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THE INFLUENCE OF THE SURFACE LOAD EXERTED BY A PIEZOELECTRIC
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The influence of a strong discontinuity wave on its measurement with a piezoelectric sensor was
analysed analytically. The one-dimensional model of the mechanical contact between the ultrasonic sensor
and the solid medium was developed. The displacement field was calculated with the d’Alambert’s
method. The evaluation was made locally at the front of the distortion. It was found that the relative
difference of a displacements between the free and loaded surfaces ranges from 10% to 72% and the mass
M has no influence on it in the first time interval. It is affected not only by the wave impedances but also by
the surfaces of the sensor and sample. After a long period of time {(depending on the mass M) the influence
of the surface loading becomes much smaller. Part I of the paper contains the discussion of the
displacement field in the solid, the electrical transients generated by the piezoelectric sensor are given
in Part II.

1. Introduction

Polymers and polymer composites are frequently used in mechanical systems (e.g.
vehicle springs made of glass-fibre reinforced epoxy) because of their capacity of energy
absorption and dissipation. Generally, they have viscoelastic and nonlinear properties,
especially under the dynamic load, for instance the impingement.

In dynamic methods of investigation (e.g. resonance methods), the mechanical
properties of these materials depend considerably on the measuring frequency at
which they are determined. The quasi-static or ultrasonic testing is not sufficient
to define the properties of such materials in the medium frequency range. The
range corresponds to the frequencies observed in impact events. In viscoelastic
materials we observe sudden frequency-dependent changes in the mechanical properties.
Therefore, these properties should be measured continuously in the function of
frequency using wide-band signals.

In this study we will focus our attention on the measuring methods where the material is
in the form of a straight thin rod or a thick plate. subjected to an impact or periodical load
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occurring is the reason of wave's propagation. It may be of some significance to note that
there exist two definitions of waves.

Any local impact or periodical excitation of particle motion can cause surface
disturbances in the steady state of a solid.

In the case of an impact excitation, the distortion front (i.e. the displacement u, the
displacement velocities v and strain €) propagates in the medium from the impact-end with
a velocity a. The front separates clearly the disturbed region of the material from the
undisturbed one; this phenomenon is called the propagation of distortion waves (i.e.
displacement-, strain- and stress waves). Across the front of the strain wave (and
consequently the stress- and velocity wave) we can observe jumps in the value of €or v, so
the first derivatives of the displacement u with respect to ¢ or to x are discontinuous [1].
These are the so-called waves of a strong discontinuity. At the front of the displacement
wave u no such discontinuity is reported.

As elements of the medium are deformed periodically (or time-harmonically
in a special case), the disturbances are transmitted from one point to the next
one and the disturbances, or the wave, propagate through the solid also with the
velocity a. But, the states (or phases) of motion are repeated periodically in space
(every wavelength A) and in time (every time period T), and A = aT where a is
the phase wave velocity. In this situation it is not possible to indicate the wave
front. The definition of discontinuity waves will be given further in this work.

LANZA di SCALEA in 1999 [2] has investigated by a noncontact laser method the
influence of the surface load exerted by a piezoelectric contact transducer on the amplitude
and frequency of vibrations making ultrasound pulse measurements in an aluminum plate.
It has been reported that the contact transducer causes a 17% decrease in the amplitude of
vibrations compared to those of the free surface. However, there is no evidence that the
transducer affects the frequency characteristic of an optically measured signal.

The authors concluded that no effect of the particular piezoelectric transducer
architecture on the ultrasonic wave propagation could be assessed. It could be possible by
measurements in a steady state of the transducer.

In the measuring methods in rods, where the excitation has a time-harmonic character,
the influence of the transducer mass on the results obtained is also analysed.

One end of the rod can be time-harmonically loaded and then the acceleration on both
ends is measured. To enable a measurement of the accelerations, resonant vibrations should
be excited in the rod, as suggested by NORRIS in 1970 [3]. PriTZ 1982 [4], on the other hand,
proposed an excitation of vibrations in a wide range of frequency. ODEEN in 1993 [5]
suggested that the above-mentioned method should be modified. The modification
involved impact loading of one end and measuring accelerations with piezoelectric
transducers on both ends.

It is interesting to note that in all these works a one-dimensional model of the
phenomenon was assumed. To assure the correctness of the model [6], the wavelength has
to be at least fivefold greater than the rod diameter (then the error caused by the inertia in the
lateral direction will be less than 5%) and at least fivefold smaller than the rod length.
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(because of the accuracy of determination of the moduli of elasticity of the material). Also,
it has been reported that the mass of the sending and receiving transducers affects the rod
vibration frequency characteristics.

