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A perfectly conducting strip embedded in a piezoelectric medium is considered. Waves
propagating along the strip are investigated with the use of a surface impedance function
which is suggested by the known surface impedance function for a perfectly conducting plane
embedded in the medium. A dispersion equation for the waves is found and solved in the case
of a narrow strip.

1. Introduction

The method of the solution to the problem is explained in Ref. [1], where an approx-
imate surface impedance (a function of slowness) for a conducting strip of a finite width
is constructed from the corresponding function for a conducting plane [2]. Although the
wave propagation along the conducting strip is three-dimensional, some basic features
of the surface impedance are similar to those of the two-dimensional problem of wave
propagation along the conducting plane.

For an isotropic medium, the slowness of the wave propagating along a conducting
strip is found in Ref. [1]. It can serve as an approximate slowness for an anisotropic
medium in special cases (specific medium or specific crystal cuts with respect to the
strip, see Sec. 2). In general, however, anisotropic effects in applications are significant
and cannot be neglected. In the paper, we take into account contributions to the slowness
along the strip due to anisotropy of the medium.

The Fourier transform of the surface impedance (with respect to the slowness across
the strip) is a function defined in the plane of the strip. Using this function we can find
the electric potential across the strip, provided the electric charge distribution across the
strip is given. Since the electric potential should vanish on the strip, we get an equation
for the slowness along the strip, in other words, the dispersion equation for the wave
that propagates along the strip.
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2. The function Z

Let the electro-mechanical field in a homogeneous piezoelectric medium depend
on time as exp(jωt). In the rectangular system of coordinates (x, y, z), we consider a
perfectly conducting strip of the width 2w in the plane z = 0, and assume that its axis
of symmetry coincides with the x axis (see Fig. 1 in Ref. [1]). The thickness of the strip
is infinitesimal, so that its mechanical properties may be neglected.

In the plane z = 0, the field is assumed to depend on x and y as exp(−jrx− jsy),
where r and s are components of the wave vector. It will be convenient, occasionally,
to call r and s slownesses (and use the concept of slowness curve), although in fact the
slownesses are equal to r/ω and s/ω. Since ω is constant, the possible confusion should
not be serious.

The relation between the electric potential φ and the electric charge (surface) density
σ in the plane z = 0 is given by the equality

φ = Z(k)σ. (1)

The function Z(k), where k = (r2 + s2)1/2, may be called a surface impedance (to be
exact, it is Z/ω that has the physical dimension of surface impedance). The approxima-
tion of Z(k) proposed in Ref. [1] is

Z(k) =
C√
k2
− Cκ√

k2 − k2
c

, (2)

where C and κ are positive constants, and kc is the cutoff slowness of bulk waves. In
terms of the variables r and s, Eq. (2) can be rewritten as

Z(k) =
C√

r2 + s2
− Cκ√

r2 + s2 −R2
, (3)

where R = kc. In the plane (r, s), the second term of Eq. (3) is singular at the circle
r2 +s2 = R2. In the vicinity of the r axis, where the approximation is meant to be valid
(for r > 0), a section of the circle should approximate the slowness curve related to the
slowest bulk wave. It is seen that the cutoff point (rc, sc) of the slowness curve lies on
the r axis, and is given by the equalities rc = R and sc = 0.

In general, cutoff points of slowness curves are shifted off the r axis. Therefore,
the approximation given by Eq. (3) is valid only when the shift is sufficiently small
(specific crystal cuts or weak anisotropy). To take fully into account anisotropy of the
piezoelectric medium we should make some of the parameters C, κ, kc depend on the
variable s. The simplest way is to leave C and κ constant, and to shift the circle that
approximates the slowness curve. Instead of Eq. (3) we have

Z(k) =
C√

r2 + s2
− Cκ√

f(r, s)
(4)
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with
f(r, s) = (r − (rc −R))2 + (s− sc)

2 −R2. (5)

The circle f(r, s) = 0 approximates the slowness curve in the vicinity of the cutoff
point (rc, sc). The radius R of the circle becomes an additional parameter, not related
to rc. If rc = R and sc = 0, thenf(r, s) = r2 + s2 −R2.

