution Flow of the AEB-DTW Algorithm.

3.1 Extraction of Significant Extrema

To extract structurally meaningful local extrema from active sonar signal envelopes, we
adopt a prominence-based adaptive detection method. For a given sequence
X ={x,,x,,x,}, each point x, (k:2,3,---,m—l) is identified as a local maximum if
X, , <X, >x,,,,oralocal minimum if x, , >x, <x_,.

To determine whether a local extremum is significant, a dynamic threshold is introduced

based on the statistical characteristics of the signal. Let 4, x,, and x,, denote the mean,

min
minimum, and maximum values of X, respectively. A scaling factor » is defined as:

/’l min . ( 5)
X, - xmin

max

}/:
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Based on this, the prominence threshold ¢ is computed as:

8 =y-MAD(X), (6)

where MAD(X) is the mean absolute deviation, which measures average signal fluctuation and
is robust to outliers. Local extrema are retained only if their prominence exceeds 9, effectively
suppressing noise-induced oscillations and weak fluctuations.

The prominence of a local extremum quantifies how much it stands out from its
surroundings. For a maximum, it is defined as the vertical distance between the peak and the
lowest point on either side before reaching a higher peak. For a minimum, it is the distance

between the trough and the highest point between it and a deeper trough.

Let X, ={(p,.q, )}Zl and Y, = {(qj b, )};l denote the sequences of significant extrema

extracted from X and Y, respectively, where p, and g;are the positions (indices) of the i-th
and j-th significant extreme points, and @, and b, are the corresponding amplitudes. For two

sequences of lengths m and n, the numbers of significant extrema extracted are m' and n’,
respectively, where m'll m and n'll n . As illustrated in Fig. 3, peaks and troughs
correspond to local maxima and minima of the signal. Only extrema exceeding the adaptive
saliency threshold are retained, while non-significant extrema caused by noise are excluded.
The start and end points are added to the extrema sets X; and Y, to preserve boundary
characteristics. Although some local extrema are not detected (indicated by arrows in Fig. 3),

these omissions do not affect the extraction of essential structural features, ensuring algorithmic

correctness and stability while enabling dimensionality reduction.
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Fig. 3. Extraction Process of Significant Local Extrema.

3.2 Adaptive Weighted Alignment of Significant Extrema

After extracting significant extrema from both sequences, the next step is to establish
reliable correspondences. As key structural features, the accurate alignment of these extrema
provides a foundation for reducing the search space and enhancing the robustness of similarity
matching. To this end, a weighted alignment strategy is proposed, which jointly models the
positional and amplitude attributes of each extremum to characterize structural correspondences
more precisely. Significant extrema are regarded as fundamental matching units, and their fused
features are used to construct weighted correspondences. The resulting position mappings serve

as the structural basis for generating boundary constraints, as detailed below.

D, (i-1,j
p.—gq,|+min{D, (i,j-1) (7)

D, (i,])=o, -|ai—bj|+a)a~
D, (i—1,j-1)

where o, =l/ (I+r) and @, =1-w, represent the weighting coefficients for positional

and amplitude differences, respectively. Here, A=0.6 is a weighting constant used to
establish a stable numerical relationship between the two components. The ratio r reflects the
relative difference between amplitude and position, and is computed as follows:

Ap + Apy
r=———,
Aa_ + Aay

(8)



where Ap , Aa, , Ap, , and Aa, respectively represent the position average difference

change rate and the amplitude average difference change rate of the extreme value sequences

X, and Y,.The average change rates of the position and amplitude of the significant extreme

value points are defined as follows:

1|pos 1+1 pos( )|
“N- 1Z| ’ ©)
Aa=%§|value(i+l)—value(i), (10)

i1
where L= L(m + n) / ZJ is the normalized length of the time axis, N represents the number of
significant extreme value points, pos (i) and value(i)represent the position and amplitude of
the i-th significant extreme value point. For Xy, N=m', pos(i)=p,, value(i)=a, .
Similarly, for Yy, N=n', pos(i)=gq,, value(i)=b,.

Through the above-mentioned distance measurement, an optimal warping path will be
obtained. Let the extremum alignment path be denoted by W, = {( Di>q, )}::1 where T is the
number of aligned pairs in the path; p, e P, (with P, ={p,,p,,---,p,.} being the position
set of significant extrema in Xy ) and ¢, € B, (with P, ={q,,q,,~-,q,} being the position
set of significant extrema in Y, ) are the temporal positions of significant extrema in X; and

Y, , respectively. The path W, satisfies the standard DTW constraints and is derived by

minimizing the weighted distance metric, thus establishing the structural correspondence

between the two extremum sequences.

