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The paper examines theoretically changes in the speed of an acoustic wave in crystals
caused by metallic dopants. It is well known that an acoustic wave has a wavelength larger
than the typical dimension of the elementary crystallographic cell, so it is sensitive only to
large-scale features. The model bases on the assumption that a crystal with uniform distributed
dopants can be transformed into a multiplayer virtual structure form which some conclusions
can be drawn. The approach presented is valid for longitudinal acoustic waves, where the
atomic displacement can be considered as a continuum field. It provides positive or negative
changes in the acoustic wave speeds for different dopants in a hypothetical lithium niobate
crystal.
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1. Introduction

Elasticity measurements of different type of materials can use acoustic waves from
external sources, for example using the pulse-echo method [1] or they can take advan-
tage of the use of natural Debye waves in light scattering experiments of Brillouin type
[2–4]. In both methods, the acoustic wavelength is much larger that the dimension of
a crystallographic cell. In other words, acoustic waves are sensitive only to large-scale
features of the samples investigated. From the quantum point of view, acoustic phonons
are sensitive to the large-scale features, while optic phonons are sensitive to local quan-
tum effects at a sub-atomic scale.

Technical applications of doped crystals require the determination of the influence
of the dopant concentration on the acoustic wave speeds, which are associated with the
mechanical quality, or more precisely, with the disturbed crystallographic order during
the technological treatment. This task requires also a proper theoretical background.
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The relationships between the longitudinal wave speeds and the metallic dopant con-
centration examined here predict a speed decrease for some elements and an increase
for others. It is assumed in the model that the elementary crystallographic cells posses
a cubic symmetry and that the same symmetry is adopted by the elementary cell of the
dopant material. The volume distribution of the dopants is uniform. The bulk volume of
a real crystal is assumed to be build of virtual cubes of the same elementary volume and
orientation. Inside of every cube an elementary cell of the dopant is localized, which
dimensions are proportional to the dopant concentration. Because the provided sym-
metries are cubic, in the next step we can, transform this picture to a one-dimensional
virtual periodical structure with an alternating layer of the basic substance and that of
the dopant material. In this way we obtain a virtual superlattice. Next, from the weighted
averaging procedure applied to a given doped superllatice, we can calculate the macro-
scopic quantity i.e the speed of the longitudinal acoustic wave. This is why the model
can be called a Virtual Weighted Superlattice Model (VWSM) of doped crystals. Some
features of the approach presented were adopted from the model introduced by RYTOV
about 50 years ago [5].

Novel technological processes, those based mainly on the epitaxial growth, warrants
preparation of artificial multilayered superlattices made of different metallic or semicon-
ductor materials. More importantly, the elastic features measured can be compared with
calculations based on the weighted averaging procedure. Good examples of these ef-
forts can be found in the works of M. GRIMSDITCH [6]. Also, recent theoretical efforts
of D. G. SEDRAKYAN and A. G. SEDRAKYAN for semiconductor superlattices with
random thicknesses of layers [7] show the importance of the research field presented.

2. Assumptions of the Virtual Weighted Superlattice Model (VWSM)

The present model is narrowed to the long wavelength limit, to longitudinal acoustic
waves and metal dopants of the same regular crystallographic lattice structure (Fe, Cu,
Ag, Au, Al, Ta, Ni, V) and, most importantly, the model assumes that the uniform
distribution of the dopant in a crystal can be thought of as a multilayered structure
with a number of layers which dimensions are a function of the dopant concentration.

