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Rayleigh waves in two solids separated by an air gap containing two alternate periodic in-plane
ba�e systems are considered. A Bragg re�ection of the waves occurs when the distance between
the ba�e planes and between ba�es and solids are half wavelength long in air. This may support
an idea of contactless application of comb transducers to generate Rayleigh waves. The analysis is
carried out using the BIS expansion method to account for the wave�eld singularity at the ba�e
edges.

1. Introduction

There is growing interest in application of Rayleigh waves, long exploited in nonde-
structive evaluation of materials and in a variety of sensors (see papers presented on
recent IEEE Ultrasonics Symposia, for instance). Whatever the application is, there is
high interest in contactless generation of these waves in solids.

COMB

a) air

SOLID

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

@@@@@@@@@@@@@@@@

ba�es

SOLID

SOLID

b)
x-

6
y

Fig. 1. a) In contrast to the lower solid where the Rayleigh wave propagates on the plane surface, in
the upper solid (the comb), the wave would be strongly perturbed by the surface corrugation. To avoid
complication of the analysis, in the model b) both solids have plane surfaces allowing Rayleigh waves to
propagate. The ba�es represent the interaction of the acoustic wave in air with comb surfaces; due to
the large di�erence in acoustic impedances of solids and air, the ba�es are considered acoustically sti�.
The side surfaces of teeth which height is about half wavelength in air, are neglected in the model.
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One of possible solutions widely discussed in recent literature is a micromachined
electro-mechanical transducer [1]. Here, we consider a comb transducer [2] in a novel
con�guration by applying it through thickness-optimized layer of air (a liquid couplant
may also work). The study presented in this paper is limited to the analysis of the
most fundamental phenomenon � the propagation of Rayleigh waves in the proposed
system. To simplify the analysis, the system is modeled here by a doubly periodic ba�e
systems placed in an air gap separating two elastic halfspaces; the system is symmetric
and the Rayleigh waves in solids interact with ba�es by means of the wave�eld in the
gap. Fig. 1. explains the correspondence between the original comb/solid arrangement
and the analyzed system. The paper solves the boundary-value problem for the system
presented in Fig. 1b) whatever its origin is.

2. Planar characterization of acoustic media

It is convenient to introduce the planar harmonic Green's function for elastic half-
spaces and for an air layer of thickness h. Assuming the general harmonic wave�eld of
the form

ejωte−jrx (1)
on the media boundaries, where ω is angular frequency and r is the wavenumber, we
have after [3]

u2 = GT22 (2)
for upper solid, and the analogous equation, with replacement of G by −G, for the bottom
solid. Here, u2 is the normal particle displacement and T22 is the normal traction; only
these wave�eld components are involved in interaction of the solids with the adjoined air
layer.

G =
jk2

l ql/µ

(k2
t − r2)2 + 4r2qlqt

, k2
l = ω2ρ/(2µ + λ), k2

t = ω2ρ/µ,

(3)
qm =

√
k2

m − r2 if r < km otherwise − j
√

r2 − k2
m, m = l, t,

where ρ is the mass density and µ, λ are Lamé constants; kl, kt are wavenumbers of longi-
tudinal and shear waves in solids. The choice of the square-root values for ql,t makes the
solution satisfying the radiation conditions in depth of the body at y →∞, assuming the
wave�eld dependence on y in the form exp(−jq1,2y). Eqs. (2), (3) su�ciently characterize
the elastic halfspaces in the problem under consideration.

To derive the analogous planar characterization of an air layer of thickness h, we try
the solution to the acoustic potential φ

φ = (Ae−jsy + Bejsy)e−jrx (4)
(the time harmonic dependence is dropped throughout the paper) to the acoustic equa-
tions

v = −∇φ, p = ρo∂φ/∂t,

c2∇2φ = ∂2φ/∂t2, (5)
k = ω/c, s =

√
k2 − r2 if r < k otherwise − j

√
r2 − k2,
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where ρo is the air mass density and c is the acoustic wave velocity in air. Elimination
of unknown constants A and B by the wave�eld components on both sides of the layer:
vu = v2 and pu = p on the upper side, and vb = v2 and pb = p on the bottom side, where
p is the acoustic pressure and v2 is the y-component of particle velocity in the acoustic
�eld, yields

pu = jωρo
vu cos sh− vb

s sin sh
,

(6)
pb = jωρo

vu − vb cos sh

s sin sh
.

Next, we introduce the corresponding description of a composed media: the system
of an air layer of thickness h on an elastic halfspace. Note that p = −T22 at the air/solid
contact and jωu2 in solid equals v2 in air as well. For the upper solid, it su�ces to
substitute

vu = jωu2, (7)
pu = −T22

in Eqs. (6) to obtain the relation between the wave�eld components at the lower side of
the air layer: vb, pb; for further convenience they are denoted here by v+ and p+ (these
will be the velocity and pressure at the upper side of the upper periodic ba�e system)

p+ = −j
ωρo

s

s cos sh + ω2ρoG sin sh

s sin sh− ω2ρoG cos sh
v+,

(8)
p− = j

ωρo

s

s cos sh + ω2ρoG sin sh

s sin sh− ω2ρoG cos sh
v−,

where the second equation concerning the upper boundary of the air layer placed on
the bottom solid, has been derived analogously using vb = jωu2 and pb = −T22 with
u2 = −GT22 describing the lower elastic halfspace.

Naturally, the air layer between the lower and upper periodic ba�e systems is char-
acterized by the original Eqs. (6) (this explains why the new notations v±, p± were
introduced above).

The ba�es are considered in�nitesimally thin thus the velocity on both their sides are
equal: v+ = vu and v− = vb, according to notations used in Eqs. (8), (6). The pressure
however, may be di�erent on both sides yielding

∆p+ = p+ − pu,
(9)

∆p− = pu − p−,

in the notations of Eqs. (6), (8), (9). When inverted, the above equations result in

v+ = − z∆p+ + ∆p−

(z − 1)(z + 1)
s sin sh

jωρo
, v− = − ∆p+ + z∆p−

(z − 1)(z + 1)
s sin sh

jωρo
,

(10)
z =

s sin 2sh− ω2ρoG cos 2sh

s sin sh− ω2ρoG cos sh
,

which are the fundamental equations, in spectral domain, for the considered boundary-
value problem. Here, r ∈ (−∞,∞) is the spectral variable and s =

√
k2 − r2.
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3. Boundary conditions

The analogous equations in spatial domain, although never explicitly written in this
paper (the same notations are used for variables in spatial and spectral domains), help
us in formulation of the boundary conditions on the planes of the ba�e systems:

v+ = 0, x ∈ D1; ∆p+ = 0, x ∈ D2,

v− = 0, x ∈ D2; ∆p− = 0, x ∈ D1, (11)D1 : x ∈ −Λ/4, Λ/4 + nΛ,

D2 : x ∈ −Λ/4, Λ/4 + (n + 1/2)Λ,

where Λ is the period of ba�es which width is assumed Λ/2, n is integer number.
For the sake of the BIS expansion method used below to solve the problem, we

introduce the x-derivative of ∆p. In spectral domain and new notation applied here for
convenience, ṗ± = −jr∆p±/(ωρo) and Eqs. (10) transform into

v+ =
s

r

(zṗ+ + ṗ−) sin sh

(z − 1)(z + 1)
, v− =

s

r

(ṗ+ + zṗ−) sin sh

(z − 1)(z + 1)
, (12)

which relations have certain asymptotic property that will be exploited later:

v+ = −Srṗ
+/2, v− = −Srṗ

−/2, (13)

at r → ±∞ (note that G → 0 and z → exp |r|h). The function Sν is de�ned (for real ν)
by Sν = 1 for ν ≥ 0 and −1 otherwise.

Using ṗ± in boundary conditions (11) instead of ∆p does not su�ce because the
condition ṗ ∼ ∂x∆p = 0 would admit a solution ∆p = const. To set this const to zero,
the boundary conditions formulated for ṗ± must be appended by a discrete condition at
arbitrary point of the corresponding domain. Explicitly

ṗ+ = 0, x ∈ D2, and ∆p+ = 0, x = nΛ + Λ/2,
(14)

ṗ− = 0, x ∈ D1, and ∆p− = 0, x = nΛ,

must be applied instead of the boundary conditions (11) concerning the acoustic pressure.

4. The BIS expansion

In periodic systems like the one under consideration, the acoustic wave�eld is repre-
sented by the Bloch expansion

ṗ± =
∞∑
−∞

p±n e−jrnx, rn = ξ + nK, ξ ∈ (−K/2, K/2), (15)

for acoustic pressure, and similarly for normal velocity in the ba�e planes (with expansion
coe�cients v±n ). The domain of ξ is constrained to the �rst Brillouin zone, as usual,
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however due to the system symmetry, it su�ces to consider ξ > 0. According to this
expansion, r should be substituted by ξ + nK in Eqs. (12).

The subsequent expansion is required by the BIS expansion method [3], where Pν =
Pν(0) is Legendre function:

v+
n =

∑
m

αmSn−mPn−m, p+
n =

∑
m

α′mPn−m,

(16)
v−n =

∑
m

βmPn−m, p−n =
∑
m

β′mSn−mPn−m,

to satisfy the boundary conditions (11), (14) (without discrete constraints for ∆p± which
will be considered later). Indeed,

∑
n

Pn−me−jnKx = 0 in D2, and
∑

n

Sn−mPn−me−jnKx = 0 in D1

as required. The size of the �nite vectors α, α′, β, β′ is a matter of the expansion accuracy
discussed below.

Substituting high order Bloch component of the series (15), (16) into Eqs. (13) where
the limit r → ∞ corresponds to n → ±∞ at K > ξ > 0, and m assumed �nite, one
obtains

Sn−mαmPn−m = Snα′mPn−m/2,
(17)

βmPn−m = Snβ′mSn−mPn−m/2,

where the summation symbol over m is dropped. We quess that

α′m = 2αm, β′m = 2βm (18)

must hold to satisfy an in�nite number of equations for n < −N and n > N assuming
that −N ≤ m ≤ N + 1. N must be su�ciently large to assure that Eqs. (12), taken at
r = ξ±NK, yields Eqs. (13) with su�cient accuracy. In computations presented in next
section, N is chosen about 3k/kt.

In this study, we further simplify the considered system by assuming certain symmetry
of the wave�eld:

∆p = ∆p+(x) = ∆p−(x− Λ/2),
(19)

v = v+(x) = v−(x− Λ/2).

These assumptions agree with the original comb/solid arrangement: the incident wave
in the comb causes the comb surfaces to vibrate almost in phase, neglecting small phase
shift resulting from the wave propagation along the tooth height that usually equals only
a small fraction of the wavelength in comb.
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Applying (19) in (12) and using the identity Pn(−x) = Sn(−1)nPn(x), one obtains
equations (summation symbol over m dropped)

αmSn−mPn−m =
sn

rn

znα′mPn−m + β′mSn−mPn−m

(1 + zn)(1− zn)
sin snh,

(20)
βmPn−m =

sn

rn

α′mPn−m + znβ′mSn−mPn−m

(1 + zn)(1− zn)
sin snh.

Combining them with di�erent signs shows that the solution satisfying the assumptions
(19) is obtained when

βm = (−1)mαm, β′m = (−1)mα′m, (21)
what substituted into the �rst equation yields

[
sn

rn

(zn + (−1)n) sin snh

(1− zn)(1 + zn)
α′m − αmSn−m

]
Pn−m = 0.

Finally using (18), one gets

αm

[
2
sn

rn

sin snh

zn + (−1)n
+ Sn−m

]
Pn−m = 0, (22)

that must be satis�ed for any n, but the equations are nontrivial only for −N ≤ n ≤ N

(for 0 < ξ < K, −N ≤ m ≤ N + 1 and N chosen properly according to the above
discussion). Here, zn is z of argument r = ξ + nK; similarly sn.

These equations must be appended by the discrete conditions, Eqs. (14). Integrating
ṗ± ∼ ∆p,x over x and using certain identities for Legendre functions [3], one obtains

∆p+|x=Λ/2 = 2ωρo

∑
m,n

αm
e−j(ξ+nK)Λ/2

−j(ξ + nK)
Pn−m =

jΛ
ωρo

sin πξ/K
e−jξΛ/2

∑
m

αmP−m−ξ/K(0).

Similarly for ∆p− at x = 0. Finally, Eqs. (14) yield
∑
m

αmP−m−ξ/K = 0, (23)

and
∑

(−1)mβmP−m−ξ/K = 0 which, according to Eqs. (21), are identical. Equations (22)
and (23) together make a complete system of 2N + 2 equations for 2N + 2 unknowns.

5. The dispersive curves

We seek a nontrivial solution to the homogeneous system of Eqs. (22, 23), its condition
of existence is known to be

Det(ξ) = 0, ξ = rc, (24)
where rc is small under the assumed conditions that Λ ≈ λR = 2π/kR; kR is the wavenum-
ber of Rayleigh wave on a stress-free surface of solids.
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In the considered systems, Rayleigh waves in both solids are coupled by an air layer.
Moreover the system of periodic ba�es couples Rayleigh waves propagating in opposite
directions. These are the reason that the wavenumber kc we seek, di�ers slightly from kR,

kc = ±rc + K ≈ kR, (25)

depending on K as will be shown later below. Naturally, due to the system symmetry,
−kc is the wavenumber of the wave propagating left.

Fig. 2. Two branches of dispersive curves (solid lines, on right) on both sides of stopband domain
(K1, K2) that approximate the boundary between domains of di�erent sign of computed values of Det,
Eq. (24) (on left); h = (π + 0.018)/k. Dash lines concern the case not discussed here: vanishing average
∆p instead on v on ba�es (case of 1/Det = 0). Arrows mark the direction of Rayleigh wave propagation

associated with the given branch.

In the formulated problem, we assumed �xed ω, thus kR, kl, kt are all �xed, while
all other parameters, like air gap thickness and ba�e period Λ, are variables that can
be considered relative quantities to λR. Varrying K with ω �xed is thus equivalent to
variation of 1/ω with K �xed, neglecting air gap. Small positive variation δK corresponds
to small negative variation −δω (neglecting air gap variation; it is another parameter that
will be optimized to obtain the strongest interaction of the wave with the ba�e system).
This considerations shows that the dependence of kc on K, or rc(K), describes in fact,
the dispersive curve kc on ω.
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The numerical example presented in Fig. 2 for aluminium solids (at ω = 106s−1:
kl = 0.1581, kt = 0.3162, kR = 0.3391, all in mm−1, and c=335ms−1, ρ = 2700, ρo = 1.3
kgm−3) clearly shows that the discussed dispersive relation has an approximation

rc =
√

(K −K1)(K −K2). (26)

There is a stopband, a typical feature of dispersive curves in periodic systems, centered
at Kc = (K1 +K2)/2 where rc has no longer real value like outside it for |K−Kc| > κ =
(K2 − K1)/2, neglecting bulk waves. It was applied Im{G} in the computed examples
to neglect bulk waves (although this does not change the condition of Rayleigh wave
propagation in the system). This simpli�cation results in real values of computed Det
that di�ers negligible from Re{Det} obtained with with full G accounted for. This also
proves that the damping of the wave due to the bulk radiation in the system is very small
in the assumed conditions (small Im{rc}).

The relative stopband width κ/Kc is in this example of an order of 1.5e-4. At the stop-
band center, the imaginary solution to rc represent a decaying standing wave. It decays
on rather long distance of about a thousand wavelength meaning that the interaction
of Rayleigh waves with ba�es is not very strong, as expected. However, as compared
to ordinary combs discussed in [2], it is signi�cant, and thus promising for applications
presented in the Introduction.

6. Conclusions

The analysis shows that the interaction between the Rayleigh waves and ba�es resid-
ing in an air gap is strong enough to manifest itself on dispersive curves by a corresponding
stopband. Although not very strong, it is still interesting for applications of contactless
generation of Rayleigh waves in solids and deserves deeper theoretical and experimental
investigations.
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