# ULTRASONIC PROPAGATION FOR MEASURING THE ACTIVATION ENERGY AND VOLUME OF A HOLE IN LIQUIDS

#### M.G.S. ALI, M.R. EBEID and ESAM A. MOHAMED\*

Physics Department, Faculty of Science, Minia University, Egypt \* Computer Dept., Sadat Academy for Management Science, Egypt

Mathematical expressions are introduced in this paper in order to measure the compressional relaxation time by the propagation of ultrasonic waves in associated and nonassociated liquids. The expressions are based on the concept of complex and frequency-dependent compressibility represented as a function of ultrasonic velocity and absorption in liquids. The available experimental data reported earlier in the literature are used in these mathematical expressions to calculate the molecular activation energy and the volume of a hole for some liquids. The introduced expressions concern the relations between the liquid compressional relaxation time and Frenkel's intermolecular relaxation time at different values of temperature and pressure. The effect of vibrational relaxation, bulk viscosity and structural rearrangement on ultrasonic absorption in liquids has been investigated.

#### 1. Introduction

The propagation of ultrasonic waves in the medium can be used to explain most of the physical properties of solids, liquids and gases. The dispersion and absorption of ultrasonic waves are two important physical phenomena in liquids [1, 2]. They are important in calculating the intermolecular relaxation and intermolecular forces in the medium. The sources of ultrasonic wave energy dissipation in liquids are divided into two main categories: those due to losses in the medium (absorption) and those associated with losses at the boundaries of the medium (scattering).

Absorption and dispersion are closely related to the liquid compressibility. The liquid compressibility becomes a complex and frequency-dependent parameter under the action of a high frequency compressional ultrasonic wave. This is due to the phase shift between the applied wave and the medium response. Absorption is a result of this phase shift and the ultrasonic wave velocity in liquid becomes complex [3].

The present work is an attempt to increase the efficiency of the ultrasonic system modeling by submitting two expressions to evaluate two important parameters in viscoelastic liquid; those are the activation energy and the free volume of a hole. The two expressions can be solved by a computer program using the phase velocity and absorption of ultrasonic wave propagated in the medium at different temperature and pressures.

#### 2. Mathematical analysis

The complex and frequency-dependent compressibility that is produced by the propagation of ultrasonic waves in liquids is given by, [4],

$$\beta^*(\omega) = \beta_1(\omega) - i\beta_2(\omega), \tag{1}$$

where  $\beta^*(\omega)$  is the complex compressibility at angular frequency  $\omega$ ,  $\beta_1(\omega)$  is the real part of compressibility at  $\omega$ , and  $\beta_2(\omega)$  is the imaginary part of compressibility at  $\omega$ .

The complex compressibility  $\beta^*(\omega)$  is related to the complex wave velocity  $V^*(\omega)$  by the following relation, [5]:

$$\beta^*(\omega) = \frac{1}{\rho(V^*(\omega))^2} \,. \tag{2}$$

Also, the complex wave velocity  $V^*(\omega)$  is related to the ultrasonic absorption coefficient  $\alpha$  by [5]:

$$\frac{1}{V^*(\omega)} = \frac{1}{V(\omega)} - i\frac{\alpha}{\omega}, \qquad (3)$$

where  $V(\omega)$  is the real part of the wave velocity. Substituting equations (1) and (3) into equation (2), we obtain:

$$\beta_1(\omega) - i\beta_2(\omega) = \frac{1}{\rho} \left[ \frac{1}{V(\omega)} - i\frac{\alpha}{\omega} \right]^2 = \left[ -\frac{1}{\rho V(\omega)^2} - \frac{\alpha^2}{\rho \omega^2} \right] - i\frac{2\alpha}{\rho \omega V(\omega)} \,. \tag{4}$$

It is well known that  $(\alpha/\omega)^2 \ll 1/V(\omega)^2$  at all ultrasonic frequencies, then equation (4) becomes:

$$\beta_1(\omega) - i\beta_2(\omega) = \frac{1}{\rho V^2(\omega)} - i\frac{2\alpha}{\rho\omega V(\omega)}.$$
(5)