3.3 Dynamic Time Warping with Boundary Constraints

To improve efficiency and robustness, AEB-DTW incorporates boundary constraints using



matched significant extrema as anchors. Weighted extrema alignments are treated as 2D points,
to which a smoothing spline is fitted; residuals define discrete upper and lower boundaries,
which are linearly interpolated over the reference sequence. This confines the DTW path to a
meaningful region, reducing computational load and misalignments. The extrema path captures
global trends, while the residual-based envelope reflects local variations, enabling semantically
meaningful alignment under noise. As shown in Fig. 4, AEB-DTW produces fewer spurious

matches than standard DTW.
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Fig. 4. Comparison of Alignment Effects Between DTW and AEB-DTW.

The construction process of the upper and lower boundaries is as follows: First, the

significant extremum matching path W, is treated as discrete points in the two-dimensional
coordinate space. These points, shown as the red dots in Fig. 5(a), have coordinates (p,,q,)
that denote the positions of significant extrema in sequences X and Y, respectively. Then, a
smoothing spline is applied to these points to obtain the fitted curve (k). This curve captures
the positional alignment trend between the two sequences and predicts the corresponding
position g, inY foreach p, inX.

Subsequently, the absolute residuals between the actual matched points and the fitted curve
are calculated, and the 95th percentile of these residuals, denoted as res,, , is used as the width

of the constraint band. Using this width, discrete upper and lower boundary points are

constructed, which are then extended to the full index range of the reference sequence via linear
10



interpolation. This results in the complete boundary functions LB and UB, as illustrated in
Fig. 5(b).

The construction of the discrete upper and lower boundaries is as follows:

UB(pk):min(m,max(qk,f(pk)+res95)), (11)

LB(pk)=max(l,min(qk,f(pk)—resgs)). (12)

At this stage, the upper and lower boundary functions are only defined at the discrete points

p, and have not yet covered the entire range of the reference sequence. To address this, linear
interpolation is applied to the sets of boundary points (p,,LB(p,)) and (p,,UB(p,)).

respectively, resulting in continuous functions that are fully defined over the index range of the
reference sequence. The interpolated functions ensure that at each time index i, a valid upper
and lower constraint boundary is provided. Accordingly, the DTW path search region is finally

constrained within the following area:
B={(i,j)|LB(i)< j <UB(i),i €[L,m]}. (13)
Within this region, the DTW alignment path P must satisfy the standard DTW conditions
of boundary, monotonicity, and continuity. The AEB-DTW distance is finally computed as:

AEB-DTW (X,Y)=min Y d(x,.,), (14)

PcB (i,j)eP

where d(x., y].) is the local distance function between points x, and y;, as defined in

standard DTW. This boundary-constrained DTW framework not only significantly reduces
computational overhead, but also improves alignment reliability by preventing implausible

matches.

11



800 sEsss 800 g
700 asasss 700
600 E_EEEE 600
500 L 2 500
£ =2 £
2 400 2 400
>~ >~
300 ot 300
o
200 aai 200
100 100
e
1 HH ===
1 100 200 300 400 500 600 700 800 1 100 200 300 400 500 600 700 800
X Index X Index
(a) Extreme Position Alignment Path (b) Upper and Lower Boundary Constraints

Fig. 5. Formation Process of the Boundary Constraint.

4 Performance Validation Based on Measured Data

4.1 Overview of Measured Data

The lake trial was conducted on October 25, 2024, at the Moganshan Reservoir in Deqing
County, Huzhou City, Zhejiang Province. The test target was a submarine-like model. The
transmitted signal was a linear frequency modulated (LFM) pulse with a frequency range of 10
kHz to 20 kHz, a pulse width of 4 ms, and a sampling rate of 500 kHz.

As shown in Fig. 6(a), the experiment employed a bistatic sonar configuration, with the
transmitter and hydrophone separated by 7 m, and the target located 14 m from the hydrophone,
all positioned in the same horizontal plane at a water depth of approximately 5 m. Fig. 6(b)
shows a photograph of the experimental data acquisition system. The dry-end electronic
equipment on the transmitting side includes a power amplifier, a signal source, and an
oscilloscope, while that on the receiving side includes a data acquisition unit and a computer.
The transmitting device is a transmitting transducer, and the receiving device is a receiving
hydrophone.

The target was mounted on a servo-driven platform rotating uniformly counterclockwise.

The platform completed a 180° turn in about 3 minutes; with a pulse repetition interval of 0.6

12



s, this corresponds to a rotation speed of approximately 1°/s and an azimuth step of about 0.6°
per transmission. Consequently, the 300 recorded echoes form a full 180° azimuth scan of the
target, with each echo corresponding to a fixed angular increment relative to the transmitter—

receiver baseline.

Transmitting Receiving Rotary table
system’s dry-end system’s dry-end

Lake surface

Transmitting system’s Receiving system’s
dry-end dry-end

Transmitting
transducer

Receiving
hydrophone

Transmitting transducer Receiving hydrophone

@ (b)

Fig. 6. Experimental Setup and Equipment Configuration.