BACON [7, 8] generated periodical distortions by irradiating the free end of a PVC- rod
using short (i.e. 0.8 ps or 1.6 us) rectangular microwave pulses at a small (585 Hz)
frequency rate. The distortions were measured with a contact PZT transducer coupled to the
other end of the rod. Two transducers with a mass of 0.65 x 1073 kg and 11 X 10~ kg were
used in the test. The influence of the mechanical impedance of the transducer was taken into
account in the presented theoretical one-dimentional model. This was confirmed
experimentally. The amplitude of the acceleration measured by a transducer with a mass of
0.65 x 107 kg is nearly twice as great as that measured by a transducer with a mass of
11 x 1073 kg. The results obtained by both transducers were compared and it has been found
that the discrepancy between the experimental and theoretical results for the transducer
with a mass of 11 x 107® kg is greater than for the transducer with a mass of 0.65 x 107 kg.

The authors, however, did not take into account the fact that the transducers applied in
the experiments differed in the inside and outside structure (dimensions, material), which
might have affected the results. It seems also that the relation of transducer’s (11 x 107 kg)
to the test specimen mass is too high (about 20%) and the accuracy of the measurements
decreases.

Let us assume that the acoustic source induced by the impact method is a point source.
Then, the emitted waves have spherical front surfaces. POUET in 1993 [9] observed that the
effect of the geometric divergence depends on a constant correction factor In3 and is
independent of the thickness and the frequency. The phase velocity is not altered by the
geometric divergence (independent of the plane wave or spherical wave hypotheses).

When propagating in the rod, they will be reflected by the sides, which will lead to the
wave transformation. The reflected waves interfere with one another and as the result
different wave modes with complex surfaces are generated.

KwUN confirmed this in 1993 [10]. His investigations concerned the propagation of
adistortion generated by breaking a 0.5 mm pencil lead on the front surface of the rod 3.6 m
in length and using two transducers (i.e. a piezoceramic one and a magnetostriction one).
The latter, that is sensitive to stress waves, indicated the presence of a longitudinal wave
only. Apart from the distortion caused by the arrival of a longitudinal wave, the
piezoelectric transducer indicated the presence of other waves that were identified by the
authors as a torsional wave mode.

However, since the dilatation wave propagates with a much greater velocity than the
other waves, the distortions can be differentiated and we can assume that the front of the
longitudinal wave reaches the measuring transducer first.

The authors, however, did not indicate to which physical parameter of the distortion the
piezoelectric sensor is sensitive. Signals generated by longitudinal waves in this two
different sensor were compared. The sensors were one by one but not exactly in the same
position. The beginning of the signals in time interval from 0.1 ms to 0.5 ms were analysed
but the wave’s surfaces were not differentiated. Based on the data shown in this paper
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(frequency, amplitude, attenuation) it is concluded that the signals measured by both the
transducers, PZT and EMAT, are almost the same. It means also that the presence of
a coupling layer by measurements of a transient distortion with a PZT transducer does not
change the measured signals significantly.

The studies quoted above deal with a wave generation by periodical pulse- or time-
harmonic methods in different materials and of different forms. The aim was to determine
their mechanical properties — elastic or unelastic. A piezoelectric transducer coupled on the
rod was used for the measurements. The transducer was assumed to be a rigid mass of
known mechanical impedance.

Because of the differences in the material properties of the medium and the transducer,
the surface displacement in the absence of the sensor is not exactly the same as the sensor
displacements. Since it is the goal of measuring devices to obtain values for the wave field
that would exist if no device were present, we would like to analyse this problem once more
but in another way. Contrary to the previous authors we would like to investigate the
influence of the sensor load on the displacement field generated by transient disturbance in
the measured solids. The sensor is assumed to be a continuous mass.

P(t)

1 - o)

Fig. 1. Schematic model of the specimen and the probe; l-specimen, 2—transducer, 3-seismic mass.

We could virtually cut from the analysed specimen, a symmetric figure which one
dimension in the direction of the symmetry axis (longitudinal) is much greater than that in
the perpendicular ones. We can ommit the strains in the perpendicular directions. Let the
wave’s front of the disturbances generated by a point source on the front surface of the rod
be spherical ones. We can assume that on the area equal to the perpendicular cross-section
of the rod, the shape of wave’s surface is plain. Then, we could say that in this virtually rod
propagates in the longitudinal direction a disturbance with the velocity of a longitudinal
wave -and with a plain wave's surface. We assume that the material of the rod is
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homogenous and the characteristic stress as function of strain is nonlinear like in
a viscoelastic material. In this work we assume also that the strains are in a linear elastic
range. So we will analyse the propagation of disturbances in a one- dimensional linear
elastic material. Let us expand now the strong discontinuity wave into a series of soft
discontinuity waves. The velocities of the strong and soft discontinuity waves in such
a material are equal. Because we are going to continue this analysis also for strains, which
are not elastic linear, in order to keep the same notation and names, we call our disturbances
as waves of strong discontinuity. We would like to focus on some essential physical aspects
of the problem, and therefore the mathematical analysis is simplified, because one-
dimensional geometry with a plane incident wave is considered. We shall analyse the
longitudinal vibration locally on the face of the disturbances.