Equating real and imaginary parts at both sides of equation (5), we obtain:

$$\beta_1 \cong \frac{1}{\rho V(\omega)^2}, \qquad \beta_2 \cong \frac{2\alpha}{\rho \omega V(\omega)}.$$
 (6)

Then:

$$\frac{\beta_2(\omega)}{\beta_1(\omega)} \cong \frac{2\alpha V(\omega)}{\omega} \,. \tag{7}$$

Equation (6) shows that  $\beta_1(\omega)$  depends upon  $V(\omega)$  only, while  $\beta_2(\omega)$  depends upon both  $V(\omega)$  and  $\alpha$ . The adiabatic compressibility of liquids can be expressed as a function of the compressional relaxation time  $\tau$  [4, 5, 6], therefore:

$$\beta^*(\omega) - \beta_1(\infty) = \frac{\beta_1(0) - \beta_1(\infty)}{1 + i\omega\tau}, \qquad (8)$$

where  $\beta_1(0)$  is the compressibility at zero frequency, i.e. the static or total compressibility, and  $\beta_1(\infty)$  is the compressibility at very high frequency due to the reduction in the molecular volume. It is the instantaneous value of compressibility and it is in phase with applied pressure. Substituting equation (1) into equation (8), we obtain:

$$\beta_1(\omega) - \beta_1(\infty) - i\beta_2(\omega) = \left[\beta_1(0) - \beta_1(\infty)\right] \frac{1 - i\omega\tau}{1 + i\omega\tau} \,. \tag{9}$$

Separating equation (9) into real and imaginary parts, we obtain:

$$\beta_1(\omega) - \beta_1(\infty) = \frac{\beta_1(0) - \beta_1(\infty)}{1 + \omega^2 \tau^2}$$
(10)

 $\operatorname{and}$ 

$$\beta_2(\omega) = \left[\beta_1(0) - \beta_1(\infty)\right] \frac{\omega\tau}{1 + \omega^2\tau^2} \,. \tag{11}$$

The difference  $[\beta_1(0) - \beta_1(\infty)]$  is the relaxation part of the compressibility  $\beta_{\rm rc}$ . Thus the total or static compressibility  $\beta_1(0)$  is given by:

$$\beta_1(0) = \beta_{\rm rc} + \beta_1(\infty). \tag{12}$$

The relaxation part  $\beta_{\rm rc}$  is due to structural rearrangement and it lags behind the applied pressure wave.  $\beta_1(0)$  and  $\beta_1(\infty)$  may be rewritten as a function of the wave velocity using equation (6), then:

$$\beta_1(0) \cong \frac{1}{\rho V_0^2}, \qquad \beta_1(\infty) \cong \frac{1}{\rho V_\infty^2}, \tag{13}$$

where  $V_0$  and  $V_{\infty}$  are the velocity of the ultrasonic wave in liquids at zero and high frequencies, respectively. Two conditions may appear depending on the values of  $V_0$  and  $V_{\infty}$ :

- a) When  $V_0 \approx V_\infty$ , then  $\beta_1(0) \cong \beta(\infty)$ .
- b) When  $V_0 < V_{\infty}$ , then  $\beta_1(0) > \beta_1(\infty)$  and  $\beta_{\rm rc} \ll \beta_1(0)$  or  $\beta_1(\infty)$ .
- Dividing equation (11) by equation (10), we obtain:

$$\frac{\beta_2(\omega)}{\beta_1(\omega) - \beta_1(\infty)} = \omega\tau.$$
(14)

Then

$$\beta_2(\omega) = \omega \tau \left[\beta_1(\omega) - \beta_1(\infty)\right] = \beta_1(\omega) \omega \tau \left[1 - \frac{\beta_1(\infty)}{\beta_1(\omega)}\right]$$
(15)

or

$$\frac{\beta_2(\omega)}{\beta_1(\omega)} = \omega \tau \left[ 1 - \frac{\beta_1(\infty)}{\beta_1(\omega)} \right].$$
(16)

Using equations (6), (7) and (13) we obtain:

$$\frac{2\alpha V(\omega)}{\omega^2} = \tau \left[ 1 - \left[ \frac{V(\omega)}{V(\infty)} \right]^2 \right].$$
(17)