The signal processing procedure is illustrated in Fig. 7(a). The Original Signal refers to the
segment extracted from the raw measurements that contains the target echo. Sparse
reconstruction is first applied to this segment to enhance signal quality. The envelope of the
reconstructed signal is then obtained to characterize overall amplitude variation and improve
stability, providing a reliable input for subsequent matching. Fig. 7(b) shows the matched-
filtering results of reconstructed signals from different bearing angles. The matched-filter
responses reveal the target’s attitude variations with bearing, thereby supporting the rationality

of the subsequent matching results.
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Fig. 7. Signal Processing Flow.

4.2 Validation of Matching Accuracy and Anti-Interference Capability

To evaluate the robustness of the algorithm under different interference conditions, echo
signals with specified SRRs were synthesized from sparsely reconstructed lake-trial echoes.
Each measured echo was first processed by the sparse reconstruction procedure described in
Section 4.1. The main reflection of a high signal-to-noise ratio (SNR) reconstructed echo was
then used as the clean target signal, and a late-time segment of the same reconstructed record
containing diffuse reverberation served as the reverberation component. SRR values from 0 dB
to 30 dB in 2 dB steps were obtained by linearly superimposing these two signals and scaling
the reverberation amplitude to the desired level. This preserves the measured reverberation
characteristics while allowing precise SRR control. Fig. 8 illustrates one example of the
construction process, showing the reconstructed target echo, the extracted reverberation
segment, and the synthesized mixed echo. Datasets at other SRR levels are generated in the

same way.
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(2) (b) ©
Fig. 8. Waveform Example of a Sonar Mixed Echo (SRR =2 dB).

Using this method, 16 datasets were constructed with SRRs ranging from 0 dB to 30 dB

in 2 dB increments. For each dataset, 50 test samples with known azimuth angles were

14



uniformly selected from the target’s 0°-180° rotation range, with an angular interval of
approximately 3.6°. During the similarity matching phase, each test sample was compared with
all other samples within the same SRR dataset using a distance-based metric. The sample
yielding the minimum cumulative distance was defined as the “optimal matching sample,” and
the matching error was calculated as the absolute azimuth difference between the two samples.
A match was regarded as correct if the azimuth error was less than 10°. This threshold is
motivated by the observation that, for the considered target and measurement geometry, the
echo characteristics vary only weakly over azimuth intervals of about £5°, so angular errors
within 10° do not lead to perceptible differences in the envelope features used for matching and

are acceptable in practical active sonar applications.

The matching accuracy under each SRR condition was defined as the ratio of correctly
matched samples to the total number of test samples, serving as a quantitative indicator of the
algorithm’s robustness to reverberation. Table 1 summarizes the comparative results for AEB-
DTW against ED, DTW, and its variants. If two or more methods achieve the same maximum
value under a specific SRR condition, each is credited with one win in the overall count. AEB-
DTW achieves over 50% accuracy at SRR = 0-2 dB and exceeds 80% when SRR > 24 dB,
consistently outperforming all baselines in most conditions.

Table 1. Comparison of Matching Accuracy for Different Algorithms

SRR AEB- DT DDT WDT Sakoe- LEDT EWD ED shapeD
] DTW w w w Chiba W W W
054 044 02 0.54 0.42 0.32 0.36 0.58 0.42
0.68 04 034 044 0.42 0.28 0.4 0.52 0.32

0
2
4 062 046 04 0.46 0.48 0.34 0.54 0.68 046
6
8

0.7 048 044 0.54 0.52 0.36 044 068 042

0.72 046 038 0.64 0.52 0.42 052 0.7 0.32

10 0.76 044 0.36 0.6 0.44 0.36 0.74 072 046

12 0.74 0.68 042 0.72 0.66 0.48 0.7 076 0.46
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14 072 074 034 078 080 05 078 08 068
16 076 066 042 068 07 04 08 078 066
18 08 078 048 078 074 044 086 07 07
20 082 07 044 072 066 044 076 078 074
2 078 064 04 072 066 05 078 078 07
24 084 07 046 082  0.64 05 078 078 074
26 086 064 046 082 0.6 046 076 08  0.72
28 082 074 048 078 07 046 076 08  0.72
30 084 07 048 08 074 054 076 076 0.8
Mnea 0750 2% 0406 0677 0605 0425 0671 0'672 0.575
Winoy 0 0 0 | 0 3 3 0

S

To provide a more intuitive comparison of matching accuracy under different SRR

conditions, Fig. 9 presents pairwise comparisons between AEB-DTW and ED, DTW, and its

variants. Each subplot contains 16 circular markers, representing the matching accuracy under

16 distinct SRR levels. The horizontal and vertical coordinates of each marker correspond to

the accuracies of AEB-DTW and the compared algorithm, respectively. Markers on the diagonal

line indicate equal accuracy under a given SRR; those below the diagonal indicate that AEB-

DTW outperforms the baseline method, while those above indicate that the baseline method

achieves higher accuracy than AEB-DTW.

