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This paper presents an overview of intelligent soft computing techniques within the frame-
work of active control of noise and vibration. Tools considered include genetic algorithms
(GAs), neural networks (NNs) and fuzzy logic (FL). The paper highlights associated mer-
its and potential benefits of the approaches in modelling and control of dynamic systems.
These are demonstrated in the control of noise in free-field propagation and vibration sup-
pression in 1D and 2D flexible structures. The paper shows that the potential benefits of the
individual components can be exploited and approaches for design and development of hy-
brid soft-computing algorithms devised for modelling and control of dynamic systems. It is
demonstrated that significant benefits in terms of performance can be gained with such hybrid
algorithms.
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1. Introduction

A recent trend in research is towards producing machines with increasingly higher
machine intelligence quotient (MIQ). The term soft computing (SC) has been intro-
duced in conjunction with MIQ [1]. An increase in MIQ is achieved in two totally
separate ways. On the one hand, there are machines based on classical logic and, thus,
on precision, which are evolving towards faster and faster machines with an increas-
ing degree of parallelism. On the other hand, new forms of logic such as fuzzy logic
(FL), neural networks (NNs), and probabilistic reasoning comprising genetic algorithms
(GAs), are being developed the strengths of which (by contrast) lie in their capacity to
deal with uncertainty and imprecision. In the former case solutions are found for prob-
lems that are very precise and, consequently, have a high computational cost. This is
referred to as hard computing. In the latter case, referred to as soft-computing, impre-
cise or uncertain solutions can be found at a much lower cost in terms of calculation



260 M. O. TOKHI

effort. There are a number of cases in which excessive precision is quite useless, so a
non-traditional approach is preferable. In some problems, this is the only way because
the computational complexity of a classical approach would be prohibitive.

Figure 1 shows, at least as far as FL, NNs, and GAs are concerned, how the various
components of soft computing can be approximately ordered on a time scale and on a
scale relating to their learning capacity, where the time scale is ordered according to
the learning time. Fuzzy logic is not capable of learning anything. Neural networks and
GAs, on the other hand, have such capability, although it can be said that, on average,
pure GAs generally need longer learning times. From another viewpoint, the order is
inverted. GAs do not need priori knowledge, NNs need very little and fuzzy logic at
times needs quite detailed knowledge of the problem to be solved.

Fig. 1. Soft computing paradigm.

With reference to Fig. 1, each area of soft computing has its advantages and dis-
advantages. Fuzzy logic does not share the inherent concept of NNs, i.e., automatic
learning. So it is impossible to use FL when experts are not available. It does, how-
ever, have significant advantage over the other two techniques. Expressed according to
fuzzy canons, the knowledge base is computationally much less complex and the lin-
guistic representation is very close to human reasoning. There are two reasons for using
FL in an application. Firstly, in certain circumstances the definition of the problem is
vague and uncertain. The information available does not lend itself readily to precise
mathematical reasoning as in rule-based systems. A second class of applications is well
defined but precise solution is not necessary; the tolerance for imprecision can be ex-
ploited to simplify the solution. Most applications of fuzzy logic today fall into the
second category.

Neural networks are quite different, at least in the context of the typical features of
gradient descendent learning networks. Firstly, they were conceived of specifically for
learning. They are, therefore, fundamental when only some significant examples of the
problem to be solved are available. There are two evident disadvantages in using NNs.
In general, they can learn correctly from examples, but what is learned is not easy for
humans to understand, i.e., the knowledge base extracted from them does not have such
an intuitive representation as that provided, for example, by FL. Secondly, the types of
functions that can be used in NNs have to possess precise regularity features and the
derivative of these functions has to be known a priori.
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Similar considerations as above hold for GAs, with certain clarifications. Their
learning speed is usually slower. However, they have two great advantages over NNs.
The functions that can be used in GAs can be much more general in nature, and knowl-
edge of the gradient of the functions is not usually required. Finally, as these algorithms
explore in several directions at the same time, they are much less affected than NNs by
the problem of local extrema; that is, a GA has far less likelihood than an NN of finding
a local extreme. Even if the extreme found is not a global one, it is likely to correspond
to a less significant learning error.

