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General formulae on the heat release caused by any sound in the thermoviscous flow are derived, the
well-known limit of the periodic source being traced. Some illustrations based on the calculations on pulse
sound and stationary shock wave as acoustic sources are presented.

1. Introduction

Acoustic heating is a secondary process occurring at the background of the intense
acoustic wave passing. The phenomenon is well-known and exhibits a slow increase of the
temperature under the constant pressure behind the passing ultrasound. The reason of this
increase are losses of energy during the wave propagation in the thermoviscous fluid.
Recently, the role of changes in the background density, not only in temperature, was
pointed out [1,2].

Traditionally, quasi-periodic acoustic waves generated by transducer are thought as an
acoustic source. Though quite realistic there is a wide variety of non-periodic (including
impulses) sources that are of great importance, for example, in medicine when internal parts
of the human body are investigated by ultrasound. There is also a theoretical achievement in
studying secondary processes caused by non-periodic ultrasound since the standard
approach is to average the overall field over temporal interval including the integer number
of sound periods which is much less then the characteristic time of heating. The averaging
of the total energy conservation law dE/ dt + V] = 0 gives for the rate of energy change

per unit volume: {(g) = — V{J,) [3]. Here, E = pe + p(v + v)/2 is the total energy
volume density, J = pv + Ev is the energy flux density vector, e, p, v, p are internal
energy per mass unit, mass density, velocity, and pressure, correspondingly (bold symbols
denote vectors). Averaging over the integer number of sound periods is marked by square
brackets, J, is an acoustic quantity.
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2. Theory

Let us start with the basic system of conservation equations in the differential form:
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where among the already mentioned variables, x; — Cartesion co-ordinates, T = pdix — Six

means the surface stress tensor which consists of scalar pressure p and the viscous stress

tensor s;;, 0, being the Kronecker symbol: ;. = 1 if i = k and J;; = O otherwise. The value

T :

— ¥— with ¥ being
o"r,;

a coefficient of thermal conductivity. For the uniform homogeneous liquid, the tensor s,

relates to the deformations v;; in the following manner:

S is the heat flow depending on the temperature gradient S; =

Siy = 2#1}"& (!. # k), Sii = Zﬂv” + Idiv N,
where u is viscosity of fluid, and v, is the tensor of deformations defined as follows:

Vik = 0.5 (31/,/5'1; =+ 81)}1'" a,t}').

2
r=yu - }u, and u’ is the so-called second viscous coefficient responsible for the

transformation of the microscopic energy of the fluid particles to the energy of the internal
degrees of freedom of molecules which should be accounted for the ultrasound of extremely

2
high frequency. In the most cases, 4" =0, I'=— e the values accepted in the theory by

Stockes [4]. Equations (1) are known to be rewritten in the vector form. For the plane
dynamics of a fluid equations (1) look quite simple and need two algebraic equations of
state to be complete, the caloric one e = e¢(p, p), and the thermal one T = T (p,p):

Espo ,  Es Espo Es
poe’ =Ep'+——p' +—p*+—p?+—p'p’ +.
’ P’ Pa Po .03 Po
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In the series of the internal energy and temperature in the vicinity of the equilibrium
point (po.P0) (2), 6,,...E, are dimensionless constants depending on the pair (po,P0). Cv
means heat capacity under constant volume, perturbed values are primed. Quadratic and
higher order terms in the temperature expansion are ignored. Therefore losses due to the
thermal conductivity are supposed to be small. For an ideal gas obeying the relation

p

e = ———, the coefficients are (see [5]):
oY =l)

E;=E.g=9|="—l"—, E2=E5=62=—_1—, Eg‘:E‘g=0. (3)
y-1 sl

In many sources [2, 6], the series of entropy are used when slowly distorting from
isentropic processes. That is considered reasonable for acoustic waves propagation. It
seems however more physical to start with series of the internal energy which are not related
to the possible processes in the fluid but are essential feature of any medium. Recent
advances in numerical methods of physical chemistry allow to calculate constants of
intermolecular interactions with great accuracy in order to get the free energy and therefore
high order coefficients in both series (2) theoretically. See [7] concerning liquid water and
the papers referred there. It should be stressed that the constants of Eq. (2) are not
independent. This follows from the relation

