
JOURNAL PRE-PROOF

This is an early version of the article, published prior to copyediting, typesetting, and editorial correction. The manuscript has been accepted for publication and is now available online to ensure early dissemination, author visibility, and citation tracking prior to the formal issue publication.

It has not undergone final language verification, formatting, or technical editing by the journal's editorial team. Content is subject to change in the final Version of Record.

To differentiate this version, it is marked as "PRE-PROOF PUBLICATION" and should be cited with the provided DOI. A visible watermark on each page indicates its preliminary status.

The final version will appear in a regular issue of *Archives of Acoustics*, with final metadata, layout, and pagination.

Title: Active Vibration Suppression of a Thin Circular Pipe

Author(s): Marcin Pater, Lucyna Leniowska, Marcin Grochowina

DOI: <https://doi.org/10.24423/archacoust.2026.4329>

Journal: *Archives of Acoustics*

ISSN: 0137-5075, e-ISSN: 2300-262X

Publication status: In press

Received: 2025-09-09

Revised: 2025-11-25

Accepted: 2025-12-16

Published pre-proof: 2026-01-19

Please cite this article as:

Pater M., Leniowska L., Grochowina M. (2026), Active Vibration Suppression of a Thin Circular Pipe, *Archives of Acoustics*, <https://doi.org/10.24423/archacoust.2026.4329>

Copyright © 2026 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

1 Active Vibration Suppression of a Thin Circular Pipe

2 Marcin PATER¹, Lucyna LENIOWSKA², and Marcin GROCHOWINA³

3 ¹Department of Mechatronics and Automation, University of Rzeszów, Rzeszów, Poland,
4 <https://orcid.org/0009-0008-2414-7193>

5 ²Department of Mechatronics and Automation, University of Rzeszów, Rzeszów, Poland,
6 <https://orcid.org/0000-0002-7994-7867>

7 ³Department of Mechatronics and Automation, University of Rzeszów, Rzeszów, Poland,
8 <https://orcid.org/0000-0001-6033-0210>

9 *Corresponding Author e-mail: mpater@ur.edu.pl

10 **Abstract**

11 The article presents an active vibration damping system for a thin-walled cylindrical
12 tube, which is a simplified model of a lightweight robot arm (LWR – Lightweight
13 Robot). The proposed solution integrates control algorithms, piezoelectric materials and
14 a hardware and software environment enabling real-time control. Macro Fiber Composite
15 (MFC) elements were used for active vibration reduction, acting simultaneously as sensors
16 and actuators. The object on which the research was conducted was a tube with an ex-
17 ternal diameter of 40 mm, this element was rigidly mounted at a distance of 1 meter from
18 the free end, simulating cantilever conditions. The stimulation of the object to vibration
19 was carried out using the MFC actuator, while the system response was recorded in the
20 xPC Target environment. Based on the measurement data, the mathematical model of
21 the object was identified in the discrete domain using the ARX method. The obtained
22 model was used to design a controller based on the pole location method, which was im-
23 plemented on a real test stand. The experimental results showed the effectiveness of the
24 designed control system in reducing the amplitude of natural vibrations of the structure.
25 The use of MFC elements as sensor elements and actuators enabled effective vibration
26 damping in real time, confirming the usefulness of the proposed solution in the context of
27 improving the precision of robotic systems.

28 **Keywords:** active vibration control; lightweight robot arm; Macro Fiber Composite;
29 PID controller; system identification; piezoelectric actuators.

30 **Acronyms**

ARX – AutoRegressive with eXogenous inputs,

ARMAX – AutoRegressive Moving Average with eXogenous inputs,

LWR – Lightweight Robot (Arm),
MFC – Macro Fiber Composite,
PID – Proportional–Integral–Derivative (controller),
xPC – Real-time MATLAB/Simulink execution environment (xPC Target),
RMS – Root Mean Square,
FEM – Finite Element Method,
PZT – Lead Zirconate Titanate (classical piezoelectric ceramic),
DoF – Degrees of Freedom.

31 1 Introduction

32 Modern robotics, particularly in the context of lightweight robotic arm structures, demands
33 increasingly higher precision in positioning, faster response times, and adaptability to dynamic
34 environments. One of the central challenges in the design of robotic systems is the effec-
35 tive suppression of structural vibrations. These disturbances necessitate slower operational
36 speeds and longer cycle times, ultimately leading to increased production and maintenance
37 costs (**Iskandar 2020**). Despite ongoing advancements in articulated robotic arms, which
38 are widely used in manufacturing and material handling, these systems remain vulnerable to
39 undesirable dynamic behaviour, particularly vibrations. The prevailing design trend of re-
40 ducing structural mass to lower energy consumption further exacerbates the susceptibility of
41 LWRs to vibration-induced instability (**Zhong et al. 2019**). Vibrations reduce operational
42 precision and cause unintentional deviations in the end-effector trajectory. In dynamic and
43 unpredictable environments, external disturbances can compromise both accuracy and repeata-
44 bility—two critical parameters in automated and precision-driven applications. This issue is
45 particularly pronounced in lightweight robot arms (LWRs), where mass reduction is typically
46 achieved at the expense of structural stiffness, increasing the system’s susceptibility to ad-
47 verse dynamic effects. The study on the control of a flexible arm manipulators started as
48 a part of the space robots research because due to LWRs light weight, ease of maneuver-
49 ability and less power consumption these kind of manipulators are very useful for space ap-
50 plications (**Sobiesczanski-Sobieski et al. 1997; Cannon and Schmitz; 1984**). Flexible
51 manipulators are used also for surgical and micro-surgical operation, describes research in ac-
52 tive instruments for enhanced accuracy in micro-surgery (**Leniowska and Leniowski 2012;**
53 **Riviere et al. 2003**). Nowadays, in science and engineering, the pursuit of lightweight design
54 represents both a well-established and continually evolving area of research. In contemporary
55 applications, lightweight solutions are expected to meet not only technical and economic criteria
56 but also align with principles of sustainability.

57 Designing a control law for a flexible robotic system involves reconciling conflicting require-
58 ments. On one hand, the system is expected to exhibit rapid dynamic responses. When the
59 structure and parameters of the robot’s model are accurately known, control strategies based
60 on control theory can be applied to achieve high-speed performance. In practice, however, the

model and its parameters are often only approximately known, which complicates the synthesis of such control laws. Precise dynamic modelling plays a fundamental role in model-based control, which remains one of the most widely used approaches for industrial robotic systems. The mathematical models of flexible robots have been considered by many researchers. Typically, obtaining an accurate dynamic model involves two main stages:

1. Formulating dynamic equations using established methods such as the principle of virtual work, the Newton–Euler formalism, Kane’s method (**Book1984**; **DeLuca1989**; **DeLuca1991**), or a finite element method (**Bayo1987**; **Chedmail1989**).
2. Estimation of dynamic parameters through identification techniques that rely on the linear parameterisation of the dynamic model (**Ljung; 1999**; **SODERSTROM 1983**). This approach refers to the methodology of determining a mathematical representation of a system by fitting model parameters to observed input–output data. The central idea is to capture the intrinsic dynamics of the system within a chosen model structure, such as transfer functions or state–space formulations.

