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This paper describes the development of the LVCSR (Large Vocabulary Continuous
Speech Recognition) system for Polish. All system components have been built from scratch:
grapheme-to-phoneme converter, language models and acoustic models. Test results for
twenty thousands word vocabulary continuous speech recognition (read sentences) are given.
The system can be used as a basis for application oriented continuous speech recognition.

1. Introduction

This paper describes the development of the LVCSR (Large Vocabulary Continuous
Speech Recognition) system for Polish.

Despite of fast progress in speech technology, Polish seems not to be in the main-
stream of works (see [3, 13, 16] for recent Polish-related efforts in automatic speech
recognition). Beside LVCSR systems for main Germanic or Romance languages nu-
merous attempts for Slavic languages are known: e.g. for Czech [7], Slovenian [5] or
Russian [10]. The most obvious reason for the delay in the developments for Polish
language was a lack of speech and language resources available for the scientific com-
munity. The outcomes of recent state- and international project enable to catch-up the
status of other languages. The small project initiated at PJIIT should close the gap.

The elements of the typical speech recognition system are given in Fig. 1.
Speech signal is converted to a sequence of spectral and temporal features. Acoustic

models represent basic units of speech and, given the features, estimate the probability
of the occurrence of the unit in the signal given. Language model control the allowed
sequence of words and estimates the probability of the occurrence of the sequence of
words. Finally, the search module tries to find the sequence of words that best matches
the observed signal.

Speech recognition typically evolves statistical modelling of language and speech,
thus the recognition system need to be trained on a sufficiently large database. For the
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Fig. 1. Elements of speech recognition system.

acoustic models, depending on needs, the system could be speaker dependent (trained
only for a given speaker) or speaker independent, enabling any speaker to use the sys-
tem. For the second case, the size of training database grows significantly – repetitions
of the same word (or phone) by different speakers are needed to balance the pronuncia-
tion variability.

The language model describes the domain of the recogniser. Typically, we could
recognize isolated words (or short utterances) with relations described by the finite-state
grammar (isolated word recognition) or connected speech, in which the probabilities of
word sequences are given in a form of a stochastic language model.

The size of vocabulary could be related to the complexity of the recognition task.
Typically, small vocabulary size describes systems with several hundreds of words,
medium up to 2000, while large vocabulary systems are able to recognize several thou-
sands of different words.

The system described below will recognize continuous speech, with 20 k (20 thou-
sands) words vocabulary and is speaker independent.

One of the crucial system components is a dictionary, which contains the phonetic
transcription of words (i.e. their phonetic equivalent). In the system presented the dictio-
nary contains phones (fundamental acoustic units of speech), which are further expand
to context dependent units.

The components necessary to establish the LVCSR system are depicted in Fig. 2
and described in details in the next sections.
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Kalisz k a l i  S
Kamiennak a m j e n n a
Kaszuby k a S u b I
Katowicek a t o v i ts e
Kazimierz k a z’ i m j e Z
Kielcek j e l ts e
Klaksonk l a k s o n

Dictionary

-4.3126 administracji -0.1815
-4.0116 adopcja-0.3399
-3.7105 adopcji -0.1471
-4.3126 adopcj�-0.1454
-4.1365 adopcyjne -0.0700

„Wiem, *e i dzisiaj to wszystko, 
co jest zwi�zane z wyborami
prezydenckimi, wzbudza emocje. 
Wiem, jak wielka odpowiedzialno�ü
jest prezydenta i wasza, drodzy 
pa�stwo - aby byáo mniej emocji ”

 

Fig. 2. LVCSR training components.

2. Speech signal databases

Speech data necessary for training the acoustic models have been collected from var-
ious sources. Mainly, the SpeeCon database has been used [11]. The database consists
of 600 speakers (demographically, age and gender balanced) data including read and
spontaneous passages and isolated words/commands recorded with 4-channels (close-
talk, lavalier, desktop and far-field microphones) at various places (living-room, public
place, child room, car). The close-talk channel data are transliterated and additional
labels are added for non-speech noises:

• Speaker noises (breathing, lip smacks, etc.) and filler words (hesitations, uhms,
etc.)

• External noises (stationary or not)
As the database is currently in preparation, only part of the data has been used for the
acoustic modelling (ca. 200 speakers, no spontaneous speech recordings).

The second source of data was the WORDS database recorded at IFTR(1) , which
contains isolated word recordings of 100 speakers (5 lists circulated over speakers, ca.
450 prompts per speaker with about 300 common phrases, ca. 1000 words vocabulary).

Finally, BABEL Polish speech database [1] has been used (originally recorded with
20 kHz sampling frequency, part of the material was phonetically transcribed and time-
aligned, but the transcription wasn’t used in the training of the LVCSR system).