Based on the above considerations, it is the opinion in this work that a technique,
which makes use of a combination of soft computing features, i.e., GAs, NNs, and FL,
would be a useful prospect. A hybrid technique, in fact, would inherit all the advantages,
and not the less desirable features of individual soft computing components.

Although a large number of applications of soft computing have concentrated around
the application of neural-fuzzy and neural-genetic techniques, the utilisation of the con-
cept of FL to make a GA adaptive is limited. Moreover, the reported concepts do not
exploit the reasoning capabilities of FL fully. Although GAs constitute powerful tools
for solving difficult problems involving huge search spaces and are easy to implement,
they usually require human supervision, for the features to be exploited successfully. It
appears that FL techniques can help reduce the amount of human intervention needed
to use GAs. Therefore, to evaluate and assess the performance of soft computing tech-
niques, suitable combinations of GA, FL and NNs may be considered. In this manner,
the characteristic features of each constituent component; i.e. reasoning capabilities of
FL, learning capabilities of NNs and adaptation capabilities of GAs, can be utilised and
exploited to achieve an optimal blend of soft computing components. Such features are
investigated in this paper, and the performances of the proposed techniques are assessed
at modelling and control levels within noise propagation and flexible structure environ-
ments. The platforms utilised include three dimensional (3D) noise propagation, flexible
1D and 2D structures.

2. Control structure

A schematic diagram of the geometric arrangement of a single-input multi-output
(SIMO) active control structure is shown in Fig. 2a. The (unwanted) primary (noise/
vibration) signal is detected by a detector (sensor), located at a distance re relative to the
primary source and distance rfi relative to secondary (cancelling) source i (i = 1, ..., k).
The detected signal is processed by a SIMO controller of suitable characteristics and fed
to a set of k secondary sources. The secondary signals thus generated interfere with the
primary signal so that to achieve a reduction in the level of the noise/vibration at and in
the vicinity of observation points j (j = 1, ..., k), located at distances rgj relative to the
primary source and rhij relative to secondary source i, in the medium.

A frequency-domain equivalent block diagram of the control structure is shown
in Fig. 2b, where, E = [e] is a 1 × 1 matrix representing the transfer characteris-
tics of the path, through the distance re, between the primary source and the detector,
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F is a k × 1 matrix representing the transfer characteristics of the paths, through the
distances rfi (i = 1, ..., k), from the secondary sources to the detection point, G is a
1× k matrix representing the transfer characteristics of the paths, through the distances
rgj (j = 1, ..., k), from the primary source to the observation points, H is a k×k matrix
representing the transfer characteristics of the paths, through the distances rhij , from the
secondary sources to the observation points, M = [m] is a 1 × 1 matrix representing
the transfer characteristics of the detector, L is a k× k diagonal matrix representing the
transfer characteristics of the secondary sources and C is a 1 × k matrix representing
the transfer characteristics of the controller;

a)

b)

Fig. 2. Active feedforward control structure: a) schematic diagram; b) block diagram.

F = [f1 f2 · · · fk]
T , G = [g1 g2 · · · gk] , C = [c1 c2 · · · ck] ,

H =




h11 h12 · · · h1k

h21 h22 · · · h2k
...

...
...

...
hk1 hk2 · · · hkk


 , L =




l1 0 · · · 0
0 l2 · · · 0
...

...
...

...
0 0 · · · lk


 ,

(1)
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UD is a 1 × 1 matrix representing the (primary) signal at the source, YOD is a 1 × k
matrix representing the primary signal at the observation points, UC is a 1 × k matrix
representing the control (secondary) signals at the source, YOC is a 1× k matrix repre-
senting the control signals at the observation points, UM is a 1× 1 matrix representing
the detected signal and YO is a 1× k matrix representing the observed signals.

