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A low frequency approximation for the self power of a clamped circular plate is presented in a form
useful for some efficient numerical computations. The approximation is precise enough within nearly
the whole low frequency range. It is assumed that the plate’s vibrations are time harmonic and
axisymmetric. The approximation can be used for some further computations of the total sound
power radiated by the excited plate in an acoustic fluid.

1. Introduction

Finding the self power of a vibrating flat plate is important from the practical point
of view since it makes it possible to theoretically analyze the sound field generated as
the energy flow within the neighborhood of the sound source. Therefore, it is necessary
to formulate the self power in a form which enables some efficient numerical
computations. Any integral formulations would be time consuming and therefore not
very useful for this purpose. Only some elementary formulations seem to be convenient
for this purpose. In the literature such formulations in their exact form were found only
for the simplest piston radiators [1]. For some more complex acoustic systems
containing a flat plate it is also possible to obtain some approximate formulations for
the self power.

CZARNECKI, ENGEL and PANUSZKA used an equivalent area method to estimate
the radiation efficiency of a vibrating circular plate. The results obtained showed
a good agreement with the experimental data [2]. ENGEL and STRYCZNIEWICZ
determined the sound power radiated by a clamped circular plate analytically [3].
Some high frequency asymptotic formulations for the self power or mutual power of
a clamped circular plate were found by LEVINE, LEPPINGTON, RDZANEK, ENGEL and
RDZANEK Jr. [4-7]. LEE and SINGH used the Rayleigh-Ritz approximate method to
derive the radiation efficiency of a spinning computer disk [8].
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RDZANEK presented some low frequency approximations for the mutual power of
a clamped circular plate. The approximation consists only of the zero expansion term
which is enough only for some numerical computations for a narrow range of the
lowest frequencies [6]. This paper presents an approximation of a considerably higher
accuracy for the power of a clamped circular plate with three successive expansion
terms. The problem was earlier signaled in [9].

2. Analysis assumptions

The acoustic system considered consists of a clamped circular plate embedded
in a flat infinite rigid baffle. The plate vibrates and radiates some acoustic waves into the
half-space located above it and filled with a lossless gaseous medium. It is assumed that
the surrounding medium does not influence vibrvtions of the plate. The internal
damping of the plate is assumed to be small and therefore not taken into account. The
plate’s vibrations are assumed to be timeharmonic and axisymmetric and therefore, it is
convenient to express all the magnitudes in their amplitude forms.

The n-th mode shape of the plate is

W.(r) = AL, (k,7) + B, I (k,7)], (1)

where r is the radial variable in the polar coordinates, J, and I, are the Bessel and

modified Bessel functions, respectively, k! = w, «/M/D is the n-th structural
wavenumber of the plate, w, is its n-th eigenfrequency, M is its mass per surface unit,
D = Eh*/[12 (1 — v?] is the plate’s stiffness (cf, reference [10]). The clamped plate
satisfies the following boundary conditions

(di"2 rdr) ni’

Wia) = 0, rma = O @

where a is the plate’s radius and v is its Poisson ratio. The eigenvalues of the plate are
denoted by A, = k aforn = 0,1, 2, ... They are known from the literature e.g. reference
[10], and they are necessary for any further computations concerning the system. The
frequency equation of the plate assumes the form of

= JOU’") = Jy(2,)
<0 L) L) 3
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The value of constant A4 is
A% = 2J5(,), “

where o, = J,(4,)/J,(4,) (cf, reference [10]).
The n-th eigenfunction of the system is

a

¥.(3) = — iw"IPﬂ(r)Ju(krsinS)rd T, (5)

o]

where k = 2n/l is the acoustic wavenumber, A is the radiated wavelength, 3 is the
deflection angle between the main direction of the plate and the direction of measuring
the pressure (cf, reference [11]). The eigenfuncion can be evaluated analytically to
produce

V.9 = — iv, 244 J"g") W, (kasin 9), (6)
where
Lo () — (/A
LG 77 e

and u = ka sin 9 (cf, reference [7]).
The active self power in its integral form is (cf, references [6, 7])

w2

P, ., = 4k/k,) J 2 (ka sin 9) sin $d 9, ®)
0

which is considerably time consuming and therefore not very useful for further
numerical computations.
3. The active self power estimation

It is impossible to analytically evaluate the integral in equation (8). Therefore, the
term containing the denominator has been expanded into the following series

