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In this paper the sound radiation from an elastic circular cylinder of infinite length rotated
with a non-uniform angular velocity in water is studied. The cylinder is empty inside. Exact
solutions of the equations which describe the hydroelastic interaction are obtained using the
Fourier transform over time. Numerical examples show that the spectral structure of the sound
radiation from an elastic tube is more complicated than that of a solid cylinder. In particular,
the resonances of this structure are essentially dependent on the thickness of the rotating object
and are subject to the phenomena of dispersion.

1. Introduction

Cylindrical bodies rotating around its axis of symmetry with a variable angular ve-
locity are often met in practice as elements of different technical devices. Examples
of these components are rotors of electric motors and hydro generators, which angular
velocity of rotation in a certain regime of exploitation is varying in time varied. In the
mechanics, the fact of non-uniform rotation was taken into account only for the calcu-
lation of dynamical stresses and displacements [8, 12]. At the same time, the rotating
bodies, e.g. the machine elements, are often in the acoustical medium and thus the sur-
rounded medium influences on the dynamical characteristics of the body. On the other
hand, the rotating deformable solids in the acoustical medium are the sources of sound
radiation [13] and, in particular, of noise [10]. Therefore, the investigation of differ-
ent aspects of the problem of structure-acoustical fluid (gas) interactions are of large
theoretical and practical interest.
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In this article, the attention was focused mainly on the structure of the radiate wave
field excited in the surrounding medium by a rotating hollow cylinder. At first we inves-
tigated the spectral characteristics of the radiated sound. In the numerical examples for
the case of the steel-water interactions, the dependence of the sound pressure amplitude
on the frequency and the cylindrical tube thickness was studied. It turned out that the
radiated sound field consists of a series of resonances. In addition, the resonance depen-
dence on the cylinder thickness is essentially dispersive. This effect was also illustrated
by numerical calculations.

The non-constant angular velocity of the cylinder rotation is caused by the first and
double sound harmonic excitations if the constant value of this velocity is modulated
by the small amplitude sinusoidal oscillation over time. This is clearly illustrated by the
numerical calculations of the intensity of the radiated acoustical wave for different val-
ues of the disturbance angular velocity frequency and the tube thickness. We received
two series of amplitude resonances, namely, at the fundamental frequencies correspond-
ing to the resonances of the spectrum and at frequencies two times smaller the main ones.

2. Spectral characteristics

Let us consider an elastic hollow cylinder of infinite length immersed in a compress-
ible ideal (non-viscous) fluid. The cylinder is empty inside and rotates with a variable
angular velocities around its axis of symmetry. In consequence of the non-uniform rota-
tion, a centrifugal force varying over time arises [9]. Then in the material of the object,
axially symmetric converging and diverging cylindrical elastic waves of the longitudi-
nal and shear types are generated. Simultaneously, in the surrounding fluid medium,
sound waves excited by the radial vibration of the outer cylindrical surface are radiated.
The intensity of these waves depends on the frequency and the relative amplitude of the
oscillation of the angular velocity.

The equation of the dynamical equilibrium of the elastic hollow cylinder rotating
with variable angular velocity around its unmoved axis of symmetry has the following
form [6, 8, 12]

(λ + 2µ)
(

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2

)
+ rρsΩ

2(t) = ρs
∂2u

∂t2
(b ≤ r ≤ a), (1)

whereu ≡ u(r, t) is the radial displacement,Ω(t) is the time-variable angular velocity
of the axial rotation of the body,λ, µ are the Lamé parameters andρs is the density of
the elastic material,r is the radial co-ordinate with the origin on the axis of symmetry,
t is the time,a andb are the outer and inner radii of the tube.

The pressure in the fluidp ≡ p(r, t) is defined by the wave equation [11]
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wherec is the sound velocity.
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At the surfaces of the cylinder, the following boundary conditions are satisfied:

σr + p = 0 (r = a), (3)
∂2u

∂t2
+

1
ρ

∂p

∂r
= 0 (r = a), (4)

σr = 0 (r = b), (5)

whereρ is the density of the fluid,σr ≡ σr(r, t) is the radial elastic stress connected in
the following way with the displacement [8]

σr = (λ + 2µ)
∂u

∂r
+ λ

u

r
(b ≤ r ≤ a). (6)

Here we also take into account the relation between the pressurep(r, t) and the
particle velocitiesv(r, t) in the acoustical fluid [11]
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+

1
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∂p

∂r
= 0 (a ≤ r < ∞) (7)

and the condition of non-discontinuity of the interacting media

∂u

∂t
= v (r = a). (8)

For the study of the spectral characteristics of the radiated acoustic waves in the
fluid, we introduce the following integral exponential Fourier transform over time [3]

f̃(ω) =

∞∫

−∞
f(t)eωtidt (−∞ < ω < ∞) (9)

and the inverse transform

f(t) =
1
2π
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f̃(ω)e−ωtidω (−∞ < t < ∞), (10)

whereω is the circular frequency,i =
√−1.