The objective in Fig. 2 is to achieve full (optimum) cancellation at the observation
points. This is equivalent to the minimum variance design criterion in a stochastic envi-
ronment. This requires the primary and secondary signals at each observation point to
be equal in amplitudes and have a phase difference of 180◦ relative to one another;

YO = YOD + YOC = 0. (2)

Using the block diagram in Fig. 2b and the design criterion in Eq. (2), the design
rules for the controller to achieve optimum cancellation of the noise/vibration at the
observation points can be expressed as [2]:

ci = Qi




k∑

p=0

Qp



−1

, i = 1, . . . , k, (3)

where,

Q0 =

∣∣∣∣∣∣∣∣∣

q11 q12 · · · q1k

q21 q22 · · · q2k
...

...
...

...
qk1 qk2 · · · qkk

∣∣∣∣∣∣∣∣∣
, Qi = (−1)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q01 q02 · · · q0k

q11 q12 · · · q1k
...

...
...

...
q(i−1)1 q(i−1)2 · · · q(i−1)k

q(i+1)1 q(i+1)2 · · · q(i+1)k
...

...
...

...
qk1 qk2 · · · qkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

q0j (j = 1, ..., k) represents transfer characteristics of system model between the de-
tection point and observation point j when all the secondary sources are off and qij

(i = 1, 2, ..., k; j = 1, 2, ..., k) represents transfer characteristics of the system model
between the detection point and observation point j when all the secondary sources are
off except secondary source i. The design rule thus obtained can be realised with suit-
able estimation/learning algorithm, within either noise or vibration propagation media.

3. Genetic algorithms

The approaches described in this section constitute models and controllers in linear
parametric form developed with GAs. Genetic algorithms form one of the prominent
members of the broader class of evolutionary algorithms, inspired by the mechanism of
natural biological evolution, i.e., the principles of survival of the fittest [3]. The oper-
ating mechanism of a GA can be described through the stages shown in Fig. 3. These
comprise the following:
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1. Creation of initial population: An initial population of potential solutions is cre-
ated. Each element of the population is mapped onto a set of strings (the chro-
mosome) to be manipulated by the genetic operators.

2. Evaluation and selection: The performance of each member of the population is
assessed through an objective function imposed by the problem. This establishes
the basis for selection of pairs of individuals that will mate during reproduction.
For reproduction, each individual is assigned a fitness value derived from its
raw performance measure, given by the objective function. This value is used in
the selection to bias towards more fit individuals. Highly fit individuals, relative
to the whole population, have a high probability of being selected for mating,
whereas less fit individuals have a correspondingly low probability of being se-
lected [4].

3. Genetic manipulation: Genetic operators such as crossover and mutation are used
to produce a new population of individuals (offspring) by manipulating the “ge-
netic information” usually called genes, possessed by the members (parents) of
the current population. The crossover operator is used to exchange genetic in-
formation between pairs, or larger groups, of individuals. Mutation is generally
considered to be a background operator. It introduces new genetic structures,
which ensures that the search process is not trapped at a local minimum.

Fig. 3. Genetic algorithm-simple working principles.

After manipulation by the crossover and mutation operators, the individual strings are
then, if necessary, decoded, the objective function evaluated, a fitness value assigned to
each individual and individuals selected for mating according to their fitness, and so the
process continues through subsequent generations. In this way, the average performance
of individuals in a population is expected to increase, as good individuals are preserved
and breed with one another and the less fit individuals die out. The GA is terminated
when some criteria are satisfied, e.g., a certain number of generations completed or
when a particular point in the search space is reached.
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In this investigation, randomly selected parameters are optimised for different, ar-
bitrarily chosen, order to fit to the system by applying the working mechanism of GAs
as described above. The fitness function utilized is the sum-squared error between the
actual output, y(n), of the system and the predicted output, ŷ(n);

f(e) =
n∑

i=1

(|y(n)− ŷ(n)|)2 , (4)

where n represents the number of input/output samples. With the fitness function given
above, the global search technique of the GA is utilised to obtain the best set of param-
eters among all the attempted orders for the system.