(1) Herewith I would like gratefully acknowledge the help of Prof. R. Gubrynowicz from Institute of
Fundamental Technological Research, Polish Academy of Sciences.
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Speech was picked-up with high quality desktop or close-talking microphones. All
signals are stored in 16 kHz, 16-bit linear format.

3. Grapheme-to-phoneme converter

System uses a set of 37 phonemes to describe the basic sound patterns of Polish.
The phone set, their SAMPA symbols and examples are given in Appendix(2) .

Converter accepts text coded in ISO-8859-2 lowercase.
The conversion is done automatically using machine learning approach. The rules

have been learned from wide set of examples [4]. Alignment of letters and phones was
achieved through introduction of empty phones (for the case that 2 letters represents
only one phone) and combined phones (if one letter produces more than one phone), e.g.
phonetic transcription of wordrząd has following form: /_ Z o+n t/. Proper alignment
of text and its phonetic transcription allows application of any classification methods to
maximize the correctness of symbol conversion. Applied learning procedure was similar
to the one used in the MBRDICO project [6]. Text is observed through a window of
constant length (three graphemes to the left and three graphemes to the right serve as a
context for a given character). Classification is performed by the decision tree (prepared
using id3 program [8]). For each word only one pronunciation is generated. The decision
tree is very small (7 kB), works fast with very high accuracy (typical error rate is smaller
than 0.5%) for words of Polish origin. Foreign words have to be converted by hand(3) .

Post-processing rules are used to refine generated transcriptions of pronunciations
(e.g. devoicing final consonants if the next word starts with unvoiced consonant).

4. Text corpora

Unfortunately, there is no public available annotated and sufficiently big corpus of
written Polish. Thus, we decided to use non-normalized text data, prepare them and use
to train the language model. The steps of text normalization are described below.

1. The raw text data (numbers written with digits, text containing abbreviations,
etc.) contains speeches from Polish Parliament collected during 10 years(4) . While these
are directly transcribed speeches, we hope to get more speech related language model.
Small corpus (3700 sentences, ca. 39000 words) of newspaper texts was added to the
main corpus to broad the scope of data. The whole corpus contains ca. 44 million words
in more than 2800000 sentences. Not all the data have been used for language model
training, mostly due to problems with proper text normalization.

(2) Appendix has been prepared with Prof. R. Gubrynowicz.
(3) Foreign words are those which pronunciation differ from Polish, e.g.mail is pronounced as /m e j l/

instead of /m a j l/.
(4) Herewith I would like to acknowledge help of Mr. Z. Jabłoński, head of the Polish Parliament’s

Computer Centre.
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2. Text pre-processing splits the input into a sequence of tokens by separating the
input where white space occur, deletes word-final punctuation marks, etc. Each unit
(token) may contain single word, abbreviation, number, etc.

3. Sentence delimitation. Lists of tokens are linked into sentences. Consecutive sen-
tences are then processed one by one. Marks for sentence begin and end are added.

4. Abbreviation recognition and expansion. This is done by look-up of external di-
rectory of abbreviations (actually about 500 abbreviations).

5. Numerals recognition and expansion. Numbers are converted to words using a
grammar. Actually system correctly translated numbers from one billionth (0.00000001)
up to one billion.

6. Correction of numerals depending on following word (numerals declension). The
inflection endings of numbers depend on declination form of following word is found
using the freely available Polish morphological analyser SAM-95 [12]. Script reads the
incoming numerals and the following word. Depending on the grammatical form of the
word the form of numeral is adjusted. Only first hypothesis delivered by the analyser
was taken into account. Actual implementation of the numerals declension works well
for integer numbers up to one billion. The accuracy of the numerals form correction
depends on the accuracy of the analyser. The error rate has not been systematically
analysed yet, but is less than 10%.

5. Language model

Normalized texts are used for language model preparation.
Statistical language model (LM) aims to represent the basic relation between short

word sequences in the natural language. From the speech recognition point of view, we
need a model, which generates all allowed word sequences for a given language. Current
approach is to use a generative grammar or a stochastic language model. Grammars
however, can be practically constructed only for very narrow domains, thus for LVCSR
tasks stochastic language models are used [2].

LetL = wN
1 = w1, w2, . . . wN be a word sequence andwi’s are the words that make

up the hypothesis. The purpose of the language model is to calculate the probability
P (L), which can be computed using chain rule:

P (L) =
n∏

i=1

P
(
wi|wi−1

1

)
, (1)

wherewi−1
i is called history (h) or context of the wordwi. The commonly used sim-

plification is to shorten the history to an-gram LM (regardless ofi) to n − 1 words
preceding the word:

hi ≈ wi−n+1 . . . wi−1. (2)

This assumption leads to great reduction of the statistics needed to be collected to
computeP (L), however even then the number of parameters to be estimate is huge
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(109 probabilities in case of tri-grams for 1000 words vocabulary). Another factor is the
sparseness of real text data: most correct word sequences appear very rare even in very
large text corpora [2]. The answer for that is use of smoothing techniques.