2.1. The Rytov’s model of acoustic waves in superlattices

We take some advantage of the Rytov’s model proposed about fifty years ago. It
has been described partially in the two monographs [8, 9], mostly in relation to the
application to semiconductors. Here, we try to remind it in the original form adopting
however the results related mainly to the elasticity of superlattices built of two different
solid state materials. Rytov considered also a multilayer consisting of a solid layer and a
liquid layer, but these derivations are qualitatively similar to the solid-solid case. Never-
theless, the model seems nowadays still very useful due to the promising technological
and industrial possibilities of multilayered systems.
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The basic assumptions of the Rytov’s model are as follows: it is related to a multilay-
ered structure – an elementary bilayer can consist of two different solid sate materials or
from a solid material and a liquid one. Next, it is valid for acoustic wavelengths much
larger that the elementary bilayer thickness – it bases the solution of wave equations
of motion with appropriate boundary conditions. Next, a multilayer is assumed to be
isotropic in the plane of the layer, but in comparison to in-plane features it has a dif-
ferent behavior, into the direction parallel to the surface normal. Originally, the model
provided the solution of the acoustic waves motion into the direction perpendicular to
the sample surface. Figure 1 shows the coordinate system used in [5]. Rytov derived
their formulas assuming hexagonal symmetry of the elementary cells of the materials.
He derived five effective elastic constants for the multilayered superlattice.
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Fig. 1. The coordinate system of a multilayer in the Rytov’s theory.

An arbitrary displacement the vector U of an infinitely small particle of the con-
tinuum medium can be splitted into rotational-less and source-less parts, U = w + s,
where rotw = 0, and div s = 0, respectively. This is why we can derive from a typical
wave equation, with second spatial and temporal derivatives, the two following wave
equations of motion related to both the parts mentioned

∂2w
∂t2

− v2
l grad divw = 0,

∂2s
∂t2

− v2
t rot rot s = 0,

(1)

where v2
l and v2

t are the longitudinal and the transverse wave speeds expressed by an
appropriate combination of the Lamé constants, λ and µ, namely

v2
l = (λ + 2µ) /ρ and v2

t = µ/ρ. (2)

Then, narrowing our consideration to the (z−x) saggital plane and assuming harmonic
solutions of angular frequency ω, we obtain the following simplified wave equations
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∂2w
∂t2

+
∂2w
∂z2

+ k2
l w = 0,

∂wz

∂x
=

∂wx

∂z
(rot w = 0) ,

∂2s
∂t2

+
∂2s
∂z2

+ k2
t s = 0,

∂sx

∂x
= −∂sz

∂z
(div s = 0) ,

(3)

where kl = ω/vl is the wave-vector value of the longitudinal wave and kt = ω/vt is the
wave-vector value of the transverse wave.

A general solution of Eqs. (3) for a layer lying in the <0, A> range has following
form

wxA = PA(z) exp[−ikx], wzA = − 1
ik

dPA(z)
dz

exp[−ikx],

sxA =
1
ik

dQA(z)
dz

exp[−ikx], szA = QA(z) exp[−ikx],
(4)

where k is the effective wave-vector value, the same for the whole multilayer, and PA(z)
and QA(z) are the following functions of k, the layer thickness A, and the wave-vectors
klA and ktA in this layer

PA(z) = C1A cos
[√

k2
lA − k2 (z −A/2)

]
+ C2A sin

[√
k2

lA − k2 (z −A/2)
]
, (5)

QA(z) = C3A cos
[√

k2
tA − k2 (z −A/2)

]
+ C4A sin

[√
k2

tA − k2 (z −A/2)
]
. (6)

This point of the derivation is very important because the first time the effective
wave-vector k, representing the whole multilayered structure, has been introduced. Sim-
ilarly, solutions for the layer lying below the A layer (Fig. 1), in a range < 0,−B >,
and marked by the B subscript, are equal to

wxB = PB(z) exp[−ikx], wzB = − 1
ik

dPB(z)
dz

exp[−ikx],

sxB =
1
ik

dQB(z)
dz

exp[−ikx], szB = QB(z) exp[−ikx],
(7)

with expressions for PB(z) and QB(z) equal to

PB(z) = C1B cos
[√

k2
lB − k2 (z + B/2)

]
+ C2B sin

[√
k2

lB − k2 (z + B/2)
]
, (8)

