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A theory of propagation of ultrasonic waves in sediments is developed. The formulae for
the phase velocity and the attenuation coefficient are determined as functions of wave fre-
quency and the mass fraction of the solid phase. These formulae can be used, after suitable
calibration, for determination of the solid mass fraction or the water content in densified sus-
pensions. These structure parameters can be determined by measuring the transition time of
ultrasonic wave through a given distance of sediment. The phase velocity dispersion curves
and the attenuation coefficients determined theoretically and experimentally are plotted as
functions of the solid mass fraction for sediment.
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1. Introduction

The aim of this paper is to establish a basis for application of ultrasounds for deter-
mination of the density profiles in setting suspensions, or simply, for determination of
the solid mass fraction or the moisture content in densified suspensions (sediments). For
this purpose the theory of propagation of stress waves in densified suspensions is de-
veloped and the relations between the phase velocity and the mass fraction of the solid
phase are determined. Such relations after suitable calibration enable determination of
the mass fraction, by measurement of the transition time of ultrasonic waves through a
given layer of suspension.

There are some authors who dealt with application of ultrasound for characterization
of suspensions, as for example, AHUJA [2], HARKER and TEMPLE [10] – czy prace
z literatury, CLEMENT et al. [8], LEWANDOWSKI [14], TEBBUTT and CHALLIS [21],
MALCOLM and POVEY [17], SAYAN and URLICH [19]. However, all these papers differ
from each other in the approach to modeling the wave propagation in suspensions. So,
there is no coherence in the results obtained by individual authors. This paper does not
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review all papers which have been written on the subject, but gives only the essential
knowledge necessary for construction of a unified theory.

The main purpose of this paper is to construct a theory of propagation of stress waves
in densified suspensions, starting from the conservation equations for a two-constituent
medium. The basic conservation equations are generally valid for cohesive suspensions,
which occur in sewers, reservoirs, estuarine and coastal waters. The general conserva-
tion laws are specified to the nature of densified (cohesive) suspensions. The considera-
tions concerning cohesive suspensions (sediments), are based on the theory of dynamic
consolidation typical for a porous medium filled with liquid (see BIOT [6] and [7];
DERSKI and KOWALSKI, [9]).

Adopting the theory of wave propagation to passive ultrasounds, which are of weak
energy, we assume that the ultrasonic waves involve only small perturbations in the
suspension through which they propagate. So the wave equations may be reduced to
describe only small fluctuations in the medium, and thus, to develop the formulae for
the phase velocity and the attenuation coefficient as a function of the frequency of ul-
trasonic wave and the mass fraction of the solid phase of suspension. Moreover, the
phase velocity and the attenuation coefficient were determined experimentally making
use of the ultrasonic setup. The theoretical and experimental curves were plotted for
comparison, and their good agreement was established. So, one can say that ultrasonic
velocity measurements offer the possibly rapid, accurate and cheap assessments of mass
fractions or moisture content in cohesive suspensions.

2. General conservation equations

Sediments can be considered as two-constituent media of solid particles and fluid.
The following principles and assumptions form the basis of the theory proposed in this
paper:

• Every place xi in space occupied by the suspension contains in each time t si-
multaneously particles of two constituents of partial mass density ρα = ραrφα, moving
with velocity vα

i relative to some frame of reference. The partial densities are defined
as products of the real mass density ραr and the volume fraction φα of the constituent
α = {s(solid), f (fluid)}. The balance of mass of constituent α in local form is expressed
by the equation

∂ρα

∂t
+

∂ραvα
i

∂xi
= 0. (1)

• The rate of change of α-momentum is due to the surface force represented by
the α-stress tensor σα

ij and to the body force represented by external gravity ραgi and a
force density p̂α

i due to interaction of constituent α with the other constituent. Hence in
local form the equation of balance of α-momentum reads

∂

∂t
(ραvα

i ) +
∂

∂xj

(
ραvα

i vα
j − σα

ij

)
= ραgi + p̂α

i with p̂s
i + p̂f

i = 0. (2)
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• The rate of change of energy (internal plus kinetic energy) is due to the supply of
mechanical and non-mechanical power

∂

∂t

[
ρα

(
uα +

1
2
vα
i vα

i

)]
+

∂

∂xj

[
ρα

(
uα +

1
2
vα
i vα

i

)
vα
j − σα

ijv
α
i + qα

j

]

= ραgiv
α
i + ραrα + êα. (3)

In this equation uα is the internal energy per unit mass of constituent α, qα
i is the heat

flux, ραrα is the volumetric energy supply (radiation), and êαdenotes the exchange of
energy between constituents, i.e. ês + êf = 0.