Language Modelling Toolkit [9] has been used to prepare the LM for the described
text corpus. Bi-gram and tri-gram models are estimated using maximum likelihood
method. Discounting used for estimation of zero-frequency cases is performed pro-
portionally to a less specific contexth′: bi-gram distribution is used when tri-grams
are estimated and uniform distributions when uni-grams are used. According to the
backing-off scheme then-gram probability is smoothed by selecting the best available
approximation [2] of:

P (w|h) =

{
fr∗(w|h) if fr∗(w|h) > 0,

αhλ(h)P (w|h′) otherwise,
(3)

wherefr∗(w|h) is a discounted conditional frequency, such that (c( ) denotes a num-
ber of occurrences)0 ≤ fr∗(w|h) ≤ fr(w|h), fr(w|h) = c(hw)/c(c(h). The zero-
frequency probabilityλ(h) = 1.0 −∑

w
fr∗(w|h) is redistributed over the words never

observed in the contexth, andak is normalization term assuring thatP (w|h) sums up
to 1. For eachn-gramhw the corrected frequency is computed. If the actual number of
occurrences ofn-gramhw is c(hw), then the modified count isd(c(hw))c(hw), where
d(c(hw)) is calleddiscount ratio. In the Good-Turing discounting used in the presented
model, the discount ratio is equal to

d(hw) = (hw + 1)n(hw + 1) /hwn(hw), (4)

wheren(hw) is the number of events which occurhw times. The discounting is only
applied to counts which occur fewer thanK times, where typicallyK is chosen to be
around 7.

The quality of the language model is usually measured using perplexity, which de-
scribes how good the model can predict words in the text. Forn-gram LM perplexity is
computed as

PP = 2
− 1

M

MP
i=1

log2 P̂ (wt|ht)

. (5)

For the model given, the bi-gram perplexity ranges from 54.86 for 3 k vocabulary
to 74.41 for 64 k tested on 1000 randomly selected sentences which is in line with the
results obtained for other languages [2, p. 205].

Better estimations of word probabilities could be obtained by clustering words into
classes. That seems to be a preferred solution for Polish, due to rich declension and
conjugation. Works on that are ongoing and results reported in [15] are very promising.
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6. Acoustic models

3-states, left-to-right hidden Markov models are used to model the acoustics of
speech. Each phone is modelled within the acoustic context of adjacent phones (so
called triphones) including cross-word boundaries, with exceptions for silence and four
additional noises (stationary, intermittent, speaker and filler noise) modelled without
context (monophones). Feature vector is extracted every 10 ms from 16 kHz, 16-bits
data (pre-emphasis coefficientα = 0.97). Observation window of 25 ms is used. 24 tri-
angular power Mel filter coefficients are computed for every window of pre-emphasized
speech using FFT binning in the 80 to 7500 Hz frequency range. These coefficients are
converted to cepstrals, using cepstral liftering (of range 22) to rescale them so that they
have similar magnitudes [17]. Additionally, delta and delta-delta of window parameters
are computed (change and acceleration of MFCC parameters between following win-
dows). Thus, the full feature vector comprises of 38 parameters (12 cepstral coefficients,
12 delta-cepstrals, 12 delta-deltas, delta of energy and delta-delta energy).

Baum–Welch re-estimation procedure has been used. Continuous probability density
functions (pdfs) are modelled using mixture of 3 Gaussians (normal pdf’s distributions).

State clustering has been done using both data driven procedure and decision tree,
asking questions about the acoustic/articulatory context of the model states. This was
done to ensure that all state distributions could be robustly estimated. Resulting set of
models uses 1069 states (clustering likelihood increase ratio=2000, see [17] for proce-
dure details).

The overall amount of speech data used in training is about 100 hours of recordings
(including silence).

7. Results

The acoustic models and language models have been tested on read speech: 360
sentences spoken by 12 speakers (part of the SpeeCondatabase, recordings of those
speakers were unseen during training). The dictionary includes 20000 words. Results
are summarized in Table 1. Results(5) are given on a sentence level (line started with
SENT), word level (line started with WORD) and individually for all speakers (lines
started with speaker codes 223–238). The sentence correctness is measured as a percent-
age of sentences for which all words in a sentence are correctly recognized (33.24%).
Additionally, following statistics are given: the number of correct labels (H), the num-
ber of deletions (D), the number of substitutions (S), the number of insertions (I),
N – the total number of labels in the defining transcription files (N ) andM – number
of mispronunciations.