Over the past several decades, identification techniques has received considerable attention, as it provides a systematic way to translate experimental measurements into relative reliable models. Such models not only offer insight into the underlying physical or engineering processes but also serve as essential tools for simulation, control design, and optimization. For these reasons there has been a strong trend towards extending or even replacing classical model-based approaches with modern data-driven and hybrid methods. These techniques enable the design of controllers directly from experimental input–output data, thereby reducing the dependency on precise analytical models, which are often difficult to obtain for lightweight flexible structures with distributed parameters and nonlinearities. A comprehensive review by Yang, Li, and Luo (**Yang 2024**) summarizes the rapid development of data-driven vibration control (DDVC), highlighting subfields such as iterative learning control, reinforcement learning, and model-free adaptive control, all of which demonstrate strong potential for vibration suppression in robotic and aerospace applications. The authors emphasize that data-driven methods provide advantages in adaptability to uncertainties, reduced modelling effort, and robustness against disturbances, which are particularly valuable for thin-walled, lightweight manipulators. Similar directions are also explored in the context of pipelines and fluid-conveying structures, where system identification combined with adaptive feedback improves damping performance under variable operating conditions (**Ding 2023**). This experimental-based technique has been also used by the authors in active vibration suppression (**Leniowska and Kos; 2009; Leniowska and Mazan 2015; Leniowska et al. 2022; Pater et al. 2024**) and it will be applied herein.

An important stream of recent research focuses on advanced robust control strategies. For example, Qin et al. (**Qin 2023**) proposed a data-driven H_∞ control method that ensures stability and performance guarantees without requiring an exact plant model, achieving effective vibration attenuation in flexible beam-like structures. These approaches stand in contrast

100 to classical ARX/ARMAX-based identification, positioning themselves as scalable solutions
101 for real-time industrial implementations. Complementary work by Zhang et al. (2025) has
102 shown that combining data-driven design with hybrid piezoelectric actuators leads to signifi-
103 cant improvements in damping efficiency, which suggests new pathways for integrating simple
104 controllers with advanced materials in practice.

105 Parallel to algorithmic progress, actuator and sensor technologies have undergone signifi-
106 cant advances. While traditional lead zirconate titanate (PZT) ceramics remain widely studied,
107 modern Macro Fiber Composites (MFC) and adaptive hybrid actuators offer improved flexibil-
108 ity, reduced fragility, and higher strain energy density, making them well suited for lightweight
109 robotics applications (**Masaid et al. 2023**). Recent studies also highlight the importance of
110 distributed sensor–actuator networks, where piezoelectric patches are optimally placed to tar-
111 get dominant modes and increase control authority. In addition, semi-active strategies such
112 as piezoelectric shunt damping circuits have been extensively reviewed by Marakakis et al.
113 (**Marakakis et al. 2019**), who underline that shunted PZT elements—when combined with
114 active feedback—enable hybrid approaches balancing energy efficiency with wideband damping
115 performance. This trend towards multi-modal, hybrid suppression strategies positions classical
116 active control within a broader landscape of contemporary solutions.

117 Within this broader context of active vibration and noise suppression, adaptive feedforward
118 control methods based on least-mean-square (LMS) algorithms have been extensively investi-
119 gated (**Pawelczyk 2004; Bismor 2014 a; Bismor 2014 b**). The limitations of the hybrid
120 active feedforward noise control (ANC) configuration were analyzed, demonstrating that its
121 practical performance depends heavily on careful consideration of secondary path dynamics
122 and adaptive mechanisms. These results are particularly relevant for lightweight, distributed-
123 parameter structures, where computational resources are constrained, and thus motivate the
124 search for control strategies that remain effective under similar practical limitations in vibro-
125 acoustic systems.

126 Taken together, these developments indicate that the state of the art in vibration suppression
127 is moving towards integration: data-driven algorithms coupled with advanced actuators and
128 hybrid control architectures. For lightweight robotic arms, this means that even relatively
129 simple controllers such as PID, when embedded in modern mechatronic setups and supported by
130 efficient identification procedures, can remain competitive. Our study, therefore, complements
131 these advances by demonstrating how a classical control law can be effectively combined with
132 MFC-based actuation in a real-time environment, providing a practical and experimentally
133 validated benchmark against which more complex, data-driven strategies may be assessed.

134 This paper proposes the usefulness solution in the context of improving the precision of
135 robotic systems based on the use of Macro Fiber Composite (MFC) piezoelectric elements,
136 which serve both as sensors and actuators. The key innovation lies in the integration of ex-
137 perimentally derived dynamic models with a real-time digital PID controller, enabling effective
138 damping of vibrations under realistic operating conditions. Despite the development of more
139 advanced control methodologies in recent years, PID controllers continue to be widely ap-

plied across various industrial domains owing to their effectiveness and robustness as well as in feedback control of a flexible robot manipulators (**Ho and Tu 2005; Ang et al. 2005; Akyuz et al. 2011**). The developed control system was validated through both simulation and physical experiments. Potential applications include lightweight robotic systems and high-precision devices where vibration minimization is critical to performance and operational safety. This paper is structured as follows: In Chapter 2 the considered object, the aluminium tube which serve as prototype LWR robotic arm is described and technical specifications of the MFC elements are given. In chapter 3 a method of dynamic parameters estimation through identification techniques to develop mathematical model is provided. Chapter 4 provides brief notes on the PID controller used. Chapter 5 gives an overview on the implemented program code. View on the complete system which represents a digital PID controller with supporting hardware is given in Chapter 6. Finally, Chapter 7 provides the testing results and conclusions.

2 Materials and Methods

In the context of research on active vibration damping in lightweight robotic structures of the LWR (Lightweight Robot) type, a thin-walled tube made of aluminum alloy Al99.5 was selected as a representative model of a robotic arm. This component, characterized by appropriately selected geometric dimensions (detailed in Table 1), was rigidly clamped at one end, simulating cantilever boundary conditions. On its surface, Macro Fiber Composite (MFC) piezoelectric elements were mounted, serving a dual role as sensors detecting vibrations and actuators for excitation and compensation of vibrations. The locations of the MFC elements distributed along the object are presented in Table 2. One of the transducers was configured as an exciter, generating a chirp signal ranging from 1 Hz to 1 kHz over a period of 30 seconds.

Table 1: Geometric parameters of the structural element

Parameter	Value [mm]
Outer diameter	40
Inner diameter	38
Wall thickness	2
Total length	2000
Clamping length	1000

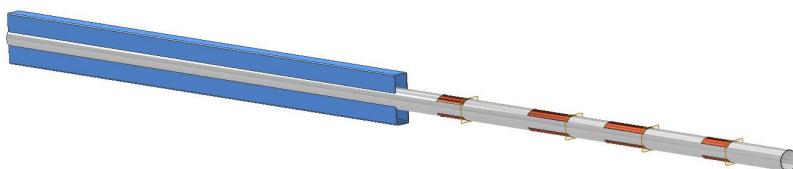


Figure 1: Schematic representation of the tested structure: a thin-walled aluminum tube equipped with MFC piezoelectric transducers for active vibration control

Table 2: Arrangement of MFC elements relative to the mounting point ($x = 0$ at the center of the object)

Element	x_{left} [mm]	x_{middle} [mm]	x_{right} [mm]	Width [mm]
MFC 1	109.0	142.5	176.0	67.0
MFC 2	343.0	394.5	446.0	103.0
MFC 3	540.0	591.5	643.0	103.0
MFC 4	792.5	826.0	859.5	67.0

162 The experimental placement of the MFC elements was based on modal analysis with a
 163 Polytec laser vibrometer. Sensors were positioned away from the modal nodes to maximize
 164 strain sensitivity, and the locations of the elements are listed in Table 2. Four transducer pairs
 165 were mounted on the upper and lower surfaces of the tube to capture the structural response and
 166 provide actuation authority for vibration suppression. Real-time experiments were conducted
 167 using the xPC Target platform. A linear parametric model of the tube was identified directly
 168 from the input–output data and subsequently used for controller design. This approach enabled
 169 a realistic representation of the system’s dynamic behavior and facilitated the development of
 170 an effective vibration control algorithm.