With respect to the variable s, the function f(r, s) is a polynomial of degree 2,

f(r, s) = as2 + 2bs + c, (6)

where a = 1, b = −sc, and c = s2
c + (r − rc)

2 + 2R(r − rc). Hence, we have

Z(k) =
C√

r2 + s2
− Cκ√

as2 + 2bs + c
. (7)

The function Z(r, s) = Z(k) will be used below.

3. The function G

The Fourier transform of Z(r, s) with respect to s,

G(r, y) =

∞∫

−∞
Z(r, s) exp (−jsy) ds, (8)

can be calculated with the use of formulas given in Ref. [3] (see p. 122, f. (32), and
p. 117, f. (5)). We obtain

G(r, y) = −2CK0(r|y|) + 2Cκ exp (−jscy)K0(B|y|), (9)

where K0 is the modified Bessel function of the second kind (of order zero), and B =
(c− b2)1/2 = ((r − rc)

2 + 2R(r − rc))
1/2

. The value of B is real for r > rc and for
r < rc − 2R. We assume that r > rc. If rc = R and sc = 0, then G(r, y) given
by Eq. (9) is equal to the corresponding function for the isotropic case (cf. Ref. [1],
Eq. (3.4)).

The function G(r, y), which is defined in the plane z = 0 and depends on the
parameter r, solves the problem of finding the electric potential when the electric charge
density is given. The corresponding integral formula is the Fourier transform of Eq. (1)
with respect to the variable s, i.e.

φ(y) =

∞∫

−∞
G(r, y − y′)σ(y′) dy′, (10)

where φ(y) and σ(y′) are amplitudes of the wave propagating along the strip.
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For calculation purposes, we represent the exponential function in the second term
of Eq. (9) as a series. This gives

G(r, y) = −2CK0(r|y|) + 2Cκ
∞∑

m=0

(−jsc)
m

m!
ymK0(B|y|). (11)

4. A narrow strip

If the width 2w of the strip is infinitesimal, we may assume that the charge density
across the strip is given by the function

σ(y) = (w2 − y2)−1/2 (12)

for |y| < w, and σ(y) = 0 for |y| > w.
It suffices to calculate the potential φ(y) for y = 0. We have

φ(0) =

w∫

−w

G(r,−y)σ(y) dy (13)

(the prime has been omitted), and then

φ(0) = −2C

w∫

−w

(w2 − y2)−1/2
K0(r|y|) dy

+ 2Cκ

∞∑

m=0

(−jsc)
m

m!

w∫

−w

ym(w2 − y2)−1/2
K0(B|y|) dy. (14)

In order to calculate the above integrals we use K-transforms defined as

g(ρ; ν) =

∞∫

0

f(y)Kν(ρy)(ρy)1/2 dy (15)

(cf. Ref. [4], p. 125). The first term of Eq. (14), and the second term for m = 0, can be
calculated with the use of the function

f(y) = y−1/2(w2 − y2)−1/2 (16)

for y < w, and f(y) = 0 for y > w. We get

g(ρ; 0) = ρ1/2

w∫

0

(w2 − y2)−1/2
K0(ρy) dy

=
1
2
πρ1/2I0(ρw/2)K0(ρw/2) (17)

(cf. Ref. [4], p. 129, f. (10) for ν = 0), and hence
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φ(0) = −2πCI0(rw/2)K0(rw/2)

+ 2πCκI0(Bw/2)K0(Bw/2) + 2Cκ
∞∑

m=2

(−jsc)
m

m!
gm(B), (18)

where

gm(B) =

w∫

−w

ym(w2 − y2)−1/2
K0(B|y|) dy (19)

for even m, and gm(B) = 0 for odd m.
If we neglect the series in Eq. (18), which contains higher order terms, and stipulate

that φ(0) = 0 on the strip, then we arrive at an equation with respect to the variable r,

−I0(rw/2)K0(rw/2) + κI0(Bw/2)K0(Bw/2) = 0. (20)

This is the dispersion equation for the wave along the strip. It can be easily solved
for w → 0. Indeed, applying asymptotic expressions of the modified Bessel functions
Im(z) and Km(z) for z → 0,

Im(z) ∼ 1
m!