First, the aim of the current paper is to predict the influence of the sensor load on the
displacement field in the solid (Part I). An axial local impact causes the propagation of
distortion waves in a rod. We would analyse the propagation of the transient distortion
locally, i.e. at the front [11].

Afterwards, we shall analyse the influence of a strong discontinuity wave on its
measurement with a piezoelectric sensor theoretically. When the distortion front arrives the
measuring sensor coupled at the back face of the rod, electrical transients will be generated
from the piezoelement. In the case of a piezoceramic transducer, it is worthy analysing how
it will behave when a strong discontinuity wave is incident on it and what quantity we shall
obtain as a response (Part II).

2. Model of the mechanical contact between the ultrasonic sensor
and the solid medium

Let us consider a short impact excitation with a time duration 7 in the rod. A force P(t) is
applied to the front surface of the rod located at the point x =0, whereas the back face (at the
point x = L) is loaded with a measuring piezoelectric sensor (Fig. 2). The force P(r) has the
character of a step function with the value P,. The longitudinal vibrations of the rod are

Aulx, t i ux, t E

described by the wave propagation equation - (JZ ) -a’ = (x2 ) =0, where a =4 |—
ot ox 0

is the velocity, E — the Young’s modulus, p — the rod material density. We assume the
solution of this wave equation in the d’ Alembert’s form [11] u (x, #) = f; (at — x) + f; (at + x).

Figure 2b shows the characteristics on the plane (x, 1) of the impact pulse traveling along
the rod. Having traveled the whole distance corresponding to the rod length L (rod 1), the
pulse is reflected. After each reflection from the back surface going through the point x =L,
a part of the energy travels to the transducer (rod 2) in accordance with the Snell’s law of
reflection. We can assume that in the transducer (regions for x € [L, L + h]) an analogous
phenomenon of subsequent reflections occurs. The only difference is that we do not observe
the energy transfer through the surface x = L + &, which is assumed to be rigidly loaded with
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the mass M of a density much greater than the density p, of rod 2. The sections of the
characteristic between the subsequent pulse reflections in the rod divide a part of the plane
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and sensor (2b).

Fig. 2. Model of a solid medium and a piezoelectric sensor (2a) and the wave fronts in the analyzed rod

(x, 1) for 0 < x < L into regions designated by Roman numerals of consecutive numbers. In

a similar fashion, the sections of the characteristic between the subsequent pulse reflections
in the transducer divide a part of the plane (x, ) for L < x < L+h into regions designated by
Arabic numerals of consecutive numbers. Also, we assume that the impact pulse falls and is
reflected always in the direction normal to the rod face surfaces (x=0orx=Lorx=L+ h).
Since there is no conversion of the waveform (no shear waves), the distortion energy
propagates only in the form of a longitudinal wave and the displacements are observed only
along the rod axis (Fig. 2a). The pulse width 7 of the impulse can be very short but long
enough to exite the rod to vibration. The problem will be solved analitycally. We assume

L 2h
that 7=—— = — but for any other value of 7 our consideration will be still valid. Only
a,

aj

the density of the characteristics on the plane (x, r) will be changed.



I. THE DISPLACEMENT FIELD IN THE SOLID 7

IV
e

Fig. 3. Cross-section of a broadband ultrasonic probe; 1 — sample, 2 — couplant, 3 — buffer, 4 — piezoelectric
transducer, 5 — seismic mass [12].

The architecture of the broadband ultrasonic probe (shown in Fig. 3) is much more
complicated than our model. The acoustic impedance of the piezoelectric transducer is
often much greater than the impedance of the investigated medium. This is the reason why
we should use a couplant layer and one or more impedance- matching front layers or
a buffer between the sample and the probe.

Ae
The thickness of these matching layers should be equall to (2n + I)TI ., where

n —number, A, — wave's length calculated for the frequency of the electrical resonance of
the transducer [13].

On the bondaries between the specimen and the coupling and matching layers, there is
the greatest acoustical impedance mismatch. The changes of the thickness of these layers
are the main source of errors in the ultrasound contact measurements.

In the case of measurements of transient signals with a contact piezoelectric transducer,
the influence of coupling and matching layers should be less important.

The measured signal propagates in these layers only once. Let’s assume that the
thicknesses of these layers are sufficiently small, so we can ommit the wave’s energy losses
during propagation. The reverberation also do not take place. The loading effect of these
layers is still present but we can take it into account by enlarging a little the seismic mass.
Because of those reasons, these layers are not drawn in our model of the transducer in
Fig. 2a.

