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The aim of the paper is a rigorous derivation of the formulas determining the phase velocity and
the attenuation coefficient of ultrasonic waves propagating in diluted suspensions, and experimental
verification of these theoretical predictions. In experiments, the ultrasonic waves were propagating
through the suspension composed of peat suspended in water. The satisfactory fitness of the values
implied by the theoretically obtained formulas and the respective experimental data allow us to
recommend the ultrasonic method as a non-invasive, rapid, accurate and cheap method that might be
used for assessments of the solid content in suspensions.

1. Introduction

This paper deals with the modeling of the attenuation of ultrasonic waves in diluted
suspensions and with the experimental verifications of the theoretical predictions. The
problem is considered for the case where the length of the ultrasonic wave is enough
large to allow us to neglect the scattering contribution to the attenuation of the
ultrasonic wave. In the present considerations, only the loss of the mechanical energy
following from viscous flows in the acoustic field of the ultrasonic wave contributes to
the attenuation.

The main purpose of the present studies is to test the ultrasonic method as one of the
non-invasive methods (see OBRAZ 1983; MALCOLM and POVEY 1997) suitable for
determination of the volume fractions of the suspensions under examination, i.e. the
ratio of the solid particles volume to the total volume of the medium as a whole. The
investigation of the ultrasonic wave propagation in suspensions, in particular, the
measurement of wave velocity and attenuation enables us to perform a rapid, relatively
cheap and accurate assessment on line of the solid volume concentration in the
suspension under examination.

The problem considered here is not a new one (see e.g. ACHENBACH and ZHANG
1990; AHUIJA 1972; AUZERAIS et al. 1988; BERGSTROM 1992; CLEMNET et al. 1990;
HARKER and TEMPLE 1987; LEWANDOWSKI 1992), however, the theoretical approach
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to determination of the phase velocity and attenuation coefficient of the ultrasonic
waves presented here differs from those proposed in the mentioned papers.

The present studies concern dilute suspensions of solid particles in water
(of solid fraction up to about 0.20), for which the assumption of uniform di-
stribution of solid particles throughout the solvent is valid. We shall consider
such a medium as a two-phase mixture of liquefaction consistency, which can
be modeled by single compressible liquid of structural wiscosity *. The motion
of the mixture disturbed by the propagating ultrasonic waves may be described
by the Navier-Stokes equation and the equation of mass continuity for the mixture
as a whole. This motion can be consider for small fluctuations (displacements)
of the liquid particles from their equilibrium positions. Also the region, in which
the disturbances occur during the ultrasonic measurements, is small since the cross-
sections of ultrasonic heads used for measurements were of small dimensions
in our studies.

The relative motion of solid particles with respect to viscous solvent, causing the
viscous drag of the particles motion, is taken into account in derivation of the structural
viscosity. We assume that each particle contributes to the local resistance of motion
(drag forces). Calculating the drag force, we derive the formula for structural viscosity,
which is an evident (nonlinear) function of volume fraction, different from that
presented in BERGSTROM (1994), HARKER and TEMPLE (1987), or BANDROWSKI
et al. (2001).

The experimental investigations were carried out on the suspensions made of peat
and water. The ultrasonic measurements were performed in a special tub filled up with
this suspension, in which the ultrasonic heads were immersed (measurement in situ).
The time of propagation of ultrasonic waves was measured with the help of ultrasonic
tester type UMT-01 produced by UNIPAN (see KOWALSKI and SIKORSKI (2002)).

The theoretical predictions fit pretty well the experimental data for suspensions of
solid volume fraction less than 20%, and the smaller the volume fraction of the solid
particles, the better the fitness. For greater volume fractions, another model for the
sediment ought to be used.

2. Determination of the phase velocity and the attenuation coefficient of
an ultrasonic wave in a dilute suspension

The objective of this study is to estimate the volume fraction of the solid phase in
a suspension or the density profile of the sediment by acoustic technique. In this
technique, either the phase velocity or the attenuation coeflicient formulas, implied by
the suitable experimentally determined physical coefficients, may be useful in

* The structural viscosity is called also the relative viscosity (BERGSTROM, 1994), or effective velocity
(HARKER and TEMPLE, 1998), or apparent viscosity (BANDROWSKI et al. 2001).
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determining of the solid content in suspensions. The solid volume fraction is involved in
the formulas for phase velocity and attenuation coefficient, so it can be estimated very
accurately from the measurements of these quantities in real suspensions, after
a suitable calibration of measure setup.