Thus, the correctness is defined as

Corr =
H

N
100% (6)

(5) Computed using HResults program from the HTK suite [17].
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and accuracy is computed as

Acc =
H − I

N
100%. (7)

Table 1. Recognition results for Polish sentences (20 k vocabulary, 12 speakers, 358 sentences).

Speaker Results

spkr(sex): % Corr( % Acc ) [Hits, Dels, Subs, Ins, # Words] % S.Corr [# Sent] Mis

223(F): 87.11(86.84) [H = 331, D = 27, S = 22, I = 1, N = 380] 26.67 [N = 30] M = 2

224(F): 86.09(84.78) [H = 328, D = 33, S = 20, I = 5, N = 381] 30.00 [N = 30] M = 3

225(M): 77.69(75.85) [H = 296, D = 48, S = 37, I = 7, N = 381] 26.67 [N = 30] M = 5

226(M): 89.68(89.40) [H = 313, D = 21, S = 15, I = 1, N = 349] 41.38 [N = 29] M = 1

227(F): 89.92(89.65) [H = 330, D = 23, S = 14, I = 1, N = 367] 33.33 [N = 30] M = 2

228(F): 88.83( 88.83) [H = 326, D = 24, S = 17, I = 0, N = 367] 33.33 [N = 30] M = 2

229(M): 87.43( 87.16) [H = 320, D = 30, S = 16, I = 1, N = 366] 26.67 [N = 30] M = 7

230(F): 89.94( 89.94) [H = 322, D = 25, S = 11, I = 0, N = 358] 24.14 [N = 29] M = 10

231(F): 83.38( 82.27) [H = 301, D = 38, S = 22, I = 4, N = 361] 36.67 [N = 30] M = 6

232(M): 89.72( 88.61) [H = 323, D = 14, S = 23, I = 4, N = 360] 46.67 [N = 30] M = 0

233(F): 90.56( 90.00) [H = 326, D = 14, S = 20, I = 2, N = 360] 46.67 [N = 30] M = 2

238(M): 86.47( 85.68) [H = 326, D = 26, S = 25, I = 3, N = 377] 27.59 [N = 29] M = 3

Overall Results

SENT: % Correct=33.24[H = 119, S = 239, N = 358]

WORD: %Corr = 87.17, Acc = 86.51 [H = 3852, D = 324, S = 243, I = 29, N = 4419]

Generally, the word recognition rate is high, while the sentence correctness is a bit
unsatisfactory. The results can be easily explained by the fact, that the average sentence
length was about 11 words and for almost all speakers mispronunciations have been
observed.

Recordings are done in quite noisy environments (noise level ranges from 42 to 60
dBA with average over 50 dBA).

8. Conclusions

The paper reports the preparation of the LVCSR system for Polish. All system
components have been built from scratch: grapheme-to-converter, language model and
acoustic models. The preliminary test results for 20 k vocabulary are very promising,
however a lot of improvements can be done to improve recognition accuracy:
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• the general language model used in the experiments could be limited to the certain
application domain,

• a class language model should be prepared, as noted in [15],
• gender specific acoustic models and VTLN (vocal tract length normalization)

transformation.
The presented system will be used as a test-bet for further research on Polish speech

recognition systems.

Appendix

The official set of SAMPA symbols for Polish can be found under:
http://www.phon.ucl.ac.uk/home/sampa/Polish.htm. However, some modifications were
introduced to mark in more clear way their phonological importance, e.g. for nasal vow-
els e∼ and o∼ whose existence in Polish is questioned by some authors.

Table 2.

Consonants
Symbol Word Transcription

PLOSIVES

p pat pat
b bat bat
t test test
d dym dIm
k kat kat
g gen gen

AFFRICATES

ts cós tsos’
dz dzwon dzvon
ts’ ćwicz ts’fitS
dz’ dźwięk dz’vje∼k
tS czyn tSIn
dZ dżin dZIn

FRICATIVES

f fin fin
v waga vaga
s syk sIk
z zez zes
S szyk SIk
Z żyto ZIto
s’ świt s’fit
z’ źle z’le
x hak hak
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Table 2 [cont.]

Consonants

Symbol Word Transcription

NASALS

m mak mak

n nasz naS

n’ koń kon’

N gong goNg

LATERAL

l luk luk

APPROXIMANTS

r rak rak

w łuk wuk

j jak jak

VOWELS

i tik tik

I typ tIp

e test test

a pat pat

o pot pot

u puk puk

e∼ tę te∼
o∼ tą to∼
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