The compressional relaxation time  $\tau$  is then given by

$$\tau = \frac{2\alpha V(\omega)/\omega^2}{1 - \left[\frac{V(\omega)}{V(\infty)}\right]^2}.$$
(18)

The velocity  $V(\omega)$  and absorption  $\alpha/\omega^2$  of ultrasonic waves at angular frequency  $\omega$  propagated in liquid, are measurable quantities that can be measured by means of various kinds of spectrometers, like those used by RICHARD CHALLIS [6]. These quantities are available in the published literature for most liquids at various values of pressure P

and temperature T, as for instance in: Landolt-Bornnstein Numerical Data and Functional Relationships in Science and Technology; Group II Atomic and Molecular Physics, volume 5; Molecular Acoustics, Springer Verlag, Berlin. Equation (18) can be used to calculate the compressional relaxation time  $\tau$  fore these liquids at different P and T. The data listed in Appendix I show that  $V(\omega)$  and  $\alpha/\omega^2$  decrease with increasing temperature. The exception is water in which  $V(\omega)$  increases and  $\alpha/\omega^2$  decreases as T increases [4, 8, 9, 10, 11, 12]. In benzene, nitrobenzene and some other nonassociated liquids,  $V(\omega)$  decreases and  $\alpha/\omega^2$  increases as T increases. In most liquids  $V(\omega)$  increases and  $\alpha/\omega^2$  decreases as P increases. In general, at normal P and T, the ultrasonic dispersion in nonassociated liquids and liquids of low shear viscosity is small and  $V(\omega)/V(\infty)$  is around 0.85, while in associated liquids and liquids of high shear viscosity,  $V(\omega)/V(\infty)$  is in the range of 0.74 to 0.85 at the same P and T. Therefore,  $V(\omega)/V(\infty)$  can be treated as being approximately independent of P and T and the term  $[1 - (V(\omega)/V(\infty))^2]$  can be treated as a constant value even during the change of P and T. This approximation is useful in solving Equation (18) with the shortage in data and inaccuracy in measuring  $V(\omega)$  at high ultrasonic frequencies [5, 13]. Frenkel, Mason and some others proved that the intermolecular time  $\tau$  due to the change in structure and packing is given by:

$$\tau = \tau_0 \exp\left[\frac{W - Pv}{KT}\right],\tag{19}$$

where  $\tau_0$  is constant (the maximum relaxation time), W is the activation energy (energy required to take one molecule out of its bonding), v is the volume of a hole that is approximately 10% to 20% of the molecular volume, and K is the Boltzmann constant. To evaluate the activation energy and the volume of a hole, we shall compare Eq. (18) with equation (19) as follows:

$$\tau_0 \exp\left[\frac{W - Pv}{KT}\right] = \frac{2\alpha V(\omega)/\omega^2}{1 - \left[\frac{V(\omega)}{V(\infty)}\right]^2},$$
(20)

or

$$\tau_0 \left[ 1 - \left[ \frac{V(\omega)}{V(\infty)} \right]^2 \right] \exp\left[ \frac{W - Pv}{KT} \right] = \frac{2\alpha V(\omega)}{\omega^2} \,. \tag{21}$$

Equation (21) can be written in the logarithmic form as follows:

$$\ln\left[\tau_0\left[1-\frac{V(\omega)^2}{V(\infty)^2}\right]\right] + \left[\frac{W-Pv}{KT}\right] = \ln\left[\frac{2\alpha V(\omega)}{\omega^2}\right].$$
(22)

The value of  $\ln[2\alpha V(\omega)/\omega^2]$  has been calculated for eleven liquids from the experimental data listed in Appendix I. Values of  $\ln[2\alpha V(\omega)/\omega^2]$  have been presented in Figs. 1 and 2 as a function of 1/T (small circles) for each considered liquid. The simulation program was used to find an equation tofit the data of each liquid in figures. Most data of each liquid lied on or very close to the first order polynomial or straight line equation plotted in Figs. 1 and 2 as a solid line for all liquids. This indicates that Eq. (22) is a straight line equation and the first log term is independent of T. Equation (22) corresponding to the general linear equation:

$$Y = mX + c. (23)$$



Fig. 1. Change of  $\ln(2\alpha V(\omega)/\omega^2)$  with (1/T) for some liquigs at atmospheric P.