Applying the above Fourier transform (9) to the Eqs. (1)–(6) and taking into account
that all input and desired functions satisfy the causality principle [4], we obtain
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Herek = ω/c is the wave number in the acoustical medium andkL = ω/cL is the
wave number in the elastic body,cL is the longitudinal wave velocity in the material
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of the cylinder,c2
L = (λ + 2µ)/ρs, KL is the additional “longitudinal wave num-

ber”, introduced by the time modulation of the angular velocity of the cylinder rotation,
K2

L = Ω̃(ω)/c2
L, where

Ω̃(ω) =

∞∫

−∞
Ω2(t)eiωtdt. (13)

The solution of the Eqs. (11), (12) must obey the transformed boundary conditions:

σ̃r + p̃ = 0 (r = a), (14)

dp̃
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= ρω2ũ (r = a), (15)

σ̃r = 0 (r = b), (16)

the Sommerfeld condition of the wave radiation atr →∞ [11]
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In the Fourier-transform space we obtain the exact solutions of the Eqs. (11), (12),
(18) and (19) in the following forms:
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where
J−02(kLr) = xL [(1− α)J0(kLr)− αJ2(kLr)] ,

N−
02(kLr) = xL [(1− α)N0(kLr)− αN2(kLr)] .

(24)
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In the formulas (20)–(24)A1, A2 and B are the constants of integration,Jn(z)
(n = 0, 1, 2) are the Bessel functions,Nn(z) (n = 0, 1, 2) are the Neimann functions,

H
(1)
n (z) (n = 0, 1) are the Hankel functions of the first kind,κ = ρc andκs = ρscL

are the wave resistances in the fluid medium and in the elastic material, respectively,
α = c2

T /c2
L, c2

T = µ/ρs, wherecT is the shear wave velocity in the material of the
cylinder,xL = kLa.

Satisfying the boundary conditions (14)–(16) and determining the unknown constant
B, we obtained for the acoustical pressure in the fluid:

p̃(r, ω) = (λ + 2µ)X2
LP (r, ω) (a ≤ r < ∞), (25)

where
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In particular, for the far fieldkr À 1, using the asymptotic expression [1]

H
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we get
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wheref(k) is the amplitude of radiation
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∆
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In the case of a solid cylinder whenb → 0 (1/ε → ∞, ε = b/a), we obtained
from (27)

∆0 ≈ J1(xL)N−
02(yL), ∆1 ≈ J−02(xL)N−

02(yL),

∆B ≈ xLJ2(xL)N−
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02(yL),
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(31)
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and

P (r, ω) = P∞(r, ω) = −J2(xL)
xL∆∞H

(1)
0 (kr). (32)

3. The time characteristics

Let the oscillation of the angular velocityΩ(t) has the form:

Ω(t) = Ω0(1 + ε0 sinω0t) (−∞ < t < ∞), (33)

whereΩ0 is the constant angular velocity of the cylinder rotation,ε0 is a small non-
dimensional parameter characterizing the amplitude of the disturbance of this velocity,
ω0 is the circular frequency. For example, if the source putting the cylinder in the rota-
tory movement is electrical current, the oscillations of the angular velocity are caused by
variations of this electrical current near its constant value. Then the Fourier-transform
(13) forΩ2(t) is obtained as [3]

X2
L = 2πX2

L0{(1 + 0.5ε2
0)δ(ω)− iε0[δ(ω + ω0)− δ(ω − ω0)]

− 0.25ε2
0[δ(ω + 2ω0) + δ(ω − 2ω0)]}, (34)

whereδ(z) is the Dirac function,XL0 = Ω0a/cL.
The inverse Fourier-transform (10) applied to Eqs. (25) and (26) results in