171 Macro-Fiber-Composite (MFC) transducers consist of parallel piezoelectric fibres embedded
 172 in a polymer matrix, which provides flexibility and mechanical robustness. Constructed from
 173 parallel-aligned piezoelectric fibers embedded in a polymer composite matrix, MFC transducers
 174 exhibit suitability for operation under dynamic conditions and can be mounted on surfaces with
 175 irregular geometries. They can be bonded to curved or irregular surfaces.

176 In this study, MFC transducers were applied to actively suppress vibrations in a thin-walled
 177 aluminum tube which serves as a lightweight robot arm. Sensors and actuators locations were
 178 selected from the modal analysis to avoid nodes. The transducers were mounted using a two-
 179 component adhesive, ensuring a durable bond with minimal influence on the mass and stiffness
 180 of the structure.

181 Compared to traditional PZT piezoceramics, MFCs exhibit several distinct advantages,
 182 primarily due to their flexibility, resistance to mechanical deformation, and high effectiveness
 183 in vibration damping. Moreover, each element is capable of both sensing strain and generating
 184 actuation forces. The best performance was obtained with elements of $35 \text{ mm} \times 103 \text{ mm}$; smaller
 185 transducers were less effective. The parameters of the elements used are provided in Table 3

186 Described above the thin-walled aluminium tube was used as a test model, selected due to
 187 its geometric and material properties, which make it highly susceptible to vibrations. The aim
 188 of this study was to develop an effective active vibration reduction algorithm for the aluminium
 189 tube which serve as prototype LWR robotic arm. The foundation of the research involved the
 190 use of piezoelectric materials in the form of MFC (Macro Fiber Composite) elements, which
 191 act both as sensors and actuators responsible for active vibration suppression. To achieve
 192 the research objectives, a dedicated laboratory test stand had to be designed and constructed
 193 (Pater et al. 2024). It was developed to enable vibration measurements, identification of the

Table 3: Technical specifications of the MFC element

Parameter	Value	Unit
Model	06L18-044D	–
Width	34	mm
Length	103	mm
Thickness	0.3	mm
Polarization voltage	+1500 / -500	V
Piezoelectric coefficient d_{31}	-2.1E+02	pm/V
Piezoelectric coefficient d_{33}	4.6E+02	pm/V

¹⁹⁴ dynamic properties of the structure, and their active suppression using appropriately selected
¹⁹⁵ controllers.

¹⁹⁶ 3 Mathematical model

¹⁹⁷ Effective vibration suppression requires a thorough understanding of the robot's dynamic
¹⁹⁸ characteristics. Dynamic identification of mechatronic systems is a process aimed at developing
¹⁹⁹ a mathematical model of the investigated object based on experimental measurement data.
²⁰⁰ This method is particularly useful in cases where constructing an accurate theoretical model is
²⁰¹ challenging due to complex system geometry, numerous physical parameters, or the presence
²⁰² of nonlinearities. Estimation of dynamic parameters through identification techniques involves
²⁰³ analyzing the system's response to known excitation inputs and constructing mathematical
²⁰⁴ models that accurately reflect its behavior. One such approach is the use of MFC elements
²⁰⁵ for sensing, combined with ARMAX-based system identification (Isermann; 2013) to model
²⁰⁶ dynamic properties. These experimentally developed models are crucial for the design of active
²⁰⁷ feedback-based vibration control systems and also preserve the essential features of the object
²⁰⁸ dynamics within the considered vibration band. The key components of the experimental ap-
²⁰⁹ proach include the appropriate selection of the excitation signal and precise measurement of
²¹⁰ the system's response. This allows for the extraction of essential information about the sys-
²¹¹ tem's dynamic characteristics, such as resonance frequencies, damping properties, and transfer
²¹² functions.

²¹³ The integrated excitation and data-acquisition chain is shown in Fig. 2. A precomputed
²¹⁴ .wav signal is played by the laptop's built-in sound card; the line-out feeds a power amplifier
²¹⁵ that drives the MFC actuator. For synchronization, the same line-out is routed in parallel to
²¹⁶ the ADC (the measurement card integrated with the xPC target), which simultaneously samples
²¹⁷ it together with the MFC sensor output. The xPC target performs sampling and buffering and
²¹⁸ streams the data to MATLAB for recording and analysis. During identification experiments the
²¹⁹ sampling frequency was 10 kS/s for all channels, and the pre-processing consisted of removing
²²⁰ the DC component (detrending by subtracting the sample mean) from each time series.

²²¹ In the experiment, a chirp signal was used, which enables excitation of the tested system over

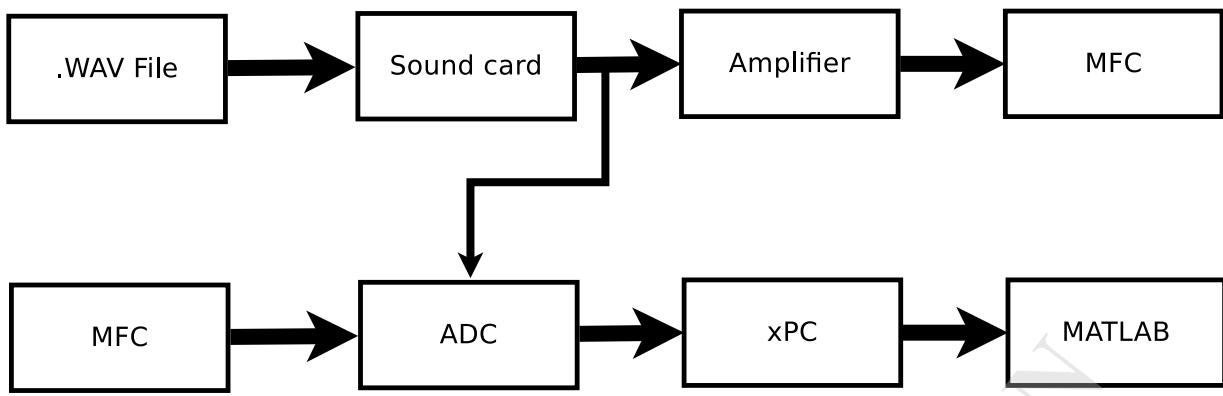


Figure 2: Integrated system for excitation generation and data acquisition. The sound-card line-out is split: one branch drives the amplifier–MFC actuator path, the other is sampled by the ADC (measurement card of the xPC target) for synchronization.

222 a wide frequency range within a single measurement run. This approach allows for obtaining the
 223 frequency response and identifying the system’s resonant frequencies without the need to repeat
 224 the experiment for individual frequencies. Such a method is widely used in dynamic system
 225 analysis, as it allows for efficient and rapid acquisition of the system’s frequency response.