Fig. 2. Change of  $\ln(2\alpha V(\omega)/\omega^2)$  with (1/T) for some liquigs at atmospheric P.

The slope *m* in Eq. (23) corresponds to the value (W - Pv)/K, and *c* equals to  $\ln[\tau_0(1 - (V(\omega)/V(\infty))^2]$ . The activation energy *W* for most liquids at normal *P* and *T* is nearly equal to 0.1 eV but its corresponding *P* value is equal  $10^{-4}$  eV. Thus, we shall neglect the term Pv/KT in Eq. (22) without missing the figure of accuracy. The first derivative of the equation gives the slope (W/K) that is used to evaluate the activation energies for the liquids with sufficient accuracy. The calculated values of the activation energy for the eleven liquids are given in Table 1.

| Liquid | Butanediol | Castor oil  | glycerin | water            | ethanediol           | Olive oil |
|--------|------------|-------------|----------|------------------|----------------------|-----------|
| W(ev)  | 0.398      | 0.508       | 0.463    | 0.217            | 0.342                | 0.282     |
| Liquid | Linseedoil | Acetic acid | Benzene* | $Nitrobenzene^*$ | Methylpenanediol 2,4 |           |
| W(ev)  | 0.257      | 0.209       | 0.001    | 0.0307           | 0.268                |           |

Table 1. The activation energy of eleven different liquids using Eq. (23) and Appendix 1.

• subject of data correction, see discussion and conclusion



Fig. 3. Change of  $\ln(2\alpha V(\omega)/\omega^2)$  with P for some liquigs at 303 K.

Equation (2) is also used to evaluate the volume of a hole v for liquids from the variation of  $\ln[2\alpha V(\omega)/\omega^2]$  with P at constant T.  $\ln[2\alpha V(\omega)/\omega^2]$  evaluated from the data listed in Appendix (II) for five different liquids and shown in Fig. 3 as a function of P (small circles), [4, 5, 11, 14, 15, 16]. The same simulation program is used to find an equation of second order that fits the experimental data for each liquid in Fig. 3. Most data for any liquid in Fig. 3 lies on or very close to a second order polynomial equation plotted in the figure by a solid line. The first order derivative value of each equation at pressure equal to 1 atmosphere gives the slope of the tangent (-V/KT) that was used to evaluate the volume of a hole v for the liquids under study. In Figure 3,  $\ln[2\alpha V(\omega)/\omega^2]$  decreases slowly at low pressures, and increases very slowly at higher pressures with a broad minimum at low pressures. The slopes has been evaluated at 1 atmosphere because at this pressure, v may be expected to be independent of P. At higher pressures, v becomes a very complex function of P. The evaluated value v for all liquids studied in this paper are given in Table 2.

Table 2. Volume of a hole for five different liquids using Eq. (23) and Appendix 2.

| Liquid                         | Water | ethylalcohol | n-butylalcohol | n-propylacohol | methyl | alcohol |
|--------------------------------|-------|--------------|----------------|----------------|--------|---------|
| $V \times 10^{-24}~{\rm cm}^3$ | 1.322 | 2.833        | 0.758          | 0.926          | 0.342  | 0.282   |

### 3. Discussion and conclusion

The data listed in Appendix I and the straight lines shown in Figs. 1 and 2 indicated that  $\ln[2\alpha V(\omega)/\omega^2]$  decreases as the temperature increases through the range of temperatures between 153 K and 333 K for all liquids except for benzene and nitrobenzene. Interpolation technique was used to find a first order polynomial equation that fitted most of the experimental data points for liquid in Figs. 1 and 2. The linearity in these figures does agree with the approximation introduced to Equation (18) and confirms that W is independent of T. The change in KT values lies between (5 to 8)  $\times 10^{-3}$  eV, while W is about (209 to 507)  $\times 10^{-3}$  eV. Hence, a small change in the thermal energy KT can not affect the binding energy W of the molecule in liquids. The calculated values of W listed in Table 1 using the deduced mathematical expressions for all associated liquids in study are reasonable and lie between 0.2091 eV and 0.5073 eV.