In order to derive the formulas for the phase velocity and the attenuation
coeflicient, we assume what follows:

e The considerations concern diluted suspensions of volume fraction less
than 20%.

e The suspension is considered for a two-phase mixture with continuously
distributed solid particles in the liquid solvent, Fig. 1.

e The liquid (solvent) is characterized by the dynamic viscosity u, while the
liquefied mixture (suspension) by the structural (effective) viscosity u,; the relation
between them is given in the next section.

o The ultrasonic waves are regarded to be small fluctuations of the displacements
(oscillations) of the medium particles, the oscillations being harmonically dependent on
the position vector and time (with a constant frequency).

e The ultrasonic waves are assumed to be plane and linearly polarized in the
propagation direction 0-x.

e The motion of the mixture as a whole is described by the Navier-Stokes equation
in terms of the so called structural viscosity.

e The relative motion of solid particles with respect to viscous solvent, causing the
viscous drag force on the particles, is taken into account in derivation of the structural
viscosity.

sUspension

area disturb by
+ ultrasonic wave

Fig. 1. Suspension in a sedimentation column with attached ultrasonic heads.
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e The heat transfer between solid and liquid phases during ultrasonic wave
propagation is neglected.

e The solid and liquid as a single media are incompressible, but their mixture is
compressible due to variation of the volume fraction.

e The pressure of the mixture is an explicit function of its density.
Let p* and p" denote the real mass densities of solid particles and liquid (solvent), ¢ is
the volume fraction of the solid particles, p* = p¥¢ and p' = p"(1 — ¢) are the partial
mass densities for solid and liquid, and v* and v' denote the velocities of solid and liquid
particles in the direction of ultrasonic wave propagation coinciding with x-direction.
While both modeled media are regarded to be continuously distributed through the
space, we are allowed to write the equations of mass continuity for these individual
constituents in the form

for solid
ap®  apv*
S o 1
ot dx ’ ()
for liquid
op'  apH
st = 0. 2
ot i ox 2 @

Adding these two equations, we get the mass continuity equation for the mixture
as a whole

dp  dpv
L G |
at i 0x @)

where p = p* + p' is the mass density of the mixture as a whole, and v = (p*v* +
+ p'vY)/p is the average velocity of motion of the mixture as a whole.

The one-dimensional Navier-Stokes equation for the mixture as a whole may be
written in the form

dv  dv op 4 0%
L RN 0 4
”(ac“Lax" ox 3P ax @
where x,denotes the structural viscosity. .
We assume that the pressure of the mixture is an explicit function of the mixture

density, and the derivative of the pressure with respect to the density defines the
modulus of compressibility k, that is
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The unknown functions in our model are density p and velocity v. Let us insert these
functions into Egs. (3) and (4) in the form of the sums of the average values of these
functions in the equilibrium state and the fluctuations from the equilibrium due to
ultrasonic wave disturbance, that is

pxt) =p+p, p=const, |p]<<p, (6a)

Vo, ) =7 4+v, v=0 V] =€), (6b)

where p’ and v denote the local and instant fluctuations of density p and velocity
v around their equilibrium quantities § = const and v = 0.

The mass continuity equation (3) and the Navier-Stokes equation (4) expressed in
terms of the fluctuations p" and V', become

ap’ _ov
i el (fe)
_ov' ,000 4 0%
e 7b
Pt = S ax T3t (o)

where ¢? = k/p denotes the square of sound speed in the mixture. The small nonlinear
terms are ignored in these equations.

Since the ultrasounds are assumed to be harmonic waves, so the same form ought to
have the acoustic fluctuations. Hence, the fluctuations may be written as

p' = poexplilx — wt)], V' = veexp[i(lx — wi]], (8)
where [ = [ + il, [ denotes the wave number, [; is the attenuation coefficient,
i = {/— 1 is the imaginary number, and w is the angular frequency of the

harmonic wave.
Substituting Egs. (8) into Egs. (7a) and (7b), we get

po[—iw] + vo[pil] = 0, (9a)

poe®il] + vo[— i — Sy (i7] = 0. (9b)
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Equations (9a) and (9b) allow us to calculate the phase velocity and the attenuation
coefficient as a function of angular frequency e of the ultrasonic waves, and the physical
properties of the mixture represented by the structural viscosity w, and the modulus of
compressibility k of the suspension. These equations create a homogeneous system,
which may have a non-trivial solution only if the main determinant of the system
creating from the terms standing at the amplitudes p, and v, is equal zero. Equating
this determinant to zero, we have

v 201 + k)

N : 10
e RlkE N R (10a)

I 1
L - T (lob}
Lok + 1+ K

where V = w/l, is the phase velocity, /; is the attenuation coefficient, and x may be
written as

3

k = 4#3[}) (11]

In this paper, the angular frequency w is a given quantity, the modulus of
compressibility x is to be estimated experimentally for a given suspension, and the
structural viscosity u, is a function of the viscosity u of the solvent and the volume
fraction ¢. A respective relation will be derived in the Section 3.