In the region I (Fig. 2b) we solve the Cauchy’s problem for the data along the axis r=0.
If, for instance, we focus our attention on the point P(x,, t;) in the first section of the
characteristic with the equation a,7 — x = 0, we can say the distortion face front goes through
the point x; at the moment 1, i.e. for x > x; we observe u,;(x, ) = 0 (no strain caused by the
distortion). We will write the displacement as follows: u;(x, 1) = fi(ait — x) + [r(ait + x),
where q, is the wave velocity in the rod 1. We assume that the initial conditions are zero, i.e.
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. ) duy(x, t .
for the time 1 = 0 the displacement u,;(x,0) =0 and the velocity U;((?: ) = (. We obtain
the following relationships: the displacement u;(x, 0) = f; (- x) + f>(x) = 0, and the velocity

duy(x, 1)

o 0 a, fi (=x) + a, f7 (x) =0. Differentiating u,;(x, 0) in relation to x we get the strain

- f1(= x) + f3(x) = 0 and, from the condition

duy(x, t
u;(;x ) = 0 for t = 0, we get the velocity

f1(=x) + f3(x) = 0. Solving the above equations yields f{ (- x) = 0 and f; (x) = 0. Since the
above considerations are valid for x = 0, the function f7( ) is for the negative and zero
arguments equal to zero and the function f7 ( ) is equal to zero for positive arguments. The
value f1( ) for positive arguments cannot be determined from the initial conditions only.
Taking into account the above equations we can write f; (—x) = C; = const, and f; (x) = C,
= const. The condition u;(x,0) =f, (=x) + f2(x) = C, + C; = 0 yields C, = —C,. Denoting
C, = C weobtain f, (- x) =—C, f, (x) = C, where the variable x plays the role of an argument
of the functions f; ( ), fo( ) in these equations. Thus, the results can be generalised and
written as f) (a;t — x) =—C for a;t — x £0; whereas f, (a, 1 + x) = C. Hence the solution for the
displacement is u,(x, 1) =f, (a,t —x) + f, (a1 + x) = —C + C = 0. However, this solution is valid
only fora,r—x <0, soitis valid in aregion on the plane (x, r) limited by the above inequality.
The region was shown in Fig. 2b (region I). Therefore, we have obtained only the solution in
the region I, in which

au.: (x, t) . au; (X, t)

w(x, 1) =0 and accordingly wvi(x, 1) = T =0, gt = ox

=0. (1)

The solution of the wave propagation equation for the displacement in the region II
(Fig. 2b) can be written as follows: uy (x, £) = f, (a1 — x) + f2(a,t + x). On the characteristic
at — x = 0 we have wu(x, r) = 0, then assuming the continuity of displacements on this
characteristic, we must have uy(x, r) = 0 as well. Hence substituting a,;t — x = 0 yields
uy(x, 1) = f1(0) + f2(2a;1) = 0, and after a simple transformation f, (2a,r) = — f; (0) = const.
Substituting 2a,t = y and differentiating on both sides yields £ ( ¥) = —f1 (0) = 0. After the
double-sided integration and introducing the notation ¥ = a,¢ + x we can write f, (a;t + x)
=—f; (0) = const. The solution uy (x, 7) in the region II should satisfy the boundary condition
for x = 0. The condition results from the loading of the rod 1 with a pulse force P(r)

P(r)

rectangular in time (Fig. 2b). The force will cause a stress d;(0,7) = — ——= and a strain
1
Auy (0, ¢ P(t
Er(0,0) = ‘T; ) = (P)‘ , where E, stands for the Young’s modulus and F is the surface
X 2147

area of the front (and back) face of the rod 1. Hence, on the boundary x =0 we have the strain
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duy (0
M =— fi(at) + fr(at) = — —-Q- for ¢ > 0. Substituting a7 =  we get
al E[F

P(8/q,)
EF,

Er(0,7) =

= f1(8) + f3(8) = -

. After transformation, the equation can be written in the

/a ’( /al

E F, +f2(0 E F,

following form fi(6)= . After double-sided integration and the

a-x P(@/ )
introduction of the notation & = a,1 — x, we get f (a;t — x) = _[ 5 Fl dd + f,(0).
0 1 1

The solution for the displacement in the region II can be as follows

dii-x

P(8/a)
E\F,

H”(.l', r)=f1 (alr—x) +f2(alr+x): d5 (2}

The solution obtained is valid in the region II limited also by the characteristic
a,t+x=2L. In the region to the right of it, i.e. region IV, the condition is that a measuring
sensor has been placed on the right end of the rod 1. A model of such a sensor in the form of
rod 2 with the length # and loading mass M is presented in Fig. 2a. It is assumed that the
loading mass M is a rigid bar with a density much greater than the density of the investigated
material or the material of the transducer, e.g. quartz or PZT ceramic. In a similar way as for
region II, we will determine the solutions in regions IV, 3, 5 (details are provided in
Appendix). It is assumed that on the characteristics, the equality and continuity of the
displacements are observed.

Let us assume that in the boundary surface area, for x = L, between the rod 1 and the
sensor we have the equality of displacements and the following equation is satisfied:

Evix, DE Fi = &(x, 1) Ey F).