226 The time-domain data collected during the experiment was imported into the MATLAB en-
 227 vironment using the System Identification Toolbox. This module enables data analysis and the
 228 identification of mathematical models, both in the form of transfer functions and state-space
 229 models. With advanced algorithms, it is possible to accurately fit the model structure to the ac-
 230 tual behaviour of the studied system. This requires proper selection of the sampling frequency
 231 to ensure sufficient time resolution, particularly when analysing higher-frequency components.
 232 The identification process involves matching the model structure including the number of poles
 233 and zeros to the recorded data. Through an iterative parameter-fitting procedure, a model was
 234 developed that accurately reflects the dynamic properties of the robot arm. Such a model can
 235 subsequently be used for control system design, simulation, and analysis of how different pa-
 236 rameters affect the system’s dynamics. An experimental approach based on real measurement
 237 data offers several advantages over purely theoretical methods. Models developed from ex-
 238 perimental data can accurately capture nonlinearities, complex geometries, and unpredictable
 239 dynamic effects. Measurement technologies based on piezoelectric sensors and laser vibrometry
 240 enable detailed analysis even of complex mechatronic structures. The resulting mathematical
 241 models provide a solid foundation for the further design and optimization of dynamic systems.
 242 As part of the identification process, commonly used ARX (AutoRegressive with eXogenous
 243 inputs) and ARMAX (AutoRegressive Moving Average with eXogenous inputs) models were
 244 employed. These are fundamental tools for modelling linear systems. Both models use input
 245 and output data to create a difference equation that describes the system’s dynamics. The key
 246 distinction between ARX and ARMAX lies in their treatment of noise—the ARMAX model
 247 includes an additional term that accounts for the dynamics of noise components (Ljung; 1999).

$$y(t) + a_1y(t-1) + \cdots + a_ny(t-n) = b_1u(t-1) + \cdots + b_mu(t-m) + e(t) \quad (1)$$

248 In this model, $y(t)$ denotes the output signal, $u(t)$ represents the input signal, a_i and b_i are
 249 the model coefficients, and $e(t)$ denotes the noise term, which is assumed to be white noise.
 250 The model assumes that the disturbances are random in nature and affect only the output.

251 4 PID control

252 In the developed active vibration control system, the PID controller was implemented in a
 253 discrete-time form, consistent with the digital real-time architecture of the xPC Target platform.
 254 Instead of the continuous PID equation, the controller was realised using the following standard
 255 discrete transfer function:

$$256 G_{\text{PID}}(z) = K_p \left(1 + \frac{T_s}{T_i} \frac{1}{1 - z^{-1}} + \frac{T_d}{T_s} (1 - z^{-1}) \right) \quad (2)$$

256 where K_p is the proportional gain, T_i the integral time constant, T_d the derivative time
 257 constant, and T_s the sampling period. The integral part is implemented using the discrete
 258 accumulator $\frac{1}{1-z^{-1}}$, while the derivative part uses the backward difference $(1 - z^{-1})$, ensuring
 259 numerical stability and robustness to measurement noise.

260 This discrete transfer-function formulation is well suited for real-time vibration suppression
 261 because it provides predictable phase characteristics and stable operation near high- Q
 262 resonances. In this study, the PID controller was tuned to increase the effective damping of
 263 the dominant vibration modes (214 Hz and 574 Hz) identified in Section 3. Combined with
 264 MFC sensor–actuator pairs, the discrete PID controller enabled effective attenuation of resonant
 265 oscillations under both harmonic and broadband excitations. The final values of the tuned
 266 parameters used during experiments are listed in Table 5.

267 5 Model identification

268 The objective of this study was to develop an effective algorithm for active vibration reduction
 269 in the LWR robotic arm. The research was based on an experimental mathematical model
 270 of the system, obtained using the ARX (AutoRegressive with eXogenous inputs) method. Data
 271 was recorded and subsequently used in the model identification process. The transfer function
 272 of the considered object takes the form:

$$273 G(z^{-1}) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4} + b_5 z^{-5}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3} + a_4 z^{-4} + a_5 z^{-5} + a_6 z^{-6}} \quad (3)$$

273 The obtained data for the discrete model are presented in Table 4

274 6 Vibrations suppression simulation and tests

275 In the next step, the PID controller was tuned in a simulation environment based on the
 276 identified models. The PID controller parameters used during the experiments are summarized

Table 4: The values of the A and B coefficients adopted in the object identification process

i	$A(z^{-i})$	$B(z^{-i})$
5	-4.473	0.0870
4	8.095	-0.3335
3	-7.392	0.4914
2	3.393	-0.3298
1	-0.6226	0.0851

277 in Table 5. These settings were selected based on the tuning procedure described in Section
 278 4.6 and were applied to the physical object during testing. Providing these values ensures that
 279 the presented control performance can be independently verified.

Table 5: PID controller settings used in the experiment

Parameter	Value
Proportional (P)	5.5
Integral (I)	4.0
Derivative (D)	5.0

280 The response of both the system and the controller was recorded for a first vibration reso-
 281 nanse frequency of 214 Hz, Fig. 3.

282 Similar effectiveness was observed at the second resonance frequency of 574 Hz, where the
 283 vibration amplitude was considerably reduced when the controller was turn on. In subsequent
 284 stages of the research, the object was subjected to excitation composed of two harmonics (214
 285 Hz and 574 Hz). Despite the increased signal complexity, the PID controller effectively reduced
 286 the amplitudes of both vibration components, demonstrating its capability to operate under
 287 more complex dynamic conditions (Fig. 4).

288 Additionally, when applying a chirp signal with a frequency sweep ranging from 1 Hz to
 289 1 kHz, an increase in vibration amplitude was observed near the resonance frequencies. After
 290 activating the controller, vibrations were successfully suppressed, especially at critical points
 291 within the frequency band, confirming the versatility of the control system and its ability to
 292 perform under variable excitation conditions (Fig. 5)

293 The results of the experimental tests are presented below. Data were recorded in the same
 294 manner as in the previous cases.

295 During the conducted experiments with the real mechanical system subjected to active
 296 vibration reduction, the effectiveness of the PID controller was evaluated. Tests were performed
 297 for various types of excitations, including harmonic signals at resonance frequencies of 214 Hz
 298 and 574 Hz, their combination, and a chirp signal. In each case, the controller was activated
 299 after a predefined time interval, allowing comparison of the system's behavior before and after
 300 control activation. For the harmonic excitation at 214 Hz, the system without control exhibited