3. Structural viscosity of suspensions

The motivation to study the problem of viscosity in suspensions and derivation of the
relation concerning the influence of the volume fraction of solid particles on the overall
viscosity is the desire to explain the experimentally observed fact that the existence of
solid particles in fluid raises significantly the resistance of the two-phase medium
against deformation. Each particle contributes to the local resistance of motion due to
the viscous drag force. The viscosity of suspension can be assumed to be shear-rate
dependent, owing to rouleaux formation of the suspension region in the presence of
ultrasonic waves. The compressive action of waves on the medium has a reversible
character and does not affect the viscosity.

In this paper, to derive the formula for the structural viscosity of a suspension, the
solid particles are assumed to be of the form of small cylinders parallel to each other,
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each of them being placed in the center of an imagined cell of a fictitious space lattice
made of geometrically identical cells (Fig. 2).
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Fig. 2. Fictitious space lattice of liquid cells with solid particles in the center.

The shear-rate dependence of viscosity suggests starting the considerations from
the analysis of rotational motion of liquid around a solid particle in a suspension.
Let us first consider how the angular velocity depends on the radius of the
particle. To this aim, it is enough to analyze the motion of viscous liquid
between two rotating cylinders, Fig. 3.

Fig. 3. Viscous liquid between two rotating cylinders.
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The second Newton’s law yields, for angular motion forced by rotational moment
M with respect to a cylinder of radius r having the mass moment of inertia equal to
I = mr?/2

d d (1
M= (0= (zmrzﬁ). (12)

This law allows us to state that the angular velocity € is inversely proportional to the
second power of radius, that is

1
1 C _
0= rzl:?;(JMdt + c)} =2 +c, (13)
0

where C, and C, are constants, which are to be determined from boundary conditions.
The angular velocity for viscous liquid between two rotating cylinders (Fig. 3), after
determining of constants from the respective boundary conditions: 2|, _ = £, and
2|, - p. = 8,,is of the form

RZR:Q, — 2. R.R2 — QR2
Q= [ = g ] (14)

Inlaminar angular motion, the liquid between rotating cylinders may be thought as
a number of cylindrical layers rotating with different both angular and linear velocities.
The shear stress between cylindrical layers is expressed by Newton’s law of the form

o, = 2uE,, (15)

where (r, y) are the spherical coordinates of a point lying on a cross-section of a cylinder,
the cross-section being perpendicular to the cylinder axis (Fig. 3).
The strain ¢, in cylindrical coordinates is

1 (16u, oOuw, wu,\ 1 0fu ) 1 o
= 2(2ay Tar T r)_ 2’5;-(5 ~2"or ol

where it was substituted u, = O and y = u,/r.
Substituting Eq. (16) into (15) and using (14), we get

0 1 Q. — Q
= Zprz RZR2 2 * where Q = 7v. (17)

a,., = ur - .
T iRk



ULTRASONIC WAVES IN DILUTE SUSPENSIONS 37

This relation will be useful in the determination of the viscous drag force acting on the
solid particles in suspensions.

As the viscosity of suspension is assumed to be shear-rate dependent, let us consider
the simple shearing of a separated cell of square cross-section (Fig. 2) with cylindrically
shaped solid particle in the center. The shearing is induced by the acoustic field of
the linearly polarized plane ultrasonic wave under consideration. Let the side of the
square be much greater than the radius of the cylindrical particle, that is a > > r,
(Fig. 4).

a) "[g[‘—gr“"* b) _’l_ifr— _g% c)

189 |- /R |

a a

Fig. 4. Simple shearing of a separated liquid cell with cylindrical particle: a) conceived cylinder, b) rigid solid
cylinder, ¢) comparison of the contours

Adapting the formula (17) to the geometry of Fig. 4, we take: R, = a/2, R, = r,, and
2, = 0. The shear stress on the surface of the solid particle becomes

Q
L |r=r0 =2 ouaz ;2__—2 0 (18)

The liquid particles adjoining the surface of the conceived cylinder displaced
themselves under the action of shear forces and induce a cylinder rotation of
angle y. The liquid particles adjoining the solid cylinder experience only displacements,
and their rotation can be consider as negligible small in comparison to those
of the particles adjoining to the conceive cylinder, because of rotational inertia
of the solid. We conclude then, that the solid particles involve a rheostatic
braking of the liquid rotational motion with respect to solid, which would be
if there were no solid particles. In order to determine the local resistance to
this motion, it is necessary to calculate the power that is needed to oppose
this motion with respect to solid. To this aim one needs to turn back the
liquid particles on the surface of the conceived cylinder to the position of those
on the solid cylinder, that this rotation of angle ¥ = d/a. The value of this power is