[1— (k/k,)* sin® 8172 = 1+ 2(k/k,)* sin® & + 3(k/k, )} sin® 9 + O [(k/k, )2 sin28],  (9)
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where the term denoted by symbol ¢ represents the approximation error. The
expansion is convergent for k/k, < 1 and it is substituted into equation (8) instead the

denominator term.
Further, it is necessary to compute the following integrals

w2
I, = J (sin 8)%¢ ~1 J2(kasin 9)d 9,
K
(]
T2
i~ J (sin 9)2* J, (kasin 9)J, (kasin 8)d 8,
2
I = I(sinﬂ)zx*‘Jf(kasinB)dS,
K

for k = 1, 2, 3, ..., which requires applying the following expansion series

+ oo 2
B@ =3 (-1 ‘(—r,’]’ 27,
e @r+1) 1

T h@) = 2 epey i3 G

( z)2r+l

E

i = 3l — 1) — (2r_t_) 1 w+2
Ji@) = rgﬂ( 1) T!f(?'+1):| (;) ( 2)

(10),

(10),

(10);

(11),

(11),

forn,m =0, 1,..., where z is the complex variable, together with the following integral

(cf., reference [12])

w2
. 277(n1)?
3 2n + 1 d‘g == g
J (Gin:3) @n+ D

0

(12)
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This leads to the following analytical formulae for the integrals
G | (ka o Er, -
= 2= (2i + 1)) (r))? - =)
r=10
+ oo ) (ka)2r+ r(]
I .
o, ,ZU Qr+3)rl ¢+ 1 (13),
+ o (_ ) (ka)2r+1 E‘ oy
c a,20(2r+3) Qr+5r rt ) (13),
where
1, forx = 1,
K+i
&l = n 22 forx > 1. L,

et I

After a considerable amount of mathematical manipulation it is possible to formulate

them briefly

Iy=4A4,, I,;,=(A4,+A4)/2, I,,=(34,+24,+34,)/8,

I, = B,, I,,=(B,+By)/2, I, = (3B,+ 2B, + 3B,)/8,

Iey = 2ka (B, — By)/2, 1., = 2ka (3B, — 2B, — B,)/8,
I.; = 2ka (5B, — 3B, — B, — B,)/16,
where the following recurence formulae are necessary

Y (=) (ke
Age_y = Eu e

) Jo@ka) + (m/2)[J,(2ka)S,(2ka) — J,(2ka) S, (2ka)], for x = 1,
B [J,2ka) — 2k — 3) B, _,]/2ka, for « > 1,

(15),

(15),

(15);

(16),
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5l

Bur = L Gri e — DRG]

r=10

(16),

— [lg(2ka) — (2% —B) A= y1[2ka; fork = 1,

and S, denotes the Struve function of order v. The use of the Struve function to briefly
express some expansion series has been signalled in reference [9]. Finally, the n-th
active self power assumes the form of

3 k 4k -2 k k il k 12
el (L 2 _ 1
a2 4K§1k(kn) |:anIAK 2m"kn13x+ (kn) IC":|+@|:(R,, L

which is usefull for some efficient numerical computations within the range of the low
frequencies, i.e. when k/k, < 1.

4. Numerical analysis

The curves plotted in Fig. 1 illustrate the self power for the two sample mode
numbers n obtained from the low frequency approximation together with those
obtained from the integral formulation (8) valid within the whole frequency spectrum,
but since it is considerably time consuming it is used in this paper only to test the
accuracy of the self power approximation within the low frequency range. Formulation
(9) represents the series expanded around (k/k,) sin 3 = 0 and consists of the three
expansion terms. Therefore, the final result given in equation (17) should be valid for
a considerably wide range of the dimensionless acoustic wavenumber k /k, which is
also confirmed by Fig. 1. The integral and approximated curves obtained from both
formulations are nearly identical for 0 < k/k, < 0.8.

Figure 2 illustrates both: the approximation error order (k/k,)" plotted with
a dashed line and the approximation error estimation formulated as E, = |#, ,
— 2, .|, where Z, ,and 2, , represent the n-th self power obtained from integral (8)
and its approximation (17), respectively. The error estimation does not exceed its
theoretical value of the error order within the whole low frequency spectrum, i.e. when
0 < k/k, < 1 which shows that the theoretical formulation of the approximation error
(k /k,)'? is valid for the whole spectrum.
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Fig. 1. The self power of a clamped circular plate 2, , within the low frequency range,
ie. 0 < k/k, < 1. The curves obtained from approximation (17)
are solid and those obtained from integral (8) are dashed.
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Fig. 2. The approximation error order (k /k,)* plotted with the dashed line and the numerical estimation of
theerror E, = |2, , — 2, ,|for two sample mode-numbers n = 1,4 plotted withsolid lines. The symbols 2, ,

and 2, , represent the n-th self power expressed by integral (8) and that expressed by approximation (17),
respectively.
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5. Final remarks

The low frequency approximation of the active self power of a clamped circular
plate has been derived. It is valid within almost the whole low frequency spectrum. The
approximation is presented as an elementary formulation easy to express in terms of
some computer code useful for some engineering computations of the radiation
efficiency of the plate or of the total sound power radiated by the plate for the low
frequencies.
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