3.1. Control algorithms

Using the design rule in Eq. (3) an estimation learning algorithm with GAs can be
formulated as follows:

Algorithm–1 (optimum disturbance reduction):

(i) Switch off all secondary sources, estimate transfer functions q0j (j = 1, 2, ..., k).
(ii) Switch on secondary source i(i = 1, 2, ..., k), estimate transfer functions qij

(j = 1, 2, ..., k).
(iii) Use Eq. (3) to obtain the transfer function of the controller ci (i = 1, 2, ..., k).
(iv) Implement the controller, to generate the control signals.
(v) Measure system performance and compare with pre-specified index, if within

specified range then go to (iv) otherwise go to (i).
Note that adaptation in Algorithm–1 is initiated by the supervisory level control upon
detection of degradation in system performance (due to a change in system character-
istics). This means that the system transfer characteristics q0j and qij are re-estimated
and the controller re-designed according to Eq. (3). Note further that, to design the con-
troller with k secondary sources, a total of k(k+1) models are required to be estimated.
This implies that with a large number of secondary sources the computational burden
on the processor implementing the algorithm will be significantly high. This will have a
corresponding impact on the requirements of the computational capabilities of the pro-
cessor. Thus, it is important during the process of realisation of the controller, to make
sure that the processor meets the on-line sampling requirements of the control scheme
as well as provides adequate computing speed for the adaptation mechanism.

Algorithm–2 (direct GA optimisation):

An alternative to the strategy outlined in Algorithm–1 is to achieve adaptation of the
controller characteristics on the basis of minimising the mean square of the measured
signal (as error) at each observation point. With reference to Eq. (4) this will corre-
spond to ŷ(n) representing the observed signal and y(n) = 0 as the desired signal. The
optimisation capabilities of GAs can be utilised in this respect to realise such a strategy.
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3.2. Implementation and results

To evaluate the performances of Algorithm–1 and Algorithm–2 simulation environ-
ments characterising the governing dynamic behaviours of a cantilever beam and of
a flexible plate were developed using finite difference methods. Details of development
of these environments can be found in [2] and [5]. The flexible beam comprises an
aluminium type cantilever beam of length l = 0.635 m and mass m = 0.03745 kg,
in fixed-free mode, and the beam is discretised along its length into 20 equal-length
sections. The flexible plate simulation environment, on the other hand, comprises an
aluminium type 1× 1 m2 square plate clamped at all four edges, and the plate is discre-
tised into 20× 20 equal-size segments.

A single-input single-output (SISO) control structure was utilised with Algorithm–1
within the flexible plate simulation environment. Investigations were carried out using
the GA optimisation with different initial values and operator rates. From the work
carried out it was found that satisfactory results were achieved with generation gap of
0.9, crossover rate of 0.06, mutation rate of 0.01. The deflection model was observed
with different orders. The best result was achieved with an order 10. The GA was de-
signed with 100 individuals in each generation. The maximum number of generations
was set to 1000. The algorithm achieved MSE levels of 0.0016 and 0.0030 for Q0 and
Q1, respectively in the 1000-th generation. Figure 4 shows output prediction with GA
modelling of the system. The system performance at the observation point with the uni-
formly distributed white noise input signal as observed at the observation point is shown
in Fig. 5. It is noted that the spectral attenuation achieved at the first, second and third
modes were 11.858 dB, 21.712 dB and 9.9845 dB, respectively.

a) b)

Fig. 4. Output prediction with GA characterisation – flexible plate: a) Q0; b) Q1.

The performance of the SISO active control system with Algorithm–2 was investi-
gated within the flexible beam simulation environment. The performance as monitored
at the observation point is shown in Figure 6. It is noted that a comparable level of can-
cellation to that with Algorithm–1 of the disturbance was achieved at the observation
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a) b)

Fig. 5. Performance of the GA based SISO system at the observation point – flexible plate: a) time
domain; b) spectral attenuation.

point. The advantage of Algorithm–2 is that it estimates the controller characteristics
implicitly, bypassing estimation of the system model. However, the convergence of the
algorithm could be slower.

a) b)

Fig. 6. Performance of the direct-GA based SISO system at the observation point – flexible beam: a) time
domain; b) spectral attenuation.