The displacement for the region 3 can be written as

2(1] P(alﬁ + L((I] = ag)]dﬁ (3)

(a; + ca)) B\ F, , 9, a as
L 2 1

a
1

U3 (x, 1) =

E,F,
where o =

, E; — Young’s modulus and F, — the surface area of the front face of
141

the rod 2.
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The displacement in the region 1V is

adr-x at+x
PS8/ ,) _ ‘ n - 2L
uy(x, 1) = _[ /a, b IR L Rt _[ P( dn. “4)
0 El F| (ag =+ O.’al) E|P[ 2L a

The displacements in regions II, IV and 3 could be calculated of for any force P(¢) from
equations (2), (3), (4) in a simple way. In the next regions such calculations for any given
force P(r) is much more complicated. Because of this we can assume for simplicity that for
t 20 P(t) = Py = const.

Let us also assume that the wave falling on the interface with the co-ordinate x=L + his
completely reflected (from the loading mass M). It is possible to write the formula for the
displacement in the region 5 when the force P(f) = P, = const.

4a,P{, a, Mda? -k](ﬂzf"'XnL(al-}az)hz_h]
1) = Fh s e @ Tma @) ||
R e E R (az a EF| ¢ )

If the force P(t) = Py = const, the displacements of the ends of the rod 2 in the regions
3 and 5 can be written in the following form:

2(11 Pg a — a
1) = t—x—L— - 6
us(x, 1) . Ga)EF l:ﬂz x G } (6)
in the cross-section x = L
2&1P0 (5}
) = t—L—1, 7
-"43(1—« ) (ag -+ (Zal)E; Fl |:a2 a.} ( )
and in the cross-section x = L + h
4a, P, a, Ma; ~k.{:—£ —EJ
L+hit)= t—-L——-h- l1-e¢ e Sl 8
s ( ) (a; + aa))E\Fy (az a, E,F, @)

The displacements in the remaining regions were determined according to the described
methodology and the calculation results are given in the Appendix.
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3. Influence of the sensor load on the displacement field in the solid

Let us compare the displacement of the free right end (with the co-ordinate x = L) of the
rod 1 with the displacement obtained when the end is loaded with various contact sensors
(Figs. 4 and 5). The comparison will be made in the region IV for the time t€ < L/a,, L/a,
+2h/a,> and then in the regions VII and XII for the time t € <L/a,+2h/a,, L/a,+ 6h/a,>.
The displacement of the free right end of this rod is determined by the following relationship

16, U

0.6

0.4

displacement [mx 1 0]

U.D " " i " L " i i i
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

time [s x 10°°]

Fig. 4. Displacement of the back face of an aluminum rod as function of time loaded with a) a quartz sensor,
b) a PZT sensor, ¢) an aluminum cylinder, or d) free, loading mass M = 2 x 107 kg.

2Py(ait — L
u(l, )= ——M. The formula defining the displacement u (L, ) of the same loaded
E, Py g P

end of the rod was given above (4). Now let us determine the ratio of both displacements

¢ = up(L)fuld,1) = —(EZ_.E..F < 1. From this relationship it is clear
24

E\F,

a + a;

that the displacement of the rod end loaded with a sensor is always smaller than that of the
free one. It should be noted that these relationships (valid for region IV) do not include the
loading mass M but they include the Young’s modulus, the transducer material density and
contact area. The mass M has no influence in the time interval analysed because the
evaluation is made locally at the front of the distortion wave. Let us determine the relative
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displacement [mx 10 3

time [s x 10™]

Fig. 5. Displacement of the back face of rod | made of PVC in the time function loaded with; a) a LiSO, sensor,
b) a quartz sensor, ¢) a PZT ceramic sensor, d) a LiNbO; sensor, or €) free, loading mass M = 2x 107 kg.

A u(l,t) — up(Lt
difference between the displacements (relative error) u(:r) = ( )u @ r;V( )
o
= —:i-'&——. The relationship determining the parameter ¢ can be transformed as
a; [15]
1 1 . , . ;
Q= = , where Z;=a; p;fori=1, 2. For the considered case of a plain
a, P2 F; ZyF
1+ —— 1+ —
a, P F Z Fy
wave, Z; is the wave impedance of the rod —1 or —2. Let us write the relative difference
Z‘) F')
bet the displac ts using th t of wave imped l-g=—--—.
etween the displacements using the concept of wave impedance [0} ZF + 2.5,

It is clear that the relative difference between the displacements is affected not only by the
wave impedance but also by the sensor and sample area F;. After a longer period of time,
when the wave has been reflected from the interfaces several times, the influence of the
mass M will be evident.