1
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Using the asymptotical formulas [1]
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and the properties of the cylindrical functions
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we obtained

lim
ω→0

P (r, ω) = 0, P (r,−ω) exp(iωt) = [P (r, ω) exp(−iωt)]∗, (38)

whereγ is the Euler constant; the asterisk denotes the complex conjugated functions.
Thus the formula for the acoustical pressure generated by the rotatory movement of

the hollow cylinder with modulated angular velocity may be presented in the form

1
(λ + 2µ)X2

L0

p(r, t) = −2ε Im[P (r, ω0) exp(−iω0t)]

− 0.5ε2Re[P (r, 2ω0) exp(−2iω0t)] (r ≥ a). (39)

4. Analysis of the numerical results

For numerical calculations it is conveniently to introduce the following functions:
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,
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,
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,

Gj(kLr) =
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.

(40)

Next Eq. (26) can be written in the form
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where
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]
,
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2
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(42)
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ϕ−s (kLr) = (1− α)Fs(kLr)− αGs(kLr), ϕ−s (xL) = −α,

ψ−s (kLr) = ϕ−s (kLr) + χs, χs = (1− α)
(

2
xL

As − 1
)

(s = j, n).
(42)
[cont.]

Similarly, the spectral distribution of the particle velocity in the acoustical medium
ṽ(r, ω) = −i(ωρ)−1(∂p̃/∂r) can be expressed as follows:

ṽ(r, ω) = cL(KLa)2V (r, ω) (r ≥ a), (43)

where

V (r, ω) = i
κs

κ

∆̃B

N1(x)∆̃
H

(1)
1 (kr), lim

ω→0
V (r, ω) = 0. (44)

At the same time, in the pulse situation

1
cLX2

L0

v(r, t) = −2ε0 Im [V (r, ω0) exp(−iω0t)]

− 1
2
ε2
0Re[V (r, 2ω0) exp(−2iω0t)] (r ≥ a). (45)

For the estimation of the sound energy radiated in the acoustical medium it is
necessary to calculate the time average of the power over the periodT0 = 2π/ω0

I =
1
T0

T0∫

0

p(r, t)v(r, t)dt (r ≥ a). (46)

Then, substitutingp(r, t) andv(r, t) from the Eqs. (39), (45) in the Eq. (46) and
taking into account that

1
T0

T0∫

0

exp(inω0t)dt =

{
1, n = 0,

0, n = −4, 4; n 6= 0
(47)

we obtain

I = 2ε2
0κsc

2
LX4

L0Re [P (r, ω0)V ∗(r, ω0)

+ 0.0625ε2
0P (r, 2ω0)V ∗(r, 2ω0)

]
(r ≥ a). (48)

The numerical calculations were carried out for the case of an Armco iron hollow
cylinder (ρs = 7700 kg/m3, cL = 5960 m/s, cT = 3240 m/s [14]), immersed in the
water (ρ = 1000 kg/m3, c = 1493 m/s [2]).

Figure 1 shows the modulus of the functionP (r, ω) (in dB), characterizing the am-
plitude of acoustical pressure as function of the non-dimensional frequencyx = ka (the
wave outer radius of the cylinder) and the geometrical parameterε = b/a (the relative
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Fig. 1. The modulus of the acoustical pressure amplitudeP (r, ω) (in dB) radiated by the metallic cylinder
in the water forr/a = 1.

inner radius of the cylinder) atr/a = 1. On account of the reflection of the strain waves
between the cylindrical surfaces, the frequency spectrum of the sound generated in the
surrounding water have a brightly resonance character. Therefore, the resonance loca-
tions depend sufficiently on the thickness of the cylindrical objects. Namely, the sound
waves of resonance frequencies are subject to geometrical dispersion when the tube be-
comes thinner. This means that the resonance locations are generally non-monotonic
functions of the parameterε. This effect is well illustrated in Fig. 2, where curves of
identical levels of the sound spectrum amplitudes are plotted. As one can see, the first
low frequency resonance is shifted towards the lower frequency range when the param-
eterε decreases. This phenomenon also appears for the resonances of higher orders,
however only forε values not too large. The range ofε values for which the resonance
frequency becomes lower is rapidly narrowed with increasing resonance order. More-
over, there are values of the cylindrical tube thickness for which the direction of the
shift of the resonance curves motion changes, i.e. for continuously increasingε, the res-
onances are shifted quickly toward high frequencies. As a matter of fact, we observe
the appearance of radiated sound waves with a negative group velocity. These plots also
show that the resonance amplitudes decrease rapidly with increasing resonance order.
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Fig. 2. The curves of the constant levels of the sound spectrum amplitudes forr/a = 1 (in dB).