4. Neuro and neuro-fuzzy control

In this section approaches based on NNs and combined NN and FL for control of
noise and vibration are described. Various modelling techniques can be used with NNs
to identify non-linear dynamic systems. These include state-output model, recurrent
state model and Non-linear AutoRegressive Moving Average process with eXogeneous
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input (NARMAX) model. It is evident from the literature that if the input and output
data of the plant are available, the NARMAX model is a suitable choice for modelling
nonlinear systems with suitable neuro-learning algorithms. Mathematically the model
is described as [6]:

ŷ(t) = f [(y(t− 1), y(t− 2), · · · , y(t− ny),
u(t− 1), u(t− 2), · · · , u(t− nu),
e(t− 1), e(t− 2), · · · , e(t− ne)] + e(t), (5)

where ŷ(t)is the output vector determined by the past values of the system input vec-
tor, output vector and noise with maximum lags ny, nu and ne, respectively, f(·) is
the system mapping constructed through multi-layer perceptron (MLP) or radian basis
function (RBF) neural networks with an appropriate learning algorithm. The model is
also known as NARMAX equation error model. However, if the model is good enough
to identify the system without incorporating the noise term or considering the noise as
additive at the output the model can be represented in a NARX form as [6, 7]:

ŷ(t) = f [(y(t− 1), y(t− 2), · · · , y(t− ny),
u(t− 1), u(t− 2), · · · , u(t− nu)] + e(t). (6)

This is shown in Fig. 7. Multi-layer perceptron NNs with backpropagation learning
algorithm [6, 8, 9] are used in this work at modelling and control levels.

Fig. 7. NARX model identification with neural networks.

Adaptive neuro-fuzzy inference system (ANFIS) represents a combined NN and FL
paradigm which takes advantage of the capabilities of FL for pre-processing the input
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data to an NN. This hybrid combination allows to deal with both the verbal and the
numeric power of intelligent systems, and as such it helps the NN to converge and learn
more efficiently. As is known from the theory of fuzzy systems, different fuzzification
and defuzzification mechanisms with different rule bases can propose various solutions
to a given task [10].

4.1. Control algorithms

Considering a SISO active control structure, the controller design rule in Eq. (3) can
be expressed as:

C =
[
1−Q1Q

−1
0

]−1
. (7)

To allow nonlinear dynamics of the system be incorporated into neuro-training and de-
sign, the above can be realised through the training mechanism shown in Fig. 8. The
corresponding control algorithm can thus be formulated as below.

Algorithm–3 (neuro/ANFIS approach):

(a) Switch off the secondary source, train an NN/ANFIS network to characterise the
inverse of the system between the detection and observation point. This gives
characterisation of Q−1

0 .
(b) Switch on the secondary source, train an NN/ANFIS network to characterise the

system between the detection and observation point. This gives characterisation
of Q1.

(c) Train an NN/ANFIS network according to Fig. 8. This gives the required NN/
ANFIS-controller.

(d) Implement the controller, to generate the control signal.
(e) Measure system performance and compare with pre-specified index, if within

specified range then go to (d) otherwise go to (a).

Fig. 8. Training the NN/ANFIS controller.
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4.2. Implementation and results

The NN/ANFIS algorithm is evaluated and tested in this section within 3D noise
propagation and 2D flexible structure environments. The noise propagation medium
was constructed on the basis of physical properties of a free-field medium using mea-
sured data. Details of the development of the environment are found in [2]. The flexible
structure environment constitutes the flexible plate structure described earlier in Sec. 3.

To test and verify the neuro-control strategy in noise cancellation, the noise prop-
agation simulation environment characterising an active noise control (ANC) system
was utilised and coded within MATLAB. A tansigmoid function, representing the non-
linear dynamics of the system was also incorporated into the simulation environment.
A pseudorandom binary sequence (PRBS) simulating a broadband signal in the range
0 ∼ 500 Hz was utilised as the primary noise source. The amplitude of the signal was
varied to excite the various dynamic ranges of the system. An MLP network incorpo-
rating two hidden layers each with nine neurons and nu = ny = 9 was trained to
characterise Q−1

0 . A further MLP network incorporating two hidden layers each with
four neurons and nu = ny = 14 was trained to characterise Q1. Figure 9 shows the
output prediction achieved with these networks. A further MLP network incorporating
two hidden layers with 25 neurons in each layer and nu = ny = 18 was trained to char-
acterise the controller according to the scheme in Fig. 8. The MLP neuro-controller thus
obtained was implemented within the ANC system and its performance assessed. The
performance of the system as monitored at the observation point is shown in Fig. 10.
It is noted that an average level of cancellation of around 40 dB was achieved with the
system.

a) b)

Fig. 9. Output prediction with MLP NN characterisation: a) Q−1
0 ; b) Q1.