In Ref. [2]. the measuring error of the amplitude (for an aluminum plate) was
determined experimentally with a PZT transducer and found to be 17%. In this study, the
authors [2] replaced the receiving transducer with an appropriate aluminum cylinder and
found that there was no difference neither in the amplitude nor in the frequency of the
received signal. The experiment shows that the structure of the transducer does not affect
the received signal. However, the conclusion cannot be regarded as absolutely true. The
calculations performed according to the model proposed demonstrate that also for
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aluminum the relative difference between the displacements in the region IV is 26% for the
PZT sensor, 15% for the quartz sensor and 17% for the aluminum cylinder. For a PVC
sample and a quartz sensor the difference is 53% and for the PZT sensor 70%. In the next
regions, i.e. VII and XII for the time t€ <L/a, + 2h/a,, L/a, + 6 h/ a, >, the influence of the
mass M is more noticeable (Fig. 4 and Appendix). The relative difference between
displacements of 17% for the aluminum-PZT sensor is observed for the time 1= 1.6 X 107,
as shown in Fig. 4. If we replace the PZT sensor with an aluminum cylinder, then for the
time 7 = 1.6 x 107, the relative difference between displacements is approximately — 14%
(Fig. 4). Comparing the results presented in Ref. [2] with those obtained by the author for
the aluminum / aluminum cylinder, one can conclude that the results in the suggested
theoretical model are overestimated by about 3%. This may be due to the fact that in the
model, the analysis concerns local changes at the distortion front whereas in the
experimental study we frequently deal with averaged values.

Comparing Fig. 4 and Fig. 5 we can say that the displacements’ field in the rod 1
depends on the kind of the transducer coupled to his back face.

When measuring the displacements of the back faces loaded with a transducer, there
always exists a systematic error. This error for different transducers are compared in
Table 1. The greatest error in the measurements of the amplitude of displacements or
velocity in a PVC sample, in region IV in Fig. 2, is for transducers made of LiNbO; and
BaTiOs;, the smallest one for LiSO,. Though these transducers are rarely used because of
different reasons.

We should point out that a quarz transducer goes to a steady state of equlibrium (Fig. 5)
in the shortest time.

We could say, that a PZT transducer causes a great measuring error but they reach the
steady state of equlibrium in almost the same time as the LiNbO; transducer.

InTable 1, there are two transducers made of a PZT ceramic of a little different material
properties that results in differences of 2% in the measuring error. In next regions the
influence of the material of the transducer on the measuring error is much smaller.

Table 1. Parameters of piezoelectric materials and measuring error in a PVC or aluminum rod.

n ; : Velocity of Measuring error Measuring error
Piezoelectric Density S : : ;
aterial 02X 10° kg/m?] longitudinal wave in aluminum in PVC
: a;[x 10° m/s] (I-@)a [%] (1-@evc [%]
PZT Toils 3.88 26 70
PZT 5A 78 4.35 28 72
Quartz 2.65 5.57 15 53
BaTiO; 5.70 5.47 27 71
LiNbO; 4.65 7535 29 72
LiSO, 2.06 4.72 10 43
Pb Nb,O, 5.80 2.80 16 56
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4. Final remarks and conclusions

Let us summarize the simplifying assumptions which restrict the validity of the results
presented here. The assumptions are:

1) deformations in the linear-elastic region,

2) one-dimensional model of the transducer,

3) the analysis concerns local changes at the plain front of the distortion,

4) the impact pulse falls and is reflected always in the direction normal to the rod

interfaces,

5) there is no energy transfer through the interface between the material of the

transducer and the mass M,

6) load of the rod with an impulsive force P(r) rectangular in time.

On the basis of the results of the above calculations one can conclude that the intrusive
influence of the contact transducer on the displacement field in tested specimens is
extremely important in the initial period of time after the distortion occurs. The mass
M has no influence on the displacements in the first analysed time interval because the
evaluation is made locally at the front of the distortion wave. The relative difference
between the displacements is affected not only by the wave impedances but also by the
surfaces of the transducer and the sample. Depending on the type of the sample and the
transducer applied, this differences range from 10% to 72%, and therefore they are of
great significance. But there are systematic errors. Such errors are not so difficult to
compensate by an analysis of the results. After few reflections in the next regions, the
influence of surface loading becomes smaller and after a long period of time (depending
on the value of the loading mass M) is rather negligible. This is the reason of the popular
opinion that by time-harmonic waves the influence of surface loading with a transducer
is not important. Although, after a long period of time and after multiple reflections
different wave modes with complex surfaces are present in the signals which causes other
problems in the analysis of the results.