QB(z) = C3B cos
[√

k2
tB − k2 (z + B/2)

]
+C4B sin

[√
k2

tB − k2 (z + B/2)
]
. (9)

The solutions introduced above enable us to calculate the strain and stress tensor
components. Then, appropriate continuity conditions at the interface between the layers
and periodic conditions for the multilayered structure can be applied. Narrowing our
considerations to longitudinal waves propagating along the surface normal, we have to
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set the constants C2A, C3A, C2B , C3B equal to zero. For the transverse wave case the
C1A = C4A = C1B = C4B = 0 condition should be fulfilled.

At the interface between the two types of materials, where z = 0, the continuity
conditions have the following form

Ux(A)(0) = Ux(B)(0), Uz(A)(0) = Uz(B)(0),

Txz(A)(0) = Txz(B)(0), Tzz(A)(0) = Tzz(B)(0).
(10)

Appropriate periodicity conditions, valid for the z = A and z = −B coordinates, are
as follows

Ux(A)(A) = Ux(B)(−B), Uz(A)(A) = Uz(B)(−B),

Txz(A)(A) = Txz(B)(−B), Tzz(A)(A) = Tzz(B)(−B),
(11)

where both in (10) and in (11) the strain tensor components, Tij (i, j, = x or z), can
be calculated applying Lamé constants and using the following definitions for the strain
and stress tensors

Tij = λSikδik + 2µSik, (12)

and

Sik =
1
2

(
∂Ui

∂xk
+

∂Uk

∂xi

)
, (13)

respectively, where δik is the Kronecker’s delta.
As was mentioned above, the C2A = C3A = C2B = C3B = 0 condition, valid

for longitudinal waves, along with the boundary and periodic conditions (10) and (11)
and with the solutions given by the formulas (4)–(9) results in a (4 × 4)-dimension
determinant, which value equal to zero provide a unique solution of the problem and
a dispersion relation, that is a relation between the frequency and the wave vector for
the longitudinal wave ω = vlk, where vl is the speed of the longitudinal acoustic wave
in the whole structure. The dispersion relation, derived from the determinant, can be
written in the following manner

4 (µA − µB)2 XAXB + ω2ρA

[
ω2ρA

k2
− 4 (µA − µB)

]
XBtan




√
k2

tA − k2A

2




+ ω2ρB

[
ω2ρB

k2
+ 4 (µA − µB)

]
XAtan




√
k2

tB − k2B

2




− ω4ρAρB

k2


YAtan




√
k2

tB − k2B

2


 + YBtan




√
k2

tA − k2A

2





 = 0, (14)



452 T. BŁACHOWICZ

where the expressions for XA, XB, YA, YB , related to the A and B layers, are given by

XA = k2tan




√
k2

tA − k2A

2


 +

√
k2

lA − k2

√
k2

tA − k2tan




√
k2

lA − k2A

2


,

XB = k2tan




√
k2

tB − k2B

2


 +

√
k2

lB − k2

√
k2

tB − k2tan




√
k2

lB − k2B

2


,

YA = k2tan




√
k2

tA − k2A

2


−

√
k2

lB − k2

√
k2

tA − k2tan




√
k2

lB − k2B

2


,

YB = k2tan




√
k2

tB − k2B

2


−

√
k2

lA − k2

√
k2

tB − k2tan




√
k2

lA − k2A

2


.

(15)

Rytov derived finally his formulas in a long wavelength limit, which means a transfor-
mation from all the above tangent functions into its arguments. Next, from Eq. (14) the
longitudinal acoustic wave speed vl can be calculated. Finally, the formulas for the vl,
and the effective density ρ of the sample as a whole provided below, possess a mathe-
matical character of weighted averages, namely

v2
l =

1 + 4wAwB (µA − µB) (λA − λB + µA − µB)
ρ[wA (λB + 2µB) + wB (λA + 2µA)]

, (16)

where the expressions

wA =
A

A + B
and wB =

B

A + B
(17)

work as the weights. The effective density of the medium is a simple average calculated
from densities of the constituents, ρA and ρB , and is equal to

ρ = wAρA + wBρB. (18)

The introduction of effective parameters for the multilayered structure as a whole: the
elastic constants, the density, and the wave-vector is the original Rytov’s contribution to
the elasticity of multilayered structures.