The behaviour of benzene and nitrobenzene was studied by QUINN and PELLAM [7, 12]. They found that  $\alpha/\omega^2$  increases and  $V(\omega)$  decreases with the increase of T; this means that  $\ln[2\alpha V(\omega)/\omega^2]$  or  $\tau$  remains nearly constant with the change of T as in benzene, while  $\tau$  increases slightly with the increase of T as in nitrobenzene. These two liquids and some other liquids are nonassociated liquids. The absorption of these liquids is mainly due the intermolecular vibrational relaxation where a large amount of ultrasonic wave energy is used to excite the liquid internal mode. The absorption value  $\alpha/\omega^2$  given in Appendix I is the total absorption that consists of three kinds of absorption; those are: 1) absorption due to shear viscosity  $\mu_s$ , 2) absorption due to compressional viscosity  $\eta_c$ , 3) absorption due to vibrational relaxation. The total absorption due to  $\eta_c$  and vibrational relaxation is known as the absorption due to bulk viscosity. In nonassociated liquids, absorption due to vibrational relaxation is effective and increases with T, while absorption due to  $\mu_s$  and  $\eta_c$  is due to structural changes and considered mainly in the evaluation of compressional relaxation time  $\tau$ . The value  $\ln[2\alpha V(\omega)/\omega^2]$ discussed here is the relaxation time associated with the compressions and rarefractions in the medium that is an intermolecular phenomenon. If  $\alpha/\omega^2$  is due to intermolecular vibrational relaxation subtracted from the total value of  $\alpha/\omega^2$  in Appendix I, then it could be possible to evaluate  $\alpha/\omega^2$  for nonassociated liquids due to compressional relaxation.

The nonlinear curves in Fig. 3 indicate that the variation of  $\ln[2\alpha V(\omega)/\omega^2]$  with P is nonlinear. The ultrasonic wave velocity increases in liquids as the pressure increases; this is because the increase of P increases the medium density and its elasticity, and the liquid property approach the solid properties. Frenkel equation (19), could be used to explain the behaviour of the curve in Fig. 3. Both  $\tau_0$  and W are two variables independent of Pand T if v does not change with P, then as P increases the value Pv will reduce the term (W - Pv) and decrease  $\ln[2\alpha V(\omega)/\omega^2]$ . At slightly higher pressure, v decreases due to the applied pressure, so that Pv remains constant as well as  $\tau$ . Increasing the pressure P will decrease Pv and  $\tau$  will increase again very slowly.

# Appendix 1.

The following table represents experimentally measured values of velocity and absorption of ultrasonic waves for various values of temperature.