Appendix

Applying the d’ Alembert’s solution of the wave propagation equation, the displacement
in the region 1 (Fig. 2b) can be written as u; (x, 1) = gi(at —x) + ga(at + x) = 0
where a, is the wave velocity in the rod 2. We assume that on the characteristic
x=a)(t - L/a:) + L the equality and continuity of displacements wu; (x, 1) = us(x, t)
are observed. The displacement in the region 3 can be expressed in the following form:
us(x, 1) = gi(axt — x) + g,(ast + x). Applying the equation of the characteristic, the

formula becomes g, l:L (C—IE - 1]:| + g, {Zazr + L (1 - Efﬂ = 0. Let us introduce the
a

1 a,
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' a,
notation 2a,t + L (l - E} = k. Now we can write g, (k) = —g, ]:L [—' - IH = const.
a) a
Then, after differentiating and inserting kK = a,t + x we get
aj
g:(at+x)=-g [L(a—_ lj:| = const. (A1)
1

It is assumed that on the characteristic x + a, t = 2L the equality of displacements occurs
ug (X, 1) = uy(x, 1).

2a,t - 2L
P(8/a,)
Uy (X Dy=—grr2e = 1Qart —2L) + ,(2L) = s 0.
! TEF
@
| | , P(5/4)
Let us introduce the notation 2a,t — 2L = ¢. We can write f; (¢) = EF dé—f>(2L).
v bl
Substituting @ = a, ¢ — x yields
a,r-x
[ P(6/a)
filant—x) = J. SV g5 - £, (2L). (A2)
EF,

0

Let us assume that on the interface between the rod and the transducer for x = L we observe
the equality of displacements and the equation & (x, #) = a&;(x, 1) is satisfied, where

_EF
“TEFR
respectively. From the above considerations we know that the strains can be written as:

, E; and F, are the Young’s modulus and the cross-sectional area of the rod 2

Ev(x, ) =—fi(ait —x) + fi(art + x)
E3(x, 1) =— gi(azt —x) + g;(azt + x)

After replacing the above expressions with the function derivatives f1, f;, g1,
g5 we obtain

) 1 me-L)y .,
ﬁm”+”‘aﬂp( . ] agi (azt - L) (A3)

Let us introduce the notation @, t+ L= 1. Hence we have a, t— L= 1—2 L. Let us assume that
on the boundary surface of the regions IV and 3, for x = L, an equality of velocity is observed
and after transforming it we obtain '
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- I+L_a3, [—L)—lp(alt_LJ (A4)
A s

Hence we shall determine, f3(a, ¢ + x) and g{(a,? — x). After a little manipulation this

2 t-L
equation can be written as follows gi(a,t — L) = @i azl) EF P (“‘ “ ) On
as 1) LIy 1

introducing the notation a,r — L = 8 and integrating, the above equation yields

B
20] P((hﬁ + L{al =

ﬂz))
(a; + aay) E\F, ry a,a; dfis W )

&P =

where W is the integration constant. For = a,t — x, the equations (A1) and (A5) become

J: (01)3 + Liay =
(a, + aal) E F 0 aya;

82(azt+x)=—gl[L(§- I):| = (A6)

gi(at—x)=

‘”)] df+ W,

a,—a
L=

_201 j:' P(a]ﬁ o L(a. — az)] dﬁ— w.
0

(a, + aay) E\F, a,as

L
The displacement for the region 3 and the characteristic a; (r = —) +L=x canbe

a
written as
=X
2a, -r (alﬂ + L{a, — Ga))
1) = — |dp.
B e e EE R B QD

From equations (A3) and (AS), after simple transformations and integrations, we become

1 17— 2L 2a, N = 2L
= o Jr(I=a s
fa(m) E\F, = a L (ar + aay) EF, 5 a 1 e

Introducing the notation 1 = a,t + x we get




1. THE DISPLACEMENT FIELD IN THE SOLID 87

al+x

a, — a0 J' [n - ZLJ
t+x)= B dan. A9
falayt + x) {as + oa) E.F, g n n (A9)
The displacement in the region IV is
Y P8/ ) e e
(x, 1) = I L + _[ P[ ]d . (A10
il (x ) 5 E[ F1 d5 (ﬂg Q5 aﬂl) E| F] ay n ( )

We assume that on the boundary of regions 3 and 5 a continuity and the equality of

displacements are observed, us (x, ) = u; (x, t). Let us express the displacement in the region

5asus(x, ty=h, (@t - x) + hz(a,t+x). The displacement on characteristic x=—a, (t— L/, )
1

+ L + 2h between regions 3 and 5 can be written as

us(x, 1) = hy |:2a31‘ —L(l + az/a’) - 2h] + h, {L(l 4L “1) + 2h].

On introducing the notation 8=2a,t—L ( e a ] — 2h and after a little manipulation we
1

2 6+ L -
can write h1(0) = 2t pid t L@ - a) . Hence, for 8 = a,t — x
(a; + aa)) E\F, aya;
we obtain
2a, r af + L(a, - az)J
h t—x) = /& d
l(az x) (az e aal) E] Fl e ( ayds ﬁ
L 2 1
aj
—h, [L[1+a—] +2h:|. (All)
1

It is assumed that the wave falling upon the surface with the co-ordinate x = L + & is
completely reflected (from the loading mass M). Let us consider the equation of equilibrium
of the forces acting,upon the mass M (Fig. Al); the force F305 can be expressed as
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M
F>05
_...-.-..>.
@
dt
—’.