Now, we switch our attention to a more disordered system, to a doped crystal, and
we try to take advantage of the Rytov’s averaging approach. We try to prove that such a
system can be equivalent, to some degree, to a multilayered superlattice.

2.2. Calculation of the effective longitudinal acoustic wave speed
in a multilayered structure

The main ideas of the approach proposed here were described briefly in the Intro-
duction. The main spatial period of the virtual one-dimensional structure consists of
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two layers; the first one being made of a pure crystal material and the second one cre-
ated from the dopant material (Fig. 2). The value of the main one-dimensional period is
assumed to be calculated from the dopant volume concentration n2 and is equal to

d = (n2)
−1/3 . (19)

The quantity d measures the elementary length, where the two substances are placed
in an artificial periodical way. Because the number of dopant atoms is less than that of
the atoms of pure crystal, it seems natural to take the concentration of the dopant as
the d quantity. This determines the one-dimensional virtual space to be filled by both
substances: the pure material and the metallic dopant.

 20 
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Fig. 2. The transformation procedure from uniform distributed dopants of concentration n2 to artificial
multilayered structures. Descriptions: d is the double layer thickness, A is the LiNbO3 layer thickness,

B is the dopant thickness, and n1 represents the concentration the LiNbO3 molecules after doping.

Next, the ratio of thickness for the 2-layered pure-material/dopant system is equal to

A

B
=

(
n0 − n2

n2

)1/3

, (20)

where A is the thickness of the layer related to the pure crystal material, B is the thick-
ness of the layer related to the dopant layer, n0 is the concentration of molecules in
the pure crystal, and n2 is the volume dopant concentration. In Eq. (20) it is assumed
that the total volume crystal is constant or, in other words, that some pure crystal mole-
cules were substituted by dopand atoms −n1 = n0 − n2. Following the obvious rela-
tion d = A + B, and using Eqs. (19)–(20), we can derive formulas for the A and B
thicknesses as functions of the concentration of pure crystal molecules and the dopant
concentration

A = d
(n0 − n2)

1/3

n
1/3
2 + (n0 − n2)

1/3
, (21)

and

B = d
n

1/3
2

n
1/3
2 + (n0 − n2)

1/3
. (22)
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It will be proved now that this bilayered system possesses all information related to the
whole multilayered structure. The same feature possesses the Rytov’s model thanks to
its periodical conditions (11).

By solving the dispersion relation (14) and making use of the boundary conditions
(10)–(11), one obtains the following dispersion relation for a longitudinal acoustic wave

cos(kd) = cos
[
ω

(
A

vlA
+

B

vlB

)]
− ε2

2
sin

(
ω

A

vlA

)
sin

(
ω

B

vlB

)
, (23)

where k is the resulting wavevector for both the layers, vlA is the speed of the wave in the
first layer, vlB the same speed in the second one, and ε is the mismatch of impedances
expressed by the following equation

ε =
vlAρA − vlBρB

vlAρA + vlBρB
. (24)

G. P. SRIVASTAVA [9] showed the limit for Eq. (24), for long wavelengths, when k → 0
and ω → 0, and when the above equation reduces to ω = kvl, that means, to the simple
relation with the effective longitudinal acoustic wave speed vl equal to

vl =
A + B√(

A
vlA

+ B
vlB

)2
− ε2 A

vlA
· B

vlB

. (25)