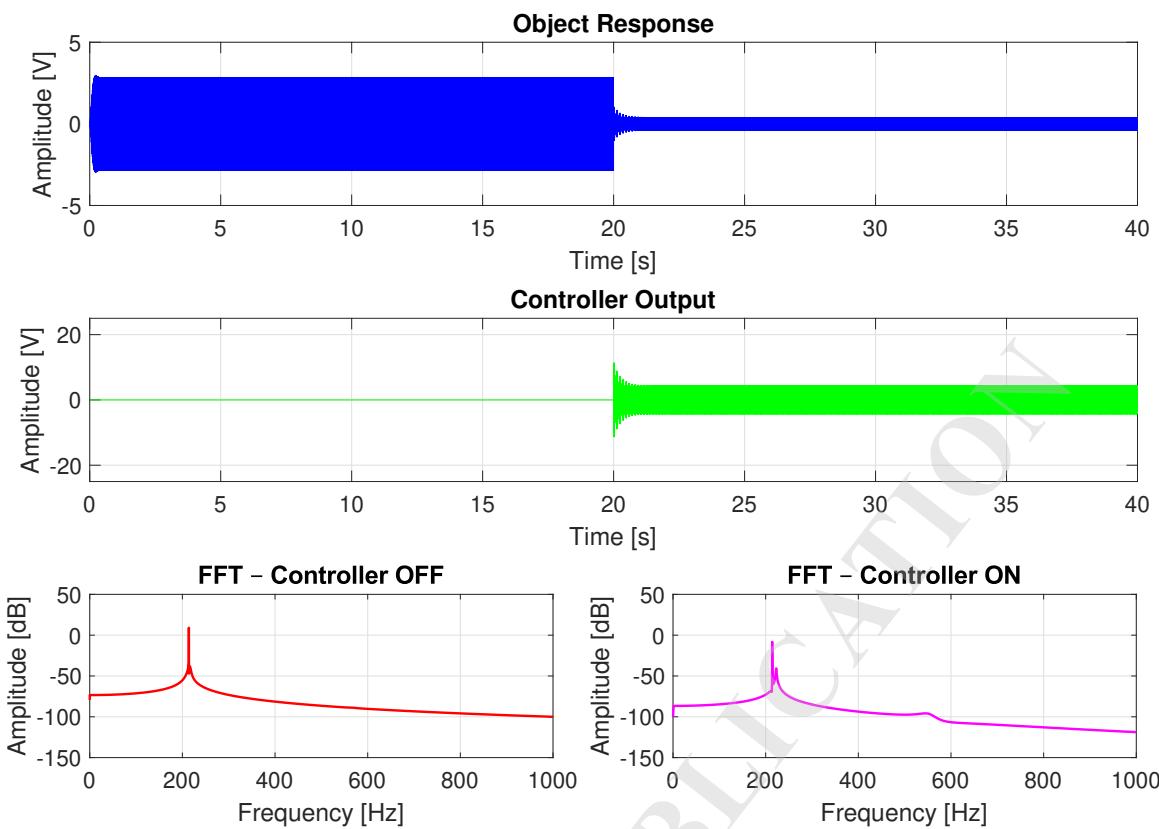


Figure 3: Simulation result – time course and corresponding frequency spectrum for 214 Hz; 0-20 seconds; the open loop control system, 20-40 seconds the close loop control system

301 large amplitude vibrations characteristic of resonance. After enabling the PID controller, a
 302 significant reduction in oscillation amplitude and gradual damping of vibrations were observed.
 303 The damping process was smooth and free of overshoot, indicating properly tuned controller
 304 settings and its effectiveness in improving system stability. Similar phenomena were observed
 305 for the resonance frequency of 574 Hz. Without the controller, the system showed sustained
 306 oscillations with considerable amplitude. Upon activation of the PID controller, a rapid and
 307 effective vibration reduction occurred, enhancing the quality of the dynamic response. This
 308 process was also stable and free from adverse effects, confirming the efficiency of the applied
 309 control system. When the object was subjected simultaneously to two harmonic excitations
 310 at 214 Hz and 574 Hz, the system exhibited particularly unfavorable dynamic behavior with
 311 large oscillation amplitudes in the uncontrolled state. Activation of the PID controller resulted
 312 in a significant reduction of vibration amplitude and gradual suppression of oscillations caused
 313 by the superposition of the two resonant components. The vibration reduction levels obtained
 314 in the simulations were highly favorable for the considered resonant frequencies (51.11% and
 315 48.51%). However, the reductions achieved in the experimental tests were significantly lower; for
 316 the 214 Hz resonant frequency, a reduction of 21.53% was observed (Table 6). When the object
 317 is forced with a chirp signal, the results are slightly better. Detailed results are summarized
 318 in the Table 7. Nevertheless, the results confirm that the proposed solution enables effective
 319 vibration reduction despite of its simple structure.

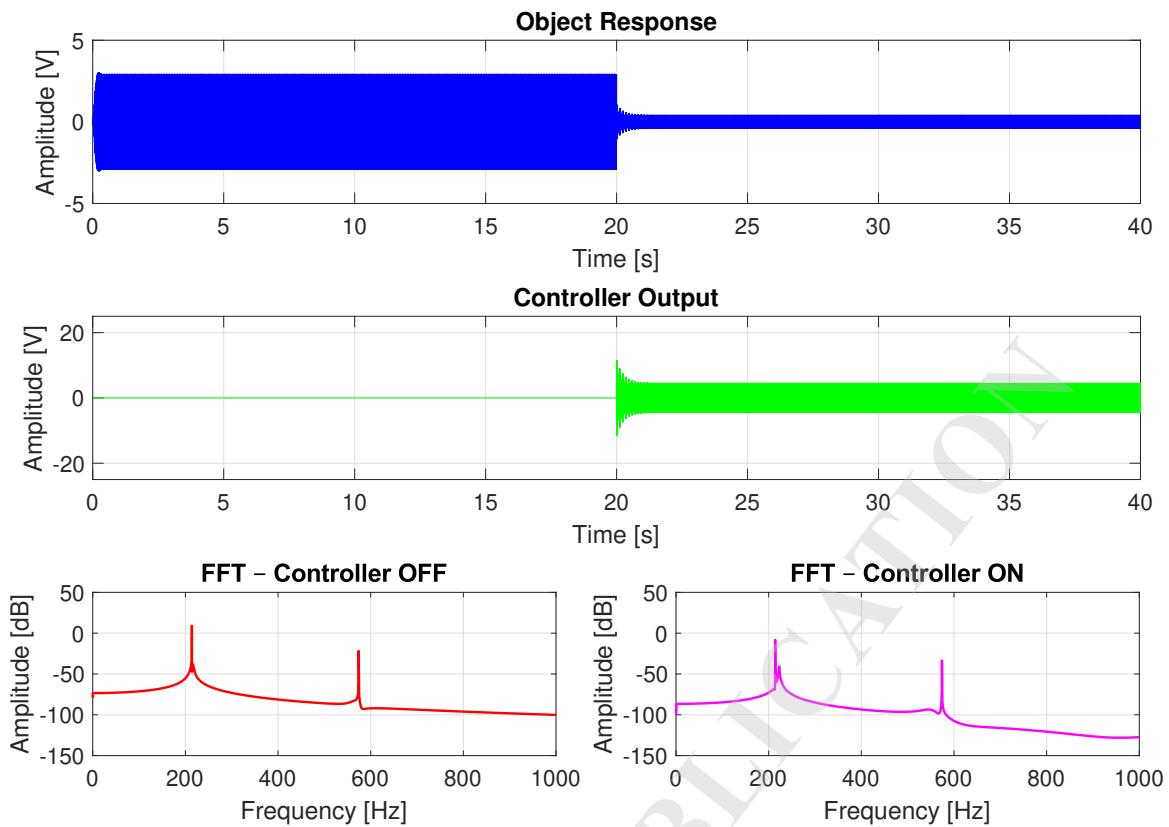


Figure 4: Simulation result – time course and corresponding frequency spectrum for the sum of frequencies 214 and 574 Hz; without a controller from 0 to 20 seconds, and with a controller from 20 to 40 seconds