Fig. Al. Schematic diagram of forces acting upon the loading mass M.

Jus (x, t
EZFZJ% e vt = EaFa[- hi(ast —L—h) + hiat + L+ )], (A12)

The equation of equilibrium of the forces acting upon the mass M is

dus(x, 1) N Mc?v(t) &

E,F, e ot =4-r+s=0, (A13)
dus(x, 1) , ,
v(n) = s = y=r+n = @2hi(aszt — x) + azha(azt + x).

After a simple transformation, the velocity of the mass M for x = L + h is
s 1 /
hg(agf‘F L h) =E"V(f) Lo h] {at =1L = h)
7
Let us rewrite the equation of equilibrium of the forces acting upon the mass M

dV(f) Eng

dI +V(r) Maz

2
:"‘h}h;(agf—L'—h)Eze. (Al4)

From the above calculations it is clear that

2(11 L h
hi(at-L-h) = Pt =— =" AlS
e ) (a2 + oa)) E F, |:t a az] L
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1 E,F
Let us assume the notation — —— = k, and that the force P (1) = Py = const. Then, the
s g

equation of equilibrium of forces acting upon the mass M can be finally written as

dv (1) 2

23]E212
t Ptk =xmL4+hk =
E! () 1 L+h

e ; AlG6
M({Iz + aa.)E, F| d ( )

L oh
Let us assume the precondition v (— + a—J =il
a

Solving the above non-homogeneous differential equation yields

Al7
a; + oa, E, F, ( )

v (1) :,ﬂf_"._ "..az_[l = 'k'["% -;2]]

From the above expression we shall determine k5 (a,t + x) for x = L + h and obtain

4“' 1 —Jh[-' _'E --.‘-r-
hi(axt+ L+ h) = 1 - i
2(a2 l) a, + aa E] F:. [ €

]:| —hi(ayt—=L—-h). (Al8)

Let us introduce the notation & = a,t + L + h. Transforming the above dependence yields

2a, P 4a Py -n[E _Larad 2n
h3(§) = LS - ' e = ,,,). (A19)
(ag + aa]) E| F] a + aa E] Fl
After double-sided integration we obtain
zalpﬁé 4(1] P[) as -k.[é _ Lta +a __2_!1']
h; = S —= {2 ax a;
- (a, + aa)) E\F, a; + 0a, E\F\ k +D, (A20)

where D is the integration constant. Let us substitute the variable & = a,r + x. We get

2a,Py(a,t + 4 P g [@rx _L@ta) 2h
hy(at+x)= @ Po(a; %) + G (s [ a; aya, @
(az + aﬂ'l) E| F] a, + da, E| F] kl

)+D. (A21)

Now we can write the formula for the displacement in the region 5 (the force
P(1) = Py = const.)
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4a, P,
us (x, 1) = fice P o

Mai wk.[”“’” _Lm+a) 2k
2 l-e
(a, + aﬂ'l) E] F| a E,F,

L ?J] . (A22)

The formula for the displacement in the region VII is:

4a|P0
(ag -+ O.’a])zE| Fl

wuy(x, 1) = (ﬂ|ﬂ3a1—ﬂgaL+a|ha+ ha2—2a| (xh)

(A23)

_ 8@y@yar, M | -gp(ectony]
(a> + aa,)* E\F, E,F,

The formula for the displacement in the region XII is:

4a|P0h a, ZAGtha. 2Aa|0.' 'E ky
uxy(x, 1) = | = el tie—1
(a, + aay) E| F,

aj s kl

4(“])2'an Mag _E:FJ 2 [ —kl[r+£-2_L-:£}
- l s a; e = — -
(a; + aay) E\F\, E,F, o AZa(ayt 4+ x) | 1 + de )

LX_2L 4k WX 2L _ah

+6QAZL + 20GAZh " + 4AZLace G e s )
2 as

X 2L 4k
a o o B e
+4AZLaﬂ+4Za—'(1—e G ]) (AE_AL—AL‘E—M&
az ads 1 a,

_f‘-‘:f“x 2h
Poajaz (1 e < “’J

Aa( )[1 4 ""(”i‘&*ﬁ)] oaAn &
= +Aa(a t+x)| 1+4e @ @ el _6qAL-200Ah —
(@, + aa) E\F, k : a
~ky +i-&-i“_’ 25 +i_&_ﬂ
A “’)[l—ﬂJ-atALﬁaMﬂa[e B «J_IJ (A%“AL
a a ar k,

_ExFy 2k
Pgd]az (l =g Ha: a,)

AL S dAn -
a, (a; + aa) E\F k,
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where
2P0a|(a’a1 = a-z) da, — da»
= and Z=—-—. A24
E[ F[ ((12 -+ aa1)2 dr + Oa ( )
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