As mentioned above, the average acoustic wave speed is identical for both layers.
Now, it will be shown that the average speed does not depend on the number of

layers in a multilayered structure. By expanding Eq. (25) into an N double-layered
system, one obtains

vl =
A(1) + B(1) + · · · ·+A(N) + B(N)

√√√√
(

A(1)

v
(1)
lA

+
B(1)

v
(1)
lB

+ · · · ·+A(N)

v
(N)
lA

+
B(N)

v
(N)
lB

)2

A(1) + B(1) + · · · ·+A(N) + B(N)

−ε 2

(
A(1)

v
(1)
lA

× B(1)

v
(1)
lB

× · · · · ×A(N)

v
(N)
lA

× B(N)

v
(N)
lB

)

=
NA + NB√

N2 ×
(

A

vlA

+
B

vlB

)2

− ε 2 ×
(

A

vlA

× B

vlB

)N

∼= A + B
A

vlA
+

B

vlB

, (26)

where to a very good approximation the second term in the denominator can be omitted.
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2.3. Numerical results of calculations

For numerical calculations the following metals were chosen: Fe, Cu, Ag, Au, Al,
Ta, Ni, and V. The values of their elastic constants (c11), and densities collected from
different papers can be found in N. W. ASHCROFT’s and N. D. MERMIN’s monograph
[10]. The range of the dopant concentration applied here is equal to (109 m−3 − 1026

m−3). The natural concentration of molecules in the pure LiNbO3 crystal, taken for
calculations, is equal to about 1028 m−3. The calculations do not take into account the
influence of the piezoelectric effect, i.e. in that sense the calculations are approximate.

The results of calculations are given in Tables 1–3. Table 1 provides information
about the dimensions of the virtual layers. The last column gives values of the A/B ratio,
showing how the model works. Table 2 gives the aforementioned impedance mismatch.
Most of its values are negative, for aluminum the value is positive. Table 3 gives the
values of the average speed as a function of the dopant concentration. The results of
these dependencies are presented in Fig. 3. For convenience, three types of scales of the
dopant concentrations are shown. For concentrations of the 1019 m−3 order, the changes
in the speed of the acoustic wave, are on the 2–4 m/s level. For higher concentrations,
up to 1026 m−3, they are equal to 400–600 m/s. However, it seems that such higher
concentrations have no technological importance. The most relevant result is that the
model predicts a positive change in the speeds for the Al and Fe doping, and negative
changes for the rest of the metals.

Table 1. Dimensions of multilayered structures for different dopant concentrations.

Dopant
concentration

n2 [m−3]

Double layer
thickness d

[m]

Number of
layers N

LiNbO3 layer
thickness A

[m]

Metal layer
thickness B

[m]

Ratio of
layers

thickness A/B
109 1.00× 10−03 10 1.00× 10−03 3.75550× 10−10 2662761.93
1010 4.64× 10−04 21 4.64× 10−04 3.75550× 10−10 1235944.60
1011 2.15× 10−04 46 2.15× 10−04 3.75549× 10−10 573674.67
1012 1.00× 10−04 100 1.00× 10−04 3.75548× 10−10 266276.19
1013 4.64× 10−05 215 4.64× 10−05 3.75547× 10−10 123594.46
1014 2.15× 10−05 464 2.15× 10−05 3.75543× 10−10 57367.47
1015 1.00× 10−05 1000 1.00× 10−05 3.75536× 10−10 26627.62
1016 4.64× 10−06 2154 4.64× 10−06 3.75520× 10−10 12359.45
1017 2.15× 10−06 4641 2.15× 10−06 3.75484× 10−10 5736.75
1018 1.00× 10−06 10000 1.00× 10−06 3.75409× 10−10 2662.76
1019 4.64× 10−07 21544 4.64× 10−07 3.75246× 10−10 1235.94
1020 2.15× 10−07 46415 2.15× 10−07 3.74896× 10−10 573.67
1021 1.00× 10−07 100000 9.96× 10−08 3.74145× 10−10 266.28
1022 4.64× 10−08 215443 4.60× 10−08 3.72536× 10−10 123.59
1023 2.15× 10−08 464158 2.12× 10−08 3.69116× 10−10 57.37
1024 1.00× 10−08 1000000 9.64× 10−09 3.61963× 10−10 26.63
1025 4.64× 10−09 2154434 4.29× 10−09 3.47495× 10−10 12.36
1026 2.15× 10−09 4641588 1.83× 10−09 3.20286× 10−10 5.73
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Table 2. Impedance mismatch and speed of the longitudinal acoustic wave for different materials.