Table 6: Vibration attenuation based on the object response

Excitation	Average amplitude controller OFF [V]	Average amplitude controller ON [V]	Attenuation [%]
214 Hz (simulation)	2.25	1.10	51.11
214+574 Hz (simulation)	2.35	1.21	48.51
214 Hz (experiment)	3.53	2.77	21.53

Table 7: Vibration attenuation based on the object response

Excitation	Max amplitude controller OFF [V]	Max amplitude controller ON [V]	Attenuation [%]
Chirp (simulation)	2.55	0.85	66.67
Chirp (experiment)	3.85	2.37	38.44

320 7 Conclusion

321 The conducted research confirmed the effectiveness of the developed active vibration reduc-
 322 tion system utilizing a PID controller. The control system, designed based on an ARX-type
 323 mathematical model of the object, demonstrated high efficiency both in simulation environ-
 324 ments and real-world conditions. The obtained results validate the correctness of the adopted
 325 assumptions as well as the suitability of the chosen modeling and control methods which is
 326 confirmed by the data in the Table.6 and Table.7. The use of Macro Fiber Composite (MFC)

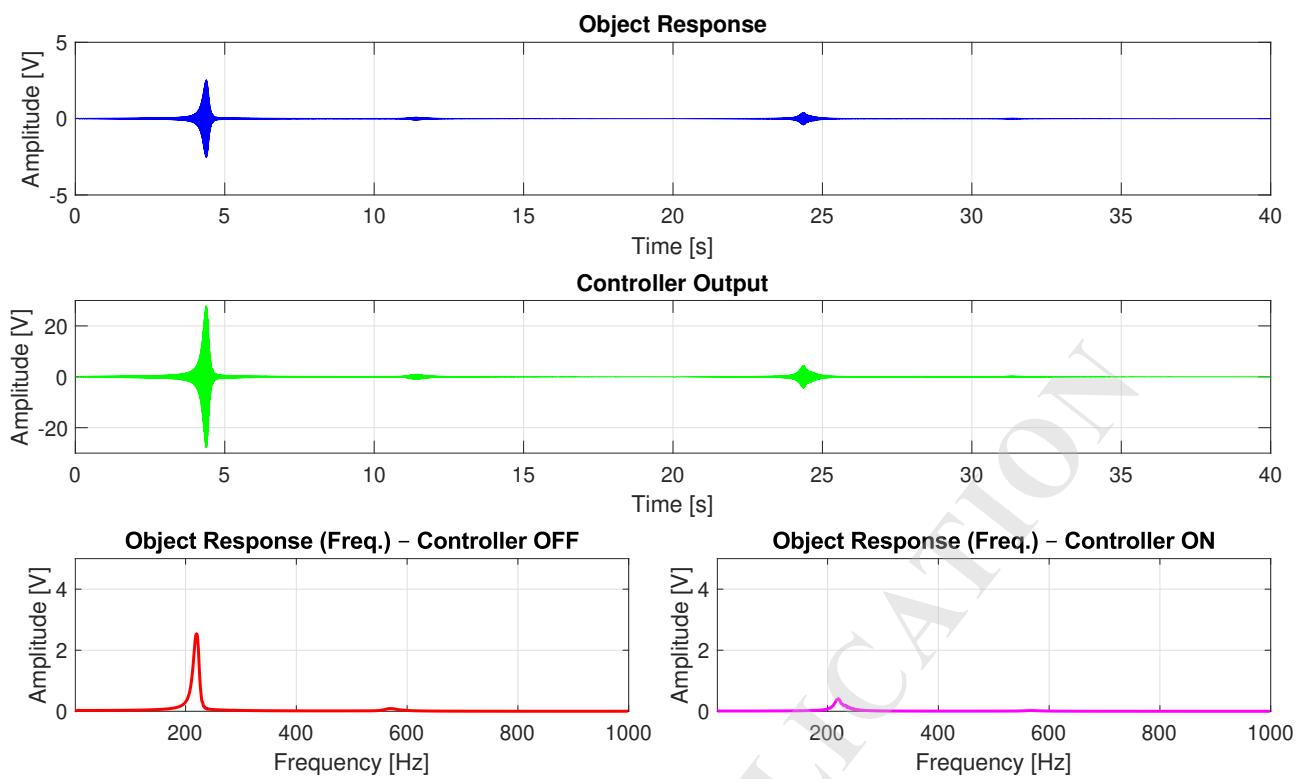


Figure 5: Simulation result – time course and corresponding frequency spectrum of chirp signal with frequency 1–1000 Hz, without controller from 0 to 20 seconds and with controller from 20 to 40 seconds

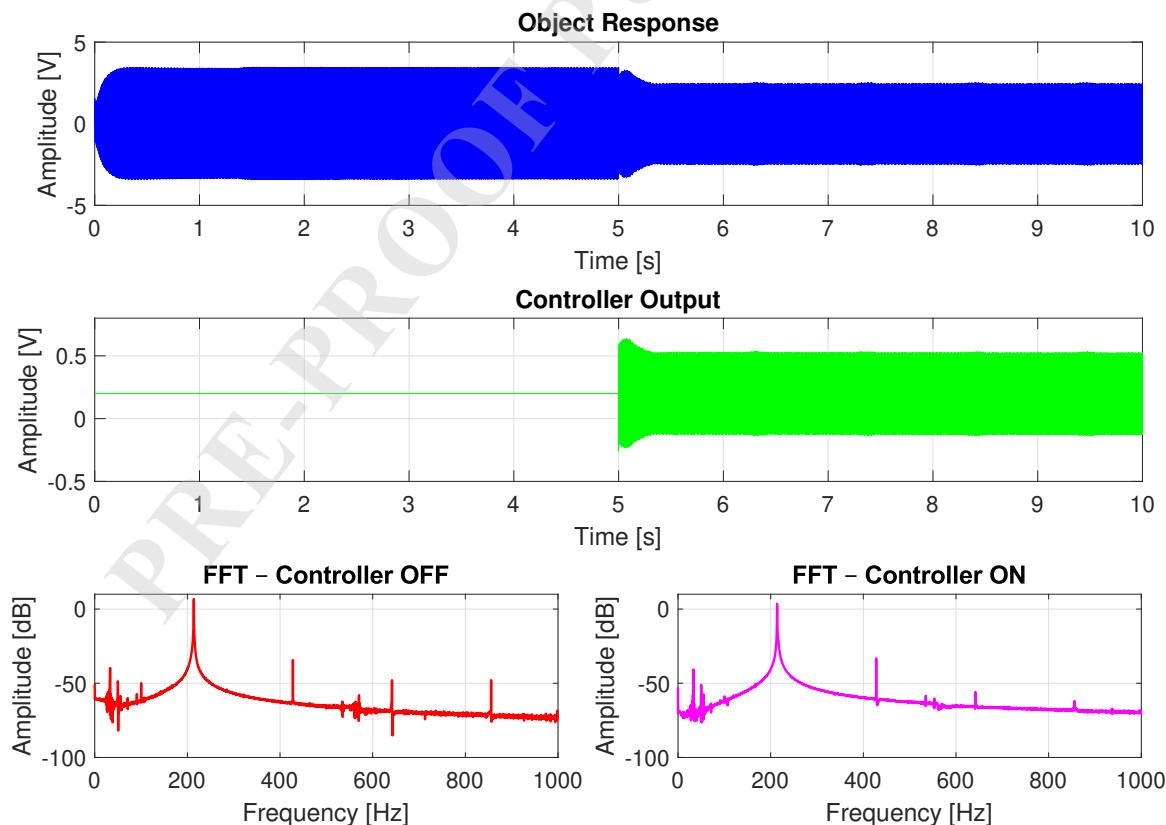


Figure 6: Experimental results – the time response for the frequency of 214 Hz excitation; 0–5 seconds the open loop control system, 5–10 seconds the close loop control system