The overall distribution of these points indicates that AEB-DTW tends to deliver superior

performance across the tested reverberation conditions. As shown in Fig. 9, it demonstrates

higher robustness to reverberation than the other evaluated algorithms.
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Fig. 9. Matching Accuracy of AEB-DTW vs. ED, DTW, and Its Variants.

4.3 Evaluation of Similarity Measurement Based on Angular Resolution

In active sonar signal recognition, angular resolution measures an algorithm’s ability to
distinguish echoes from different azimuths. To evaluate this, a dataset with an SRR of 24 dB
was used. The 90° echo, representing the median azimuth and exhibiting stable structural
features, was selected as the reference. For each algorithm, distances between the reference and
other azimuth samples were computed and normalized to the range [0, 1]. The normalized
distances were then divided into nine 20° intervals to balance angular granularity and statistical
robustness. Within each interval, the mean normalized distance was calculated, and its absolute

deviation from 1 was taken as the interval similarity, providing an intuitive measure of signal
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discriminability—larger deviations indicate stronger angular separability. Interval-wise
similarity profiles for all algorithms are shown in Fig. 10.

DTW shows poor angular resolution due to minimal similarity variation, while DDTW,
being insensitive to amplitude, produces abnormally high similarity in low-angle regions.
WDTW and Sakoe-Chiba DTW are constrained by fixed weights or rigid boundaries, limiting
their performance in high-angle scenarios. ED and EWDTW offer only basic angular
discrimination, as ED is restricted to equal-length sequences, and EWDTW relies heavily on
hyperparameter tuning. LEDTW and ShapeDTW also exhibit limited sensitivity to angular
differences. In contrast, AEB-DTW effectively distinguishes signals with large angular
separations while maintaining robustness to local variations. Its adaptive extrema extraction
and boundary constraints enable smoother similarity transitions across angles, thereby

enhancing angular resolution.
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Fig. 10. Angular Resolution Comparison of AEB-DTW and Baseline Methods.

4.4 Comparison of Algorithm Runtime
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Fig. 11 shows the comparison of average runtime between AEB-DTW and ED, DTW, and
its variants across 16 SRR datasets. Although ED has the shortest runtime, it is only applicable
to sequences of equal length and cannot handle asynchronous time axes. LEDTW and EWDTW
only account for extrema features without considering structural relationships between extrema,
thus lacking global alignment capacity. Among algorithms that support global asynchronous
alignment, AEB-DTW demonstrates the best runtime efficiency, verifying its computational
advantages.

AEB-DTW shows a clear runtime advantage over other global alignment algorithms, as
indicated by its lower average computation time in Fig. 11. Although its runtime is slightly
higher than LEDTW and EWDTW, it remains about one order of magnitude lower than DTW
and achieves higher matching accuracy (see Table 1), demonstrating a favorable balance

between efficiency and accuracy.
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Fig. 11. Average Running Time Comparison.

5 Conclusion

This paper proposes the AEB-DTW algorithm to mitigate the sensitivity of sonar signal
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matching to reverberation and the high computational cost of long-duration echoes. The method
extracts salient local extrema using an adaptive threshold and aligns them via a joint time—
amplitude weighting strategy. Dynamic boundary constraints derived from the extrema
alignment path restrict the DTW search region, improving matching efficiency and robustness
to structural distortions.

The main findings of the experimental evaluation can be summarized as follows: (1)
compared with classical distance-based methods, AEB-DTW achieves higher matching
accuracy and stronger robustness to interference; under strong interference conditions with an
SRR value of 2 dB, the algorithm still achieves around 70% matching accuracy, demonstrating
strong resilience to reverberation; (2) angular-resolution-based similarity evaluation shows that
AEB-DTW is more sensitive to azimuth changes and can effectively distinguish echoes
originating from different bearing angles, thereby improving the angular discrimination
capability of active sonar echo matching; and (3) among algorithms that support global
asynchronous alignment, AEB-DTW exhibits the shortest runtime, confirming its significant
computational efficiency and indicating that it can reduce computational cost while maintaining
high matching performance.

Overall, the algorithm improves both matching accuracy and angular discrimination ability
while reducing computational cost, providing an efficient and reliable solution for active sonar
echo matching and one-dimensional time-series alignment. Future work will explore multi-
target scenarios, nonlinear target motion, variable acoustic environments, and the integration

with deep learning methods to further enhance adaptability and recognition performance.
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