In the case of pulses, we can see from Eq. (39) that the acoustical waves of two
frequenciesω0, and,2ω0 are radiated. Figure 3a shows the time dependence of the
sound pressure (in Pa,τ = ct/a) for different values of the thickness parameterε and
x0 = 20 (x0 = k0a, k0 = ω0/c). The calculations are carried out for a pressure value
far from the cylindrical surface,r/a = 10. The relative angular velocity isXL0 = 0.001
(e.g. a cylinder of the outer radiusa = 0.25m rotates with the angular velocityΩ0 =
1256 rad/s) and the relative amplitude of the angular velocity modulation isε0 = 0.1.
These plots illustrate the space resonances. In fact, as long as the values ofε are outside
the resonance positions (cf. Figs. 1 and 2), the acoustical signals have low sinusoidal
amplitudes. The picture is sharply changed when theε parameter crosses the dispersive
curves. Then the oscillations of the signals become good noticeable although for small
ε0 values the amplitudes scarcely reach 20 Pa. Figure 3b shows only for the second term
of the expression (39), i.e. it displays the component with the double frequency. Here
the above mentioned effect of space resonance is also demonstrated, but, it arises of
course for other values ofε. The amplitudes of these oscillations are of two order lower
because the parameterε0 is small again. In fact, such an additional signal is masked on
the phone of the signal of frequencyω0. However, its existence provides evidence that,
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Fig. 3. The time dependence of the sound pressure (in Pa) calculated for the different values of the thick-
ness parameterε and forr/a = 10, x0 = 20, X0L = 0.001, ε0 = 0.1 (a – the total signal; b – the signal

at the frequency2ω0).

in our case, the sound radiation has the character of a wave field of the second harmonic.
This is clearly shown in the Fig. 4 a which illustrates the sound radiation intensity [5]

N = 10 lg(I/I0), I0 = 10−12 W/m2. (49)

as the function ofx0 and ε. The calculations have been performed on the basis of
Eq. (48) withr/a = 1, XL0 = 0.001, andε0 = 0.3. Figure 4a depicts the total inten-
sity, while Fig. 4b represents only a part of it corresponding to the second component
of the expression forI. These plots disclose also both the resonances of the radiation
amplitudes and the dispersive character of the wave formation. More details concerning
the structure of the radiation intensity as function of frequency are displayed in Fig. 5
(also in dB) for discrete values ofε (all other parameters are the same as in the case of
Fig. 4). These illustrations show that the resonances are of high quality with fairly inten-
sive amplitudes. The resonances of the double frequency are hard to notice; they can be
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Fig. 4. The intensity of the sound waves as function of the frequencyx0 and the geometrical parameter
ε for r/a = 1, XL0 = 0.001, ε0 = 0.3 (a – the total intensity; b – the second component of the

expression forI).

observed only in the low frequency range. The plots describe very well the motion of the
resonance locations with the change of the geometrical parameterε. As one can see, the
first resonance line is shifted toward lower frequencies, extending and decreasing. All
the other resonance lines diverge quickly and are shifted toward higher frequencies. This
is connected with the reflection of the elastic waves from the boundary surfaces of the
hollow cylinder. In Fig. 6, analogous curves for the intensity at secondary frequencies
are drawn. The corresponding low-level resonances are practically masked in Fig. 5.

Finally, Fig. 7 are shows the distributions of the sound wave intensity near the cylin-
drical surface,1 ≤ r/a ≤ 2, when the elastic tube thickness is the continuously variable.
The pictures are obtained forx0 = 5, 10, 25 and50. These plots are interesting exam-
ples of the clear expression for both the prime resonances (withx0) and the secondary
resonances (with2x0). In other words, it is demonstrates the fact that continuous vari-
ation of the parameterε results in a visible splash of the sound intensity for arbitrary
frequencies of the radiation.
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Fig. 5. The structure of the radiation intensity as function of the frequency for the different values ofε and
for r/a = 1, XL0 = 0.001, ε0 = 0.3.
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Fig. 6. The frequency characteristic of the radiation intensity component with2x0 for different values
of ε (all other parameters as in the Fig. 5).
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Fig. 7. The distribution of the sound wave intensity near the cylindrical surface,1 ≤ r/a ≤ 2 for
continuously changing of the elastic tube thickness for differentx0(a−x0 = 5; b−x0 = 10; c−x0 = 25;

d− x0 = 50) and forXL0 = 0.001, ε0 = 0.3.