L[ e B 593)
#(Ger] (%)

which appears as a condition for compatibility of the caloric and thermal equations of state
and follows from the fact that a change in entropy is fully differential. The relation (4) is
obeyed automatically if both the equations of state are expressed through the derivatives of
free energy. Considering (4) in the vicinity of the equilibrium point (po, o) yields also:

6, = Crbolo (1 - E:) 01 )
E\po E;

Indeed, the formulae (2) allow to consider the wide variety of fluids that do not obey the
equation of state for an ideal gas. For the plane flow depending on one spatial co-ordinate
x over uniform background (po,po) the system (1) goes to the equivalent system in
non-dimensional variables v,, p., p., x.,t. (v.=v/c,p.=(p —-po)/ ¢ po, P.=(P = Po)! Po.
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x, =xl A, t, = tc/ A, asterisks for dimensionless variables will be later omitted) [8]:
2 + Ly = (6)
arw W i lIbr'

Here, A means a characteristic scale of disturbance, ¢ is adiabatic sound velocity,

, 1 -E
C= ;%-E—z) w=(vp p)"is acolumn of dimensionless perturbations,
0&1

- 8,0% dr* d/ dr 0
T — dl dr - 0,0%1 - 829%1 (7
al dr 0 0

is a linear matrix operator with

4ﬂ 91 93
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(8)
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Also, a complete term caused by thermal conductivity is introduced: &,= 8} + 83 as well
as an overall thermoviscous constant S= &, + ,. Taking into account (5), it is clear that the
value &, depends only on the series of internal energy, but not on the temperature: &,
_ Tox

Ei(1 = Ej)pocA
nonlinear vector

though it is caused by the thermal conductivity. The right-hand

Jd d
1 rioge
" d J d 8, ((dv\?
W= —Vap+(N1p+ng)9}V+ErV+E("é})
d d
gl

includes only quadratic nonlinear terms that are of major importance in the nonlinear
acoustics. Constants N,, N, are evaluated in [8]:

1 1 -E ]
Ni=—[-1+2 E; +Es|,
| El( g aths
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= E
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Pl

dv
It is of the great importance to consider also a cross viscous-nonlinear term — [3— . The
ox,
possible linear motions of the fluid follow from the linearized version of the system (6):

d
é—try+ Ly =0. )]

There are two acoustic modes relating to the rightwards and leftwards progressive
(acoustic) waves as well as the heat (called also entropy) mode:

nwd | [1-(Br2)910x — 1 ~(B12) 3l o
W =1 pi (I,[} = 1 — 52 dl dx P (I,f), Wh = 1+ (Sz al dr P2 (,1’,[),
o1 (0) 1 1
529/ 9x
Vs = 0 P3(50). (10)
1

The specific modes are separated from the overall flow by orthogonal matrix projectors

Py (x,0) = y, (1,0 (11)

(n=1, 2, 3), see [8] for more details.
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The nonlinear evolution equations for interacting modes follow from Eq.(6) when the
corresponding projector acts at the both sides of this equation:

d .
EWH+LWH=PHW‘ (13)

The right-hand nonlinear vector V represents an input of all modes. The well-known
nonlinear evolution equations like the Earnshow one follows from (13) [9].

3. Heating generated by any acoustic source

An equation for the slow change in the background density corresponding to the entropy
mode may be obtained if one acts by the projector P; at the system (6) assuming that the
nonlinear right-hand vector  consists of the rightwards progressive acoustic mode inputs
only. So the rightwards acoustic mode imposed to be dominant and the evolution equation is
expected to be proper when the heating is small in comparison to the dominant mode and
therefore the induced effects may be ignored. In terms of the pressure of the dominant mode,
the evolution equation looks

(9,03 2(?2,03 _ é’pl
74‘528—2— (N, + N; + l)pla

(14)
2

. J dn\?
= +N2+2))p1a—;l+(— S D=8 IE) [%] .