Metal
elements

The c11 elastic
constant

[Pa] x 1011

Density
[kg/m3]

Impedance
mismatch

Speed in the
pure material

[m/s]
Fe 2.34 7900 −0.97941 5442.45

Cu 1.68 8800 −0.22577 4369.31

Ag 1.24 10500 −0.39425 3436.50

Au 1.86 19296 −0.58708 3104.72

Al 1.07 2700 0.69054 6295.21

Ta 2.67 16600 −0.65196 4010.53

Ni 2.45 8800 −0.39556 5276.45

V 2.29 5960 −0.18752 6198.61

LiNbO3 2.01 4640 6585.81

Table 3. Speed of the longitudinal acoustic wave in the doped LiNbO3 crystal for different amounts
of concentration. The dopants: Fe, Cu, Ag, Au, Al, Ta, Ni, and V.

Dopant con-
centration
n2 [m−3]

Speed of
wave-Fe

[m/s]

Speed of
wave-Cu

[m/s]

Speed of
wave-Ag

[m/s]

Speed of
wave-Au

[m/s]

Speed of
wave-Al

[m/s]

Speed of
wave-Ta

[m/s]

Speed of
wave-Ni

[m/s]

Speed of
wave-V

[m/s]

109 6585.81 6585.81 6585.80 6585.80 6585.81 6585.81 6585.81 6585.81

1010 6585.81 6585.80 6585.80 6585.80 6585.81 6585.80 6585.81 6585.81

1011 6585.81 6585.80 6585.80 6585.80 6585.81 6585.80 6585.80 6585.81

1012 6585.82 6585.79 6585.79 6585.79 6585.81 6585.80 6585.80 6585.80

1013 6585.83 6585.78 6585.77 6585.77 6585.82 6585.79 6585.80 6585.80

1014 6585.85 6585.75 6585.72 6585.72 6585.83 6585.77 6585.79 6585.80

1015 6585.90 6585.69 6585.62 6585.62 6585.86 6585.73 6585.77 6585.79

1016 6586.00 6585.56 6585.40 6585.40 6585.91 6585.65 6585.73 6585.78

1017 6586.23 6585.27 6584.93 6584.94 6586.04 6585.47 6585.63 6585.76

1018 6586.71 6584.65 6583.91 6583.94 6586.31 6585.08 6585.43 6585.70

1019 6587.75 6583.31 6581.72 6581.78 6586.89 6584.24 6585.00 6585.57

1020 6589.98 6580.44 6577.02 6577.14 6588.13 6582.44 6584.08 6585.30

1021 6594.77 6574.27 6566.92 6567.17 6590.80 6578.54 6582.09 6584.73

1022 6604.94 6561.09 6545.37 6545.81 6596.47 6570.13 6577.81 6583.48

1023 6626.23 6533.22 6499.82 6500.31 6608.37 6551.92 6568.64 6580.83

1024 6669.28 6475.43 6405.62 6404.83 6632.59 6512.38 6549.13 6575.22

1025 6749.81 6360.57 6219.41 6211.11 6678.71 6426.74 6508.25 6563.57

1026 6874.61 6149.88 5882.67 5847.13 6754.64 6246.20 6425.79 6540.41
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Fig. 3. Changes in the speed of an acoustic wave as function of dopant concentrations for different
scales; the 109 m−3 to 1026 m−3 range (a), the 109 m−3 to 1023 m−3 range (b), and the 109 m−3 to

1019 m−3 range (c).
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3. Conclusions

The proposed 1-dimensional model for longitudinal acoustic waves describes changes
of their speed as a function of the dopant concentration. For dopant concentrations larger
than 1024 m−3, the dependencies of the speed changes are quasi-linear, while for smaller
concentrations they are nonlinear.