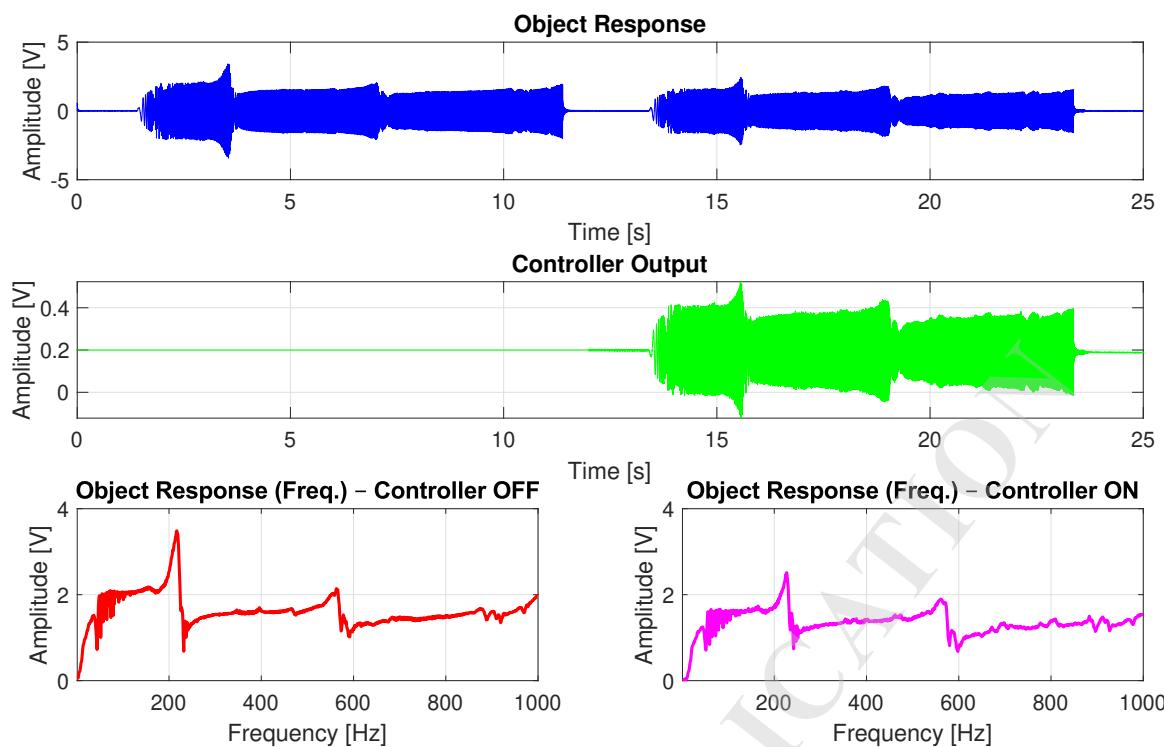


Figure 7: Experimental results – the time response for chirp signal (from 1 Hz to 1000 Hz) excitation; 0-5 seconds the open loop control system, 5-10 seconds the close loop control system

327 piezoelectric materials as sensors and actuators proved to be an effective and practical solution. The high sensitivity of these elements, combined with their capability for active vibration
 328 damping, enabled precise monitoring and elimination of vibrations in lightweight structures
 329 such as thin-walled tubes modeling robot arms. The developed control system demonstrated
 330 its versatility by effectively suppressing vibrations induced by both simple harmonic excitations
 331 and more complex input signals. This indicates its potential applicability across a wide range of
 332 engineering applications, particularly in robotics and mechatronics. A key factor in the overall
 333 process was the accurate modeling of the object, facilitated by tools such as the xPC Target
 334 system within the MATLAB environment. Precise identification of the dynamic properties
 335 of the structure directly contributed to the effectiveness of the developed control algorithm.
 336 The obtained results provide a solid foundation for further research and development. The
 337 presented solution can be adapted to more complex structures and integrated with advanced
 338 control strategies, such as adaptive or predictive control. This system opens new perspectives
 339 for active stabilization of lightweight robotic structures, contributing to improvements in their
 340 precision and operational reliability.

342 FUNDINGS

343 This research did not receive any specific grant from funding agencies in the public, com-
 344 mercial, or not-for-profit sectors.

345 CONFLICT OF INTEREST

346 The authors declare that they have no known competing financial interests or personal
 347 relationships that could have appeared to influence the work reported in this paper.

348 AUTHORS' CONTRIBUTION

349 Author MP and LL conceptualized the study and wrote the original draft. Author MP and
 350 MG performed the measurements, analysis and contributed to data interpretation. All authors
 351 reviewed and approved the final manuscript.

352 DATA AVAILABILITY STATEMENT

353 The data that support the findings of this study are available from the corresponding author
 354 upon reasonable request.

355 References

- 356 [1] AKYUZ I.H., YOLACAN E., ERTUNC H.M., BINGUL Z. (2011), PID and state feedback con-
 357 trol of a single-link flexible joint robot manipulator, [in:] *IEEE Int. Conf. on Mechatronics*,
 358 pp. 409–414. DOI: [10.1109/ICMECH.2011.5971320](https://doi.org/10.1109/ICMECH.2011.5971320)
- 359 [2] ANG K.H., CHONG G., LI Y. (2005), PID control system analysis, design, and
 360 technology, *IEEE Transactions on Control Systems Technology*, **13**(4): 559–576. DOI:
 361 [10.1109/TCST.2005.847331](https://doi.org/10.1109/TCST.2005.847331)
- 362 [3] MASA'ID A., LENGGANA B.W., UBAIDILLAH U., SUSILO D.D., CHOI S.-B. (2023), A
 363 Review on Vibration Control Strategies Using Magnetorheological Materials Actuators:
 364 Application Perspective, *Actuators*, **12**(3): 113. DOI: [10.3390/act12030113](https://doi.org/10.3390/act12030113)
- 365 [4] BAYO E. (1987), A finite-element approach to control the end-point motion of a single-link
 366 flexible robot, *Journal of Robotic Systems*, **4**(1): 63–75. DOI: [10.1002/rob.4620040106](https://doi.org/10.1002/rob.4620040106)
- 367 [5] BISMOR D. (2014), Comments on “A new feedforward hybrid ANC system”, *IEEE Signal
 368 Processing Letters*, **21**(5): 635–637. DOI: [10.1109/LSP.2014.2310783](https://doi.org/10.1109/LSP.2014.2310783)
- 369 [6] BISMOR D. (2014), Partial update LMS algorithms in active noise control, [in:] *Proceedings
 370 of Forum Acusticum*, 2014–January.
- 371 [7] BOOK W.J. (1984), Recursive Lagrangian dynamics of flexible manipulator arms, *International
 372 Journal of Robotics Research*, **3**(3): 87–101. DOI: [10.1177/027836498400300305](https://doi.org/10.1177/027836498400300305)
- 373 [8] CANNON R.H., SCHMITZ E. (1984), Initial experiments on the end-point control of a
 374 flexible one-link robot, *International Journal of Robotics Research*, **3**(3): 62–75. DOI:
 375 [10.1177/027836498400300303](https://doi.org/10.1177/027836498400300303)

376 [9] CHEDMAIL P., KHALIL W. (1989), Nonlinear decoupling control of flexible robots, [in:]
 377 Waldron K.J. [Ed.], *Advanced Robotics: 1989*, Springer, Berlin, Heidelberg, pp. 138–145.