3 [ﬁ(Nl +2N2 L

Note that though the overall coefficient responsible for the thermal attenuation &,
depends only on the internal energy series, first from (2), the equation of thermal
conductivity like this (14) possesses a viscous term with the negative multiplier &5 which
actually needs also a least value of 8, or &,. Unfortunately, the experimental data even for
the most known liquid, such as water, concern only linear fluctuations, so there may be
extracted data on E}, E; and completely unavailable on higher order coefficients (see [7] and
referred papers). It was already mentioned that all coefficients in series (2) in any
equilibrium point may be provided analytically by the theory of modern physical chemistry.
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In the case of the perfect gas without thermal conductivity, Ny =—y, N,=0, §,=0 (14)
goes to the following equation:

Z2==D|p

9p; e apl_ﬁ[apj } i,

All calculations below will be done for the perfect gas for simplicity.

3.1. Periodic acoustic source

To trace a quasi-periodic acoustic source given by the general theory for small Reynolds
numbers, one may take the acoustic pressure p; (1;£) as follows (see [6]):

P = ppexp (= Br/2)sin(x - 1). (16)

The formula (16) is correct beyond some vicinity of the transducer where the nonlinear
distortions are strong. Temporal averaging of both sides of (15) gives:

ap; J
< p)_( = )(;) ﬁ(l’— Dpiyexp (- Bo). (17

In all calculations the terms of order 3* as well as the cubic nonlinear ones were left out
of account. To calculate (17), note that the periodic perturbation (16) in the leading order
(up to quadratic nonlinear terms) satisfies the relations below:

ap. _B| p\__Bl(Im)?
SmSE) =-2{( 2] ). (18)
P ox or’ 2\ de
The formula (17) goes to the known result for the periodic ultrasound given in
introduction. It is known that heating is an isobaric process as proved also by the

eigenvector ; (x.t) defined by (10). The rate of heat and temperature distortions (both
dimensional) per unit volume in dimensionless variables are (isobaric heating):

c ar C‘%,Oo <8,03>
= = (), 19
9= ;UO"CP(ar) o)) o (19
e : o : c 3,03
(in dimensional p, ¢ the normalizing value A disappears: g = — Ry ). On the

other hand, a dimensionless gradient (in dimensional co-ordinate .x, A dlsappears as well)
of the acoustic energy flux relating to the rightwards plane wave is
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where the last calculation ignores terms of order 5% Formulae (17), (19), (20) result in

relation g = — ——(J;) presented at the introduction in the dimensional form.

/18

3.2. Heating generated by pulses

As it was proved in 3.1., the evolution equation (15) goes to the known case of a periodic
acoustic source but is suitable for any ultrasound source including a non-periodic one. The
next step is to calculate the equation (15) with an acoustic source being a solution of the
Burgers equation

y+1 4 Bad

E}m‘l‘a—xpl'f'—z"m‘é}ﬂ—iym:{)- (21)

Equation (15) gives a formula for the rate of the heat release per unit volume:

7/ a d 7

g =-L = _y-1|p pl—ﬁ p‘~ﬁ[ “"] (22)
ot ox

An example of a mono-polar source is given by a self-similar solution of the Burgers

equation, see [6]:

- (T + 10)*
28 Exp[z(&fo)} |
VE+ &) pe-rEL. g E;f( ;(; roé))'
v + Co

written in the new variables: slowly varying co-ordinate &= f.rand the retarded time 7=1—x.
Note that in contrast to the quasi-periodic sound (16), the solution (23) does not relate to
large or small Reynolds numbers. The absolute value of C is responsible for the symmetry
of the impulse: |C|>>1 gives a curve close to the Gauss one. In calculations of Eq.(22) with
an ultrasound source given by (23), the next values of the parameters are taken: = 0.1,

pi(€1) =~ (23)