(z/2)m, Km(z) ∼ (−1)m+1Im(z) ln(z/2) (21)

(cf. Ref. [5], p. 5, f. (12), and p. 9, f. (37)), we get

ln(rw/4)− κ ln(Bw/4) = 0 (22)

or
B2 = (w/4)2(K−1)r2K , (23)

where K = κ−1. Assuming that r ≈ rc on the right-hand side of Eq. (23), and substi-
tuting B, we find the quadratic equation

r2 + 2(R− rc)r + r2
c − 2Rrc −X2 = 0 (24)

for r, where X = (rcw/4)K(w/4)−1. The solution for r > rc is

r = rc −R + (R2 + X2)1/2
. (25)

(The other solution, for r < rc − 2R, has the minus sign before the square-root.)
It is interesting to note that if R = rc then the slowness r is equal (approximately,

for w sufficiently small) to that of the isotropic case, even though sc may be different
from zero. And conversely, if R 6= rc (which is possible only in the anisotropic case)
then the slowness r is different from that of the isotropic case, even though sc may be
equal to zero, i.e. the cutoff point (rc, sc) may lie on the r axis.

Since X is much less than R (X → 0 for w → 0), the square-root in Eq. (25) can
be expanded. This gives an even simpler approximate formula,

r = rc +
1
2
R−1X2, (26)
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for the slowness of the wave along the strip. It is seen that the value of r− rc is directly
proportional to the curvature R−1 of the slowness curve at the cutoff point.

The higher order contributions to the electric potential φ(0) in Eq. (18) depend on
the parameter sc. This dependence can be taken into account (for a specific value of w)
by using an approximate value of the integral given by Eq. (19). For w sufficiently small,
the expression under the integral sign is less than zero within the integration limits, and
tends to minus infinity as y → 0 because K0(B|y|) has a logaritmic singularity for
y = 0. Therefore, we can assume some mean value of the function ym within the
integration limits, say wm, and integrate the rest of the expression. In this way, we
obtain

gm(B) ≈ wm

w∫

−w

(w2 − y2)−1/2
K0(B|y|) dy (27)

for even m. It should be noted that the form of the approximate gm(B) as a function of
the variable w may differ from that of the exact integral.

If we confine ourselves to the first term of the series (m = 2) then, instead of
Eq. (20), we have

−I0(rw/2)K0(rw/2) + (1− s2
cw

2/2)κI0(Bw/2)K0(Bw/2) = 0. (28)

In other words, the only difference is that in the equation, given by Eq. (20), κ is replaced
by

κ′ = (1− s2
cw

2/2)κ < κ, (29)

and in the solution, given by Eq. (25) or Eq. (26), K is replaced by

K ′ = K/(1− s2
cw

2/2) > K. (30)

As we can see, the more the cutoff point (rc, sc) in the plane (r, s) is shifted off the
r axis, the greater the value of K ′, and consequently the less the value of r − rc (for
rcw < 1). The higher order contributions for m = 4, 6, 8 . . . give the same effect.

5. Conclusion

The anisotropy of the piezoelectric medium influences the propagation of the wave
guided along the (narrow) strip in two respects. First, the slowness of the guided wave
depends on the curvature of the slowness curve (related to the slowest bulk wave) at
the cutoff point. The slowness may be greater or less than that in the isotropic case,
depending on whether the curvature is greater or less than 1/rc. Second, the slowness
of the guided wave depends on the shift of the cutoff point off the r axis, given by sc.
If the shift is greater, the slowness is less, and vice versa. The two parameters, i.e. the
curvature and the shift, are independent of each other.

The narrow-strip waveguide can find application in new piezoelectric surface wave
devices which will complement traditional SAW devices.
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