From the technological point of view, where the dopant concentrations are relatively
not so high, an appropriate method of verification of the provided theory should be based
on a precise ultrasonic method, for example the pulse-echo method in which an accuracy
of 0.1 m/s in ultrasonic speed measurements can be easily achieved [11].

In the model presented, we have tried to formalize the influence of the doping
process on the acoustical properties of crystals. The doping rely on the adding of some
atoms, for example of the order of 10−2 mol% [12], which means in practice that one
atom of the dopant is placed very rarely between the basic material atoms. The acoustic
wave is an ideal object to test such features because a typical acoustic wave of a fre-
quency of 10 MHz, encompasses about 106 elementary crystallographic lattice con-
stants. On the other hand, the wave is not sensitive to very local disturbances in the
dopants concentration, even if such disturbances take place. This is why in the long
wavelength limit, in the sense presented by the Rytov’s approach, the introduced one-
dimensional virtual superlattice is legitimate and enabled us to perform the calculation
of changes in the speed of an acoustic wave in crystals caused by dopants.

References

[1] PAPADAKIS E. P., Ultrasonic attenuation and speed in three transformation products in steel,
J. Appl. Phys., 35, 1474–1482 (1964).

[2] BŁACHOWICZ T., On the scattering of light on sound waves in the hypersonic range of frequencies;
II. The directional sensitivity of Brillouin light scattering, Central European Journal of Physics,
CEJP 1, 153–178 (2003), available on-line at http://www.cesj.com/physics.html.

[3] BŁACHOWICZ T., Study of the elastic properties of the lithium tantalate crystal by the Brillouin
light scattering, Archives of Acoustics, 25, 23–34 (2000).

[4] BŁACHOWICZ T., Numerical calculations of the rotational contributions to a scattering coefficient
in the piezoelectric LiTaO3 crystal, J. Opt. Soc. Am., B15, 2599–2606 (1998).

[5] RYTOV S. M., Akustitscheskie svojjstva mellkosloistnojj sredy, Akust. Zurn., 2, 71–83 (1956).

[6] GRIMSDITCH M., [in:] Light scattering in solids, V, M. Cardona and G. Güntherodt, [Eds.],
Springer-Verlag, p.285, Berlin, Heildelberg, New York 1989.

[7] SEDRAKYAN D. G., SEDRAKYAN A. G., Localization of phonons in two component superlattice
with random thicknesses of the layers, arXiv:cond-mat/9810329 preprint, 24 Oct. 1998.

[8] JUSSERAND B., [in:] Light scattering in solids, V, M. Cardona and G. Güntherodt, [Eds.], Springer-
Verlag, p.49, Berlin, Heildelberg, New York 1989.

[9] SRIVASTAVA G. P., The physics of phonons, Adam Hilger, 264–267, Bristol 1990.



PHENOMENOLOGICAL MODEL OF CHANGES . . . 459

[10] ASHCROFT N. W., MERMIN N. D., Solid state physics, Holt-Rinehart-Winston 1976.

[11] BŁACHOWICZ T., KLESZCZEWSKI Z., SKUMIEL A., Elastic constants of the SrLaAlO4 and
SrLaGaO4 crystals measured for ultrasonic and hypersonic acoustic frequencies, Ultrasonics, 39,
611–615 (2002).

[12] BŁACHOWICZ T., PYKA M., KLESZCZEWSKI Z., ŚWIRKOWICZ M., ŁUKASIEWICZ T., Doping
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