• The rate of change of entropy is due to the supply of heat and production of entropy
because of irreversibility of heat and mass transport processes

∂

∂t
(ραsα) +

∂

∂xi

(
ραsαvα

i +
qα
i

Tα

)
=

ραrα

Tα
+ ŝα with ês + êf ≥ 0, (4)

where sα is the entropy per unit mass of constituent α, Tα is the temperature, and ŝα

denotes the density of entropy production.
These are the general equations of balance of mass, momentum, energy end entropy

for the individual constituents written in local forms due to the assumption of continuous
distribution of individual constituents in the sediment.

3. Constitutive equations

We assume that a sediment consists of the solid skeleton and fluid filling the pore
space. The balances of mass, momentum, energy and entropy for each individual con-
stituent lead to the Eqs. (5) to (8). We rewrite them now in a reduced form assuming
additionally common temperature for both constituents:

• balance of mass
ρ̇α + ραvα

i,i = 0; (5)

• balance of momentum

ραv̇α
i = σα

ij,j + ραgi + p̂α
i ; (6)

• balance of energy

ραu̇α = σα
ijv

α
i,j − qα

i,i + ραrα − p̂α
i vα

i + êα; (7)

• balance of entropy

ραṡα +
(

qα
i

T

)
− ραrα

T
= ŝα, (8)

where dot over a symbol denotes the material time derivative of the individual con-
stituent.
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Eliminating the a priori defined radiation term in the balance of entropy, we can
rewrite the last equation as follows:

−ρα
(
ḟα + sαṪα

)
+ σα

ijv
α
i,j −

qα
i

T
T,i − p̂α

i vα
i + êα = T ŝα, (9)

where fα = uα − sαTα is the free energy of constituent α per unit mass.
Having in mind that the theory is developed for the propagation of ultrasonic waves

in suspensions and that these waves cause only small perturbations in the medium,
we can neglect the convective terms in the material derivatives of the individual con-
stituents. Furthermore, we assume that the resistance drag of fluid is much smaller than
that of solid skeleton. This justifies neglecting of the stress deviator in fluid. So, taking
into account the second law of thermodynamics expressed by the last term in Eq. (8),
we may write

−
(
Ḟα + SṪ

)
+ σs

ij ε̇ij + σf ∈̇ − qα
i

T
T,i − p̂f

i

(
vf
i − vs

i

)
≥ 0, (10)

where Ḟ
def=ρsḟs + ρf ḟf – is the time derivative of total free energy density,

S = ρsss + ρfsf – is total entropy density, εij = 1
2 (ui,j + uj,i) – is the strain ten-

sor and ui the displacement vector of the solid, ∈= Ui,i – is the volumetric strain, and
Ui the displacement vector of the fluid.

Note that in the case of uniform temperature and absence of the relative fluid flow
with respect to porous solid, the process can be considered to be reversible. In such a
case, the Gibbs’ identity of the form can be assumed

Ḟ = −SṪ + σs
ij ε̇ij + σf ∈̇. (11)

This relation shows that the free energy for reversible processes is dependent on the
temperature and strains of both the porous solid and fluid, i.e. F = F (T , εij ,∈).

An irreversible process may occur because of viscous flow of fluid through the
porous body. The entropy produced in the medium is transformed into heat causing
an increase of temperature. This increase is shown in the relation (11), which may hold
for both the reversible and irreversible processes. If it is so, then from (10) follows a
residual inequality of the form

−p̂f
i

(
vf
i − vs

i

)
− qi

T
T,i ≥ 0. (12)

It is easy to see that the sufficient (not necessary) conditions that will satisfy the in-
equality (12) are

p̂f
i = −b

(
vf
i − vs

i

)
with b ≥ 0 and qi = −λT,i with λ ≥ 0. (13)

Basing on the Gibbs’ identity (11), we obtain the following equations of state:
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S = −
(

∂F

∂T

) ∣∣
εij ,∈ = S(T, εij ,∈),

σs
ij =

(
∂F

∂εij

)
|T,∈ = σs

ij(T, εij ,∈),

σf =
(

∂F

∂ ∈
) ∣∣

T,εij = σf (T, εij ,∈).