| T · · · 1       | Temp.          | Velocity                        | Absorption                                  | $\ln[2\alpha V(\omega)/\omega^2]$ |
|-----------------|----------------|---------------------------------|---------------------------------------------|-----------------------------------|
| Liquid          | $T(^{\circ}K)$ | $V \times 10^{-5} \text{ cm/s}$ | $lpha/f^2 	imes 10^{17} \ { m s}^2/{ m cm}$ | evaluated value                   |
| Butanediol 1,3  | 253.0          | 1.509                           | 1100                                        | -23.199                           |
| ,               | 263.0          | 1.574                           | 1660                                        | -22.745                           |
|                 | 273.0          | 1.584                           | 3060                                        | -22.140                           |
|                 | 283.0          | 1 600                           | 5840                                        | $-21\ 471$                        |
|                 | 293.0          | 1.638                           | 11100                                       | -20.805                           |
|                 | 303.0          | 1.875                           | 16410                                       | -20.279                           |
| 2 Methyl        | 253.0          | 1 356                           | 1580                                        | -22.973                           |
| pentanedial 24  | 263.0          | 1 445                           | 2180                                        | -22.558                           |
| pentaneuror 2,4 | 203.0          | 1.500                           | 3320                                        | -22.000                           |
|                 | 213.0          | 1.506                           | 5310                                        | 21.614                            |
|                 | 293.0          | 1.697                           | 6495                                        | -21.306                           |
| Castor oil      | 275.7          | 1.57                            | 29500                                       | -22.185                           |
|                 | 285.2          | 1.530                           | 15800                                       | -21.672                           |
|                 | 291.6          | 1.500                           | 9500                                        | -21.049                           |
|                 | 300.0          | 1.470                           | 4500                                        | -20.521                           |
|                 | 310.0          | 1.430                           | 3200                                        | -19.870                           |
| Glycerin        | 287.0          | 1.930                           | 3800                                        | -23.789                           |
|                 | 294.0          | 1.910                           | 2350                                        | -22.977                           |
|                 | 307.0          | 1.885                           | 700                                         | -22.204                           |
|                 | 323.0          | 1.840                           | 500                                         | -21.713                           |
| Benzene         | 280.0          | 1.389                           | 660                                         | -23.793                           |
|                 | 296.0          | 1.298                           | 720                                         | -23.793                           |
|                 | 320.5          | 1.192                           | 770                                         | -23.792                           |
|                 | 336.0          | 1.118                           | 820                                         | -23.794                           |
|                 | 346.5          | 1.078                           | 850                                         | -23.793                           |
| Water           | 273            | 1.400                           | 34.0                                        | -28.514                           |
|                 | 283            | 1.450                           | 21.25                                       | -28.25                            |
|                 | 293            | 1.480                           | 14.9                                        | -28.048                           |
|                 | 303            | 1.510                           | 11.26                                       | -27.777                           |
|                 | 313            | 1.530                           | 8.50                                        | -27.520                           |
|                 | 323            | 1.540                           | 6.94                                        | -27.188                           |
|                 | 333            | 1.550                           | 5.9                                         | -26.824                           |
| Ethonodial      | 253.6          | 1 771                           | 1560                                        | 25 723                            |
| Ethanearon      | 200.0          | 1.756                           | 1010                                        | -25.725                           |
|                 | 200.0          | 1.750                           | 221                                         | -23.072                           |
|                 | 202.9          | 1.710                           | 152                                         | -24.275                           |
|                 | 297.0          | 1.008                           | 103                                         |                                   |
|                 | 313.0          | 1.023                           | 82                                          | -22.089                           |
| Linseed oil     | 273.1          | 1.520                           |                                             |                                   |
|                 | 283.5          | 1.490                           | 830                                         | -24.014                           |
|                 | 293.5          | 1.470                           | 500                                         | -23.493                           |
|                 | 309.2          | 1.430                           | 350                                         | -23.165                           |
| Acetic acid     | 293.0          | 1.155                           | 90000                                       | -26.659                           |
|                 | 303.0          | 1.121                           | 82500                                       | -26.337                           |
|                 | 313.0          | 1.089                           | 66200                                       | -26.087                           |
| ļ               | 323.0          | 1.054                           | 46500                                       | -25.885                           |
| Nitrobenzene    | 280.5          | 1.518                           | 63.0                                        | -25.94                            |
|                 | 288.0          | 1.491                           | 65.3                                        | -25.999                           |
|                 | 296.8          | 1.462                           | 69                                          | -26.035                           |
|                 | 308.0          | 1.439                           | 74.4                                        | -26.053                           |

### Appendix 2.

The following table represents experimental measurement values for the variation of ultrasonic wave velocity and absorption with the change of pressure at 303 K for five different liquids. The last column contains the values obtained from Equation (23).