To assess and verify the ANFIS algorithm, a uniformly distributed white noise was
used as the primary source within the flexible plate environment. This type of input
is chosen to ensure that the dynamic range of interest of the simulated plate system
is captured. The ANFIS structure with first-order Sugeno model containing 36 rules
was considered. Gaussian membership functions with product inference rule were used
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Fig. 10. Cancelled noise spectrum at observation point with MLP neuro-controller.

at the fuzzification level. The fuzzifier outputs the firing strengths for each rule. The
vector of firing strengths is normalized. The resulting vector is defuzzified by utilizing
the first-order Sugeno model. At the modeling level, the fuzzifier possessed two inputs,
the rule base contained 36 rules and the defuzzifier had one output. Figure 11 shows
the performance of the ANFIS models in characterising Q−1

0 and Q1. It is noted that
the network gave a very good output prediction with an MSE of 8.6723 × 10−15 and
8.2250× 10−15 in characterising Q−1

0 and Q1, respectively.

a) b)

Fig. 11. Output prediction with ANFIS characterisation – flexible plate: a) Q−1
0 ; b) Q1.

To obtain the ANFIS controller, another first-order Sugeno model ANFIS structure
containing 36 rules was considered. The bell-shaped membership functions with prod-
uct inference rule were used at the fuzzification level. In this process the fuzzifier out-
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puts the firing strengths for each rule. The vector of firing strengths is normalized. The
resulting vector is defuzzified by utilising the first-order Sugeno model. To characterise
the controller, an ANFIS network with the fuzzifier possessing two inputs, the rule base
containing 36 rules and the defuzzifier comprising one output was trained. The ANFIS
controller thus obtained was implemented within the system and its performance as-
sessed in vibration reduction of the plate structure. Figure 12 shows the performance of
the ANFIS active control system in suppressing the vibration of the plate at the observa-
tion point. It is noted that, with the uniformly distributed white noise input, the spectral
attenuation achieved at the first, second and third modes were 15.2360 dB, 27.2721 dB,
and 10.7773 dB, respectively. These as compared to the results in Sec. 3.1 are noticeably
more than those achieved with GAs. Investigations have also shown that Algorithm–3
with ANFIS results in better performance than NN alone.

a) b)

Fig. 12. Performance of the system at the observation point – flexible plate: a) time domain; b) spectral
attenuation.

The above demonstrates that a suitable blend of soft computing components can
lead to significant performance enhancement in the modelling and control of dynamic
systems. Further hybrid paradigms reported in modelling and control of flexible manip-
ulators include combined NNs, FL and GAs, where the NN is used for modelling and
control purposes, the GA as a learning algorithm for the NN and FL in guiding the GA
towards feasible solutions [11]. A further approach uses FL in a collocated control loop,
GAs for optimisation of the rule base, and NN with GA within a non-collocated control
loop [12]. It has been shown that with such approaches the performance of the control
system enhances significantly.

A common problem in noise and vibration control applications arises due to non-
minimum phase behaviour of the system model, where the controller design criterion
requires inversion of the plant model, and hence unstable controller results. It has pre-
viously been demonstrated that such problems can be avoided with the soft-computing
approaches investigated and verified in this paper [13].
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5. Conclusion

An investigation into the development of intelligent soft computing algorithms for
modelling and control of dynamic systems within the framework of active control of
noise and vibration has been presented. It has been demonstrated that NNs, FL and
GAs each have associated features that suit certain requirements of an application and
accordingly potential benefits can be gained if such capabilities are matched with re-
quirements of the application. In this respect an approach involving suitable blend of
soft computing paradigms has been proposed that allows exploitation of potential bene-
fits of the constituent components in such a manner that they complement one another.
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