¢ 2
QwTD = 4?‘5,{1]"%-{12---3-—---‘-‘-’-—- where Qw = "{ (19)

L(): 2?[!‘00"?!’:_,0 ) Taan 4?'26
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The power used for shape deformation of the liquid cell as a whole is equal to
L, = 2uya . ya = 2ua®y?. (20)

Total power necessary to deformation of the liquid cell containing a solid
particle is the sum

. 27[?‘% .
L= St o B s 2 (21)
a‘ — 4ry
where
— e i = (22)

Formula (22) presents the relation between structural viscosity p, and the volume
fraction ¢. It is seen that the structural viscosity is in general greater than the viscosity
of pure solvent, and they are equal to each other only when ¢ = 0. This formula shows
that the structural viscosity tend to infinity when ¢ — n/4, what may be interpreted that
for ¢ =>n/4 = 0.785 the medium has to be no more consider as having liquefied
consistency.

In the case of solid particles shaped different than cylinders, a correction factor
x ought to be introduced to the formula (22). We suggest the general formula for
structural viscosity as follows:

by = #[1 + 1 i¢x¢:| = u[l + 16 + 9’ + (9 + 1. (23)

The series form on the right hand side follows from the Maclaurine development.

The authors measured experimentally the viscosity of the suspension made of peat
and water for a number of volume fractions. The measurements were carried out with
the help of rheometer type RotoVisco 1 produced by HAAKE at the room
temperatures (c.a. 20°C). The theoretical curve, constructed with the help of formula
(23), and the experimental data are presented in Figure 5.
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Fig 5. Structural viscosity versus volume fraction of solid particles.

One states good agreement of the theoretical predictions with the experimental
data. A similar shape of theoretical and experimental curves for structural viscosity as
a function of volume fraction for sterically stabilized silica spheres suspended in
cyclohexane was presented by BERGSTOM (1994).

4. Experimental determination of the phase velocity and the coefficient of
attenuation for ultrasonic waves

The experiment were carried out for suspensions of peat and water of various
volume fractions. The ultrasonic measurements were performed in a special tub
enabling measurement in situ, that is, the ultrasonic heads were directly immersed in the
suspension that filled up the tub. The phase velocity and the coefficient of attenuation of
ultrasonic waves in the suspensions of different peat concentration were measured with
the help of ultrasonic tester type UMT-01-UNIPAN. The scheme of equipment is
presented in Figure 6.

The concentration of the suspensions varies from 0 to 16%. The homogeneity of
the suspensions was held through continuous mixing with the help of magnetic
stirrer. Because of direct contact of the ultrasonic heads with the suspension, there
was no error following from the transmission of waves through the column walls (see
Fig 1}



40 o S. J. KOWALSKI and M. SIKORSKI

oscilloscope

tub with
suspension

computer ultrasonic heads

ultrasonic setup
(UMT-01)

Fig.6. Ultrasonic equipment.

Figure 7 presents the relation between the velocity Vof the ultrasonic wave referred
to the sound speed ¢ and the volume concentration ¢ of the solid particles for dilute
suspensions. The experimental results were compared with theoretical ones obtained
on the basis of equation (10a) with included expressions (11) and (23). We stated
a satisfactory agreement of the experimental and theoretical results.

1.16 4

1,144
m  EXPERIMENTS

MODEL predictions, Eq. (10a)
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Fig. 7. Dependence between the normalized phase velocity of ultrasonic wave and the volume fraction of the
solid particles.
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Figure 8 presents the coefficient of attenuation [; of ultrasonic wave referred to the

wave number [ as a function of volume fraction ¢ for the angular frequency
w = 600 kHz.
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= EXPERIMENTS
MODEL predictions, Eq. (10b)
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Fig. 8. Normalized attenuation coefficient versus volume fraction of the solid particles.

5. Final remarks

Our preliminary experiments show that it is possible to use the ultrasonic method
for determination of densities of suspensions and sediments. Some difficulties, which
arose during our experimental studies concerned mainly of a proper choice of the
power and frequency of the ultrasonic waves for the given suspension. If one chooses
unsuitable frequency or power, the measurement of the density may be not possible,
because of dispersion and damping of the waves. The emitted wave may not arrive to
the receiving head.

As it results from equation (11), thc attenuation coefficient I, depends on both the
suspension concentration ¢ and the wave frequency w. The wave frequency should be
so chosen to obtain a minimal attenuation coeflicient. The confinement of the
experimental studies to suspensions of small concentration was limited by the
theoretical model, which was elaborated for diluted suspensions. The studies, both
theoretical and experimental, for higher concentrations will be continued, based on the
author’s earlier concept of consolidation theory (see e.g. DERSKI and KOWALSKI
(1979), KOWALSKI (1983)).
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