378 [10] DE LUCA A., SICILIANO B. (1989), Trajectory control of a non-linear one-link flexible arm,
 379 *International Journal of Control*, **50**(5): 1699–1715. DOI: [10.1080/00207178908953460](https://doi.org/10.1080/00207178908953460)

380 [11] DE LUCA A., SICILIANO B. (1991), Closed-form dynamic model of planar multi-link
 381 lightweight robots, *IEEE Transactions on Systems, Man, and Cybernetics*, **21**(4): 826–
 382 839. DOI: [10.1109/21.108300](https://doi.org/10.1109/21.108300)

383 [12] DING H., JI J. (2023), Vibration control of fluid-conveying pipes: a state-of-the-
 384 art review, *Applied Mathematics and Mechanics (English Edition)*, **44**(9): 1203–1236.
 385 DOI: [10.1007/s10483-023-3023-9](https://doi.org/10.1007/s10483-023-3023-9).

386 [13] HE J., ZHOU L., FANG Y., WU P. (2025), Experimental study on vibra-
 387 tion control of pipeline systems using hybrid piezoelectric methods, *Proc. Inst.*
 388 *Mech. Eng., Part C: Journal of Mechanical Engineering Science*, **239**(4): 812–826.
 389 DOI: [10.1177/09544100241307998](https://doi.org/10.1177/09544100241307998).

390 [14] HO M.T., TU Y.W. (2005), PID controller design for a flexible-link manipulator, [in:]
 391 *Proc. 44th IEEE Conf. on Decision and Control and European Control Conference*, pp.
 392 6841–6846. DOI: [10.1109/CDC.2005.1583262](https://doi.org/10.1109/CDC.2005.1583262)

393 [15] ISKANDAR M., OTT C., EIBERGER O., KEPPLER M., ALBU-SCHÄFFER A., DIET-
 394 RICH A. (2020), Joint-level control of the DLR lightweight robot SARA, [in:] *Proc.*
 395 *IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)*, pp. 8903–8910, IEEE.
 396 DOI: [10.1109/IROS45743.2020.9340700](https://doi.org/10.1109/IROS45743.2020.9340700)

397 [16] ISERMANN R. (2013), *Digital Control Systems*, Springer Science & Business Media.

398 [17] LENIOWSKA L., LENIOWSKI R. (2012), The joint vibration analysis of a multi-link surgical
 399 manipulator, *Archives of Acoustics*, **37**(4): 475–482. DOI: [10.2478/v10168-012-0059-7](https://doi.org/10.2478/v10168-012-0059-7)

400 [18] LENIOWSKA L., MAZAN D. (2015), MFC sensors and actuators in active vibration control
 401 of the circular plate, *Archives of Acoustics*, **40**. DOI: [10.1515/aoa-2015-0028](https://doi.org/10.1515/aoa-2015-0028)

402 [19] LENIOWSKA L., GROCHOWINA M., SIERŻEGA M., HOŁOTA B. (2022), An adaptive
 403 method for reducing vibrations of circular plates with recursive identification, *Applied*
 404 *Sciences*, **12**(5): 2723. DOI: [10.3390/app12052723](https://doi.org/10.3390/app12052723)

405 [20] LENIOWSKI R., LENIOWSKA L. (2020), The multi-segment controller of a flexible arm, [in:]
 406 *ISR 2020; 52th International Symposium on Robotics*, pp. 1–8, VDE.

407 [21] LENIOWSKA L., KOS P. (2009), Self-tuning control with regularized RLS algorithm for
 408 vibration cancellation of a circular plate, *Archives of Acoustics*, **34**(4): 613–624.

409 [22] LJUNG L. (1999), *System Identification: Theory for the User*, Prentice Hall PTR.

410 [23] MARAKAKIS K., et al. (2019), Shunt piezoelectric systems for noise and vibration control:
411 a review, *Frontiers in Built Environment*, **5**: 64. DOI: 10.3389/fbuil.2019.00064.

412 [24] PATER M., LENIOWSKA L., GROCHOWINA M. (2024), Active vibration control of pipe-
413 shaped robot arm, *Engineering Transactions*, **72**(4): 389–402. DOI: 10.24423/Eng-
414 Trans.3385.2024

415 [25] PAWEŁCZYK M., (2004), Adaptive noise control algorithms for active headrest system,
416 *Control Engineering Practice*, **12**(9): 1101–1112.

417 [26] QIN Y., ZHANG J., LIU Y., WANG H. (2023), Data-driven H_∞ vibration control
418 design for flexible structures, *Journal of Vibration Control*, **29**(15–16): 3721–3734.
419 DOI:10.1177/107754632311015.

420 [27] RIVIERE C.N., ANG W.T., KHOSLA P.K. (2003), Towards active tremor canceling in hand-
421 held microsurgical instruments, *IEEE Transactions on Robotics and Automation*, **19**(5):
422 793–800. DOI: 10.1109/TRA.2003.817506

423 [28] ROBINETT R.D. III, FEDDEMA J., EISLER G.R., DOHRMANN C., PARKER G.G., WILSON
424 D.G., STOKES D. (2012), *Flexible Robot Dynamics and Controls*, Vol. 19, Springer Science
425 & Business Media. DOI: 10.1016/j.automatica.2005.05.013

426 [29] SOBIESZCZANSKI-SOBIESKI J., HAFTKA R. (1997), Multidisciplinary aerospace de-
427 sign optimization: Survey of recent developments, *Structural Optimization*, **14**: 1–23.
428 DOI:10.2514/6.1996-711

429 [30] SMITH S.W., NADACHOWSKI M. (2007), *Cyfrowe przetwarzanie sygnałów: praktyczny po-*
430 *radnik dla inżynierów i naukowców*, Wydawnictwo BTC.

431 [31] SÖÖDERSTRÖOM, TORSTEN; STOICA, PETRE (ED.). *Instrumental variable meth-*
432 *ods for system identification*, Berlin, Heidelberg: Springer Berlin Heidelberg, 1983.

433 [32] YANG W., LI S., LUO X. (2024), Data driven vibration control: A review, *IEEE/CAA*
434 *Journal of Automatica Sinica*, **11**(9): 1898–1917. DOI:10.1109/JAS.2024.124431.

435 [33] ZHANG X., LIU Q., CHEN Y., WANG R. (2025), Vibration suppression using piezoelectric
436 actuator-based hybrid control in lightweight structures, *Journal of Sound and Vibration*,
437 **575**: 117245. DOI:10.1016/j.jsv.2025.117245.

438 [34] ZHONG Y., WANG R., FENG H., CHEN Y. (2019), Analysis and research of quadruped
439 robot's legs: A comprehensive review, *International Journal of Advanced Robotic Systems*,
440 **16**(3): 1729881419844148. DOI: 10.1177/1729881419844148