5. Conclusions

The rotation of the hollow circular elastic cylinder with varying angular velocity
causes acoustical radiation into the surrounding medium. More precisely, the source
of the wave propagation in the cylinder and in the compressible fluid is a mass force,
namely, the centrifugal force varying with time and excited by the rotatory movement of
the elastic body. As the result of the time modulation of this motion, sound waves with
a complicated spectral structure of a clear expressed resonance character are generated.
The resonance properties are also transferred to the stationary excited sound signals.
The generated signal contains the first and second oscillation harmonics, because the
centrifugal force is proportional to the second power of the angular velocity. Thus we
propose to consider the rotating elastic cylinder as an all-directional transducer of the
sound waves generated simultaneously on the fundamental and on the double harmon-
ics. On the other hand, the rotating object can be considered as the source of the unde-
sirable sound radiation (noise) in the water. The investigation of the thin structure of the
frequency characteristics is a necessary precondition of the sound radiation control.

The analysis of the numerical calculations shows the following major peculiarities
of the sound wave structure:

1. The amplitudes of the radiated acoustical pressure or wave intensity has the se-
quence of resonances caused by the superposition of outgoing and ingoing cylindrical
waves in the elastic material of the rotated tube.
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2. The resonance locations are connected with the phase velocitiesvph
j = cx/xres

j (x)
(j = 1, 2, . . .) of the resonance wave propagation. The phase velocities as well as the
group velocitiesvgr

j = dvph
j /dx (j = 1, 2, . . .) of these waves are subject to the influ-

ence of the dispersion phenomenon caused by the varying cylinder thickness parameter.
3. The resonance lines are distinguished by the good quality and high intensity.
4. The resonances corresponding to the solid cylinder are of constructive type. In

the case of the hollow cylinder, the resonances are divided in the constructive and de-
structive classes. This effect is visible very well for thin elastic cylindrical shells.

5. In contrast to the positions of all other resonances, the first resonance is a par-
ticular one since its location is little movable with the variation of the cylindrical wall
thickness.

6. The series of low-level resonances, demonestrated in the acoustical intensity and
masked on the phone of the high-amplitude resonances, are well disclosed when the
frequencies of the oscillation of the angular velocity are fixed and the cylindrical tube
thickness is continuously changed.

References

[1] M. A BRAMOWITZ , I. STEGUN [Eds.], Handbook of special functions with formulae, plots and
mathematical tables[in Russian], Nauka, 830, Moscow 1979.

[2] I. I. A RTOBOLEVSKI (main Ed.),Politechnical dictionary[in Russian], Sovetskaya Encyclopedia,
608, Moscow 1976.

[3] JU. A. BRYTCHKOV, A. P. PRUDNIKOV, Integral transforms of generalized functions[in Russian],
Nauka, 287, Moscow 1977.

[4] L. FELSEN, N. MARCUVIC, Radiation and scattering of waves[in Russian], Vol. 1, Mir, 548,
Moscow 1978.

[5] I. P. GOLYAMINA (main Ed.),Ultrasound: The little encyclopedia[in Russian], Sovetskaya Ency-
clopedia, 400, Moscow 1976.

[6] G. W. HOUSNER, T. VREELAND Jr,The analysis of stress and deformation, Macmillan, New York,
Collier-Macmillan, 440, London 1975.

[7] E. KAMKE , Handbook of the ordinary differential equations[in Russian], Nauka, 576, Moscow
1976.

[8] M. A. K OLTUNOV, JU. N. VASIL’ YEV, V. A. TCHERNYKH, Elasticity and strength of cylindrical
bodies[in Russian], Vysshaya Shkola, 526, Moscow 1975.

[9] A. I. L UR’ E, Theory of elasticity[in Russian], Nauka, 939, Moscow 1970.

[10] J. MICHALCZYK , Maszyny wibracyjne: Obliczenia dynamiczne, drgania, hałas, Wydawnictwa
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