' T :
y=14,C=(y+1)" ﬁ} &y = 10=0. Figures 1, 2 show the pressure of the acoustic source

(bold line) and the rate of heat production calculated due to (22), (23) as functions on .r at
t =1, t = 2 respectively.
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Fig. 1. The rate of heat production per unit volume ¢ and pressure of the acoustic
source p; (bold line) calculated due to (22), (23) as functions of x at ¢t = 1.
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Fig. 2. The rate of heat production per unit volume g and pressure of the acoustic
source p,; (bold line) calculated due to (22), (23) as functions of x at ¢ = 2.

Some comments on Figs. 1, 2 are useful. There are areas of negative and positive g at

both figures representing space non-uniformity of heat release caused by dependence of
adp, 9*

qon ﬁ, --—‘Iil

dr odr .

unit time is positive and may be found as an integral over volume V (dV = Sdx, S is cross

in accordance to Eq.(22). The overall heat which is released by the impulse in

section of flow): -[quz SJ.qu. Calculations of fqdlx give values of 3- 107 atr=1 and

8- 107" at t = 2, both positi\?e as expected. Attenugttion of a source during its propagation
results in a decrease of heat production. Also, a stationary temperature increase as a trace
after the source passing (f — <) may be evaluated numerically accordingly to Egs. (19),
(22). Figure 3 shows the relative temperature dT=T"/ T; vs. .x. For a single impulse, a large
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growth of temperature is hardly expected. Nevertheless even a single pulse results in a new
temperature and density of the background.

dT

e CEE S )
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2 3 i —5— 6
Fig. 3. Stationary relative temperature dT = 7"/ T, after the source passing vs. x.

3.3. Heating caused by a stationary wave

It is known that there is a class of a stationary solution of (21) in the form
of a shock wave:

Texp [(61 = ol é’o))

B
= = : (24)
Pi(e) e+l T ((Ct - éo))
= ————Texp
4(c, — ¢) B
with E=x—-c1, T= ;}1 T , p(&o) = po. The shock wave possesses velocity
Ta@ - o)

¢ different from the velocity of an acoustic mode ¢, (equal to unit in the dimensionless
variables). It is also known that equilibrium between dissipation and nonlinearity is possible
if the energy losses are compensated by the background. To provide lim p; (=0, avalue

¢ > c¢; should be chosen. The background pressure in the front of the shock wave has a limit:
limp, (§)=—4(c, — ¢)/(y+ 1). Constants f3, ¥, & are the same as in calculations of 3.2.,
[

¢ = 1.1, po=0.1. Figure 4 presents the pressure of the source (bold line) and the rate of heat
release per unit volume (multiplied by 10) as functions of &.



HEATING CAUSED BY A NON-PERIODIC ULTRASOUND. THEORY AND CALCULATIONS... 137

~iD =5 5 10

Fig. 4. The rate of heat production per unit volume g (multiplied by 10) and pressure
of acoustic source p, (bold line) calculated due to (22), (24) as functions of &.

4. Conclusions

The paper continues previous investigations by the author developing the idea of
applying projectors to the theory of nonlinear flow. The reader may find some ideas on
interaction of modes leading to the coupled nonlinear evolution equations, as well as an
approximate solution of these equations in the papers [10-12].

In the present paper, the heat generation as a secondary process caused by ultrasound is
considered from the point of view of a nonlinear interaction of the specific modes. An
equation for the heat generation with acoustic quadratic nonlinear source is derived. Since
the very approach does not need temporal averaging, the results are suitable for any type of
sound sources including non-periodic ones. The general formulae for any fluid are derived.
Results of numerical calculations of heating following a single pulse and shock wave as
sources are discussed.
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