(14)

Developing the free energy function in Taylor’s series with respect to parameters of
state and using the equation of state, we arrive at the physical relations of the form (see
also DERSKI and KOWALSKI [9])

σs
ij = 2Nεij + [Aε + Q ∈ −γs(T − T0)]δij ,

σf = Qε + R ∈ −γf (T − T0).
(15)

According to the Biot interpretation (see Biot [6, 7]), the constants N and A correspond
to the familiar Lamé coefficients in the theory of elasticity, where N represents the
shear modulus of the sediment. The coefficient R represents the measure of the pressure
required on the fluid to force a certain volume of the fluid into the porous body, while
the total volume remains constant. The coefficient Q expresses a coupling between the
volume change of the solid and that of the fluid. All these coefficients are found to be
positive. Besides, the coefficients γs = (2N + 3A) αs and γf = (2N + 3A) αf can
be termed the thermal moduli with αs and αf being the coefficients of linear thermal
expansion of the solid and the fluid, respectively.

In further examination of ultrasonic waves in sediments, we shall neglect the thermal
effects and the gravity forces. In such circumstances, there is no need to develop the
physical relation for entropy and to construct the differential equation for temperature.
So, substituting the physical relations obtained above into the balance of momentum
(6), we have

N(ui,jj + uj,ji) + Auj,ji + QUj,ji + b(U̇i − u̇i) = ρsüi,

Quj,ji + RUj,ji − b(U̇i − u̇i) = ρf Üi.
(16)1,2

These equations have to be supplemented by the equations of mass continuity (5),
namely

ρ̇s + ρsu̇i,i = 0,

ρ̇f + ρf U̇i,i = 0.
(16)3,4

Equations (16)1 to (16)4 constitute the complete system for description of wave prop-
agation in sediments. According to BIOT [6, 7], we assume here that coefficient b is
related to the coefficient of permeability k, fluid viscosity µ, and porosity φ by means of

b = µ
φ2

k
. (17)
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4. Phase velocity and attenuation coefficient

In order to apply the ultrasounds for assessment of the mass fraction of the solid
phase or the moisture content in a sediment, we have to determinate first of all the phase
velocity. The attenuation coefficient, on the other hand, indicates the damping effects
of the medium and points out whether the generated signals can propagate for a long or
short distance.

We assume that the ultrasound signals are generated in one-dimensional, say
x-direction. The governed functions in this case are: displacements and densities of
the solid skeleton and fluid, that is

g = {ux, Ux, ρs, ρf}. (18)

Each of these functions is assumed to be of the form

g(x, t) = g + g′(x, t), g = const and
∣∣g′∣∣ << g, (19)

where g′ denotes the local and instant fluctuation of quantity g around its equilibrium
value g.

The system of equations reduced to the one-dimensional case and after application
of Eq. (18) reads

∂2

∂x2

[
(2N + A)u

′
x + QU

′
x

]
+ b(U̇

′
x − u̇

′
x) = ρsü

′
x,

∂2

∂x2

[
Qu

′
x + RU

′
x

]
− b(U̇

′
x − u̇

′
x) = ρf Ü

′
x,

ρ̇s′ + ρs ∂u̇
′
x

∂x
= 0,

ρ̇f ′ + ρf ∂U̇
′
x

∂x
= 0.

(20)

Note that the nonlinear terms of small value are neglected in the above system of equa-
tions.

The fluctuations, which are the ultrasonic disturbances, are assumed to propagate in
x-direction in the form of harmonic attenuated waves, i.e.

g′(x, t) = g0 exp i(lx− ωt), (21)

where ω is the frequency of waves and l = lr + ili is a complex number consisting of
the wave number lr and the attenuation coefficient li.

Combining this equation with those written above and rearranging slightly, we ob-
tain the following system of algebraic equations:

(a11u0 + a12U0) z + β(U0 − u0)−
ρ

ρ

s

u0 = 0, (22)
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(a12u0 + a22U0) z − β(U0 − u0)−
ρf

ρ
U0 = 0,

ρs
0 + ρs(il)u0 = 0,

ρf
0 + ρf (il)U0 = 0.

(22)
[cont.]

The following notations are introduced in these equations:

a11 =
2N + A

a
, a12 =

Q

a
, a22 =

R

a
,

z =
l2

ω2
c2, c2 =

a

ρ
, β =

b

ωρ
,

and a = 2N + A + R + 2Q represents the total elastic modulus and ρ = ρs + ρf

the total mass per unit volume of the medium as a whole. Adding Eqs. (21)1 and (21)2
it can be seen that c represents the phase velocity in the sediment under the condition
that u0 = U0 and li = 0, i.e., there is no relative motion between the constituents. The
coefficient β represents the ratio of damping parameter b/ρ to the wave frequency ω.
The attenuation coefficient li will be zero if β = 0.

The homogeneous system of Eqs. (21) has a non-trivial solution if the determinant
the consisting of the coefficients standing at the wave amplitudes equals zero. Develop-
ing this determinant, we arrive at the quadratic equation of the form

(
a11a22 − a2

12

)
z2 − 1

ρ

(
ρfa11 + ρsa22

)
z +

ρfρs

ρ2 + iβ (1− z) = 0. (23)

If V = ωlr denotes the phase velocity and (li/lr) – the attenuation coefficient referred
to the wave number, the following two kinds of velocities and attenuation coefficients
will result from the above equation:

V1

c
=

√
2√√

K2 + L2 + K
and

(
li
lr

)
|1 =

√√
K2 + L2 −K√√
K2 + L2 + K

, (24)

where

K =
1
2

(
p− 1√

2

√√
X2 + Y 2 + X

)

and L =
1
2

(
rβ − 1√

2

√√
X2 + Y 2 −X

)
(24a)

and

V2

c
=

√
2√√

M2 + N2 + M
and

(
li
lr

)
|2 =

√√
M2 + N2 −M√√
M2 + N2 + M

, (25)
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where

M =
1
2

(
p +

1√
2

√√
X2 + Y 2 + X

)

and N =
1
2

(
rβ +

1√
2

√√
X2 + Y 2 −X

)
. (25a)

The other notations are:

X = q2 − r2β2, Y = 2r (p− 2)β, p = r[a11 + (a22 − a11) α],

q = r

√
[a11 − (a22 − a11) α]2 + 4a2

12α (1− α),

r =
(
a11a22 − a2

12

)−1
, α = ρs/ρ.

Here α expresses the mass fraction of the solid phase in the sediment. Its value changes
in the range 0 ≤ α ≤ 1.

We have obtained two phase velocities concerning two kinds of waves. It means that
an impulse applied to the two-phase medium splits into two parts, each transported by
the wave of different velocity. Such a medium has dispersive properties and the applied
impulses are scattered in the medium during their propagation. Additionally, the waves
are damped due to viscous properties of the fluid moving in pores.

Scattering and damping of the waves causes that waves may hardly pass through
the medium. Fortunately, the ultrasonic waves are rather of high frequency. Note that
high wave frequency lowers the coefficient β responsible for attenuation of the wave
amplitudes.

The ratio of the phase velocity to the reference velocity c and the attenuation coef-
ficient of the first and second kind of waves are plotted as functions of the solid mass
fraction α in Figs. 1 to 4 for various combinations of material coefficients listed in
Table 1.

Table 1. Possible material coefficients.

No. a11 = (2N + A)/a a22 = R/a a12 = Q/a β = b/ρω

1 0.6 0.3 0.05 0

2 0.6 0.3 0.05 2.0

3 0.6 0.3 0.05 10.0

4 0.4 0.4 0.10 2.0

Analyzing the plots presented in Figs. 1 to 4 one can draw the following conclusions:
• Two kinds of longitudinal waves are induced by the ultrasonic impulses in the

two-phase medium.
• The phase velocity of the first-kind wave is several times greater than the velocity

of the second-kind wave, so the waves can be termed as fast and slow, respectively.
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Fig. 1. Phase velocity of the first-kind wave.

Fig. 2. Attenuation coefficient of the first-kind wave.

Fig. 3. Phase velocity of the second-kind wave.
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Fig. 4. Attenuation coefficient of the second-kind wave.

• The attenuation coefficient of the slow wave is, in general, much greater than
that for the fast wave, particularly if the realistic range of the solid mass fraction is
considered, i.e. 0.25 ≤ α ≤ 0.8.

• The wave velocity increases and the attenuation coefficient decreases significantly
for small values of the parameter β, that is, for small damping properties of the material
represented by parameter b or for very high angular frequencies ω of the waves.

Figure 5 presents the phase velocities and Fig. 6 the attenuation coefficients for the
fast and slow waves as a function of β for data, which can be suitable for saturated
peat of mass fraction α = 0.6, characterized by the following parameters: a11 = 0.5,
a22 = 0.4, a12 = 0.05.

Fig. 5. Phase velocities of the fast and slow waves.

It is seen from Fig. 5 that the velocity of the fast wave is constant and equal to
unity for the constant solid mass fraction α = 0.6 independently of the β variation, and
the velocity of the slow wave decreases systematically tending to zero as β increases.
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Fig. 6. Attenuation coefficients of the fast and slow waves.