| Liquid          | Pressure      | Velocity                        | Absorption                                        | $\ln[2\alpha V(\omega)/\omega^2]$ |
|-----------------|---------------|---------------------------------|---------------------------------------------------|-----------------------------------|
|                 | $P (Kg/cm^2)$ | $V \times 10^{-3} \text{ cm/s}$ | $\alpha/f^2 \times 10^{17} \text{ s}^2/\text{cm}$ | evaluated value                   |
| Water           | 1.0           | 1.510                           | 18.8                                              | -27.268                           |
|                 | 228           | 1.556                           | 17.0                                              | -27.339                           |
|                 | 494           | 1.600                           | 15.4                                              | -27.409                           |
|                 | 1017          | 1.687                           | 13.0                                              | -27.526                           |
|                 | 1978          | 1.834                           | 10.7                                              | -27.637                           |
|                 | 3001          | 1.982                           | 9.4                                               | -27.689                           |
| Ethylalcohol    | 1             | 1.115                           | 51.5                                              | -26.563                           |
|                 | 246           | 1.256                           | 39.2                                              | -26.717                           |
|                 | 501           | 1.386                           | 32.0                                              | -26.822                           |
|                 | 1036          | 1.578                           | 25.7                                              | -26.911                           |
|                 | 1896          | 1.816                           | 21.2                                              | -26.963                           |
|                 | 3130          | 2.074                           | 18.8                                              | -26.951                           |
|                 | 3958          | 2.261                           | 17.8                                              | -26.919                           |
| n-butylalcohol  | 1             | 1.234                           | 77.4                                              | -26.054                           |
|                 | 238           | 1.348                           | 66.2                                              | -26.122                           |
|                 | 512           | 1.469                           | 60.2                                              | -26.131                           |
|                 | 986           | 1.634                           | 57.2                                              | -26.076                           |
|                 | 1998          | 1.905                           | 55.0                                              | -25.962                           |
|                 | 2948          | 2.087                           | 59.3                                              | -25.795                           |
|                 | 4023          | 2.283                           | 65.7                                              | -25.603                           |
|                 | 4983          | 2.428                           | 76.1                                              | -25.395                           |
| n-propylalcohol | 1             | 1.190                           | 62.7                                              | -26.301                           |
|                 | 247           | 1.325                           | 53.6                                              | -26.351                           |
|                 | 474           | 1.437                           | 48.4                                              | -26.372                           |
|                 | 923           | 1.605                           | 42.4                                              | -26.393                           |
|                 | 1000          | 1.624                           | 42.4                                              | -26.382                           |
|                 | 1464          | 1.749                           | 39.4                                              | -26.381                           |
|                 | 2951          | 2.086                           | 39.4                                              | -26.205                           |
|                 | 3903          | 2.264                           | 41.2                                              | -26.078                           |
|                 | 5031          | 2.431                           | 44.8                                              | -25.923                           |
| Methylalcohol   | 1             | 1.094                           | 31.7                                              | -27.078                           |
|                 | 232           | 1.216                           | 24.0                                              | -27.179                           |
|                 | 482           | 1.331                           | 19.8                                              | -27.298                           |
|                 | 1023          | 1.518                           | 14.8                                              | -27.482                           |
|                 | 2007          | 1.761                           | 10.3                                              | -27.716                           |
|                 | 2369          | 1.843                           | 10.0                                              | -27.751                           |
|                 | 3019          | 1.979                           | 8.10                                              | -27.791                           |
|                 | 4211          | 2.178                           | 7.50                                              | -27.820                           |

#### References

- [1] M.G.S. All and A. Raouf Mohamed, J. Acoust. Soc. Jpn. (E) 19, 6 (1998).
- [2] M.G.S. ALI and A. Raouf MOHAMED, Ultrasonic, 30, 5 (1992).
- [3] M.G.S. Ali and A. Raouf Mohamed, J. Acoust. Soc. Jpn. (E), 16, 4 (1995).
- [4] A.B. BHATIA and E. TONG, Phys. Rev., 173, 231 (1968).
- [5] J. Andrew MATHESON, Molecular Acoustics, John Wiley (1971).
- [6] L. HALL, Phys. Rev., 73, 775 (1948).
- [7] R.C. RICHARD, Acustica, 50, 221, (1982).
- [8] S. HAWLEY and ALLERGRA, J. Acoust. Soc. Am., 47, 144 (1970).
- [9] J.L. HUNTER, J. Acoust. Soc. Am., 13, 36 (1941).
- [10] J.M. PINKERTON, Proc. Phys. Soc., London, 62, 129 (1949).
- [11] K., PAPIEV, Sov. Phys. Acoust., 15, 345 (1970).
- [12] J. QUINN, J. Acoust. Soc. Am., 13, 185 (1946).
- [13] J. FRENKEL, Kinetic theory of liquids, Oxford University Press, London 1946.
- [14] A.V. NARASIMHAM and B. MANIKIAM, J. of Chemical Physics, 63, 6, 2350 (1975).
- [15] E. SOCZKIEWICZ, Proceedings of the second Congress of the Federation of Acoustical Societies of Europe FASE-78, Warsaw 18-22 September 1978, Vol. I, 13 (1978).
- [16] E. SOCZKIEWICZ, Acustica, 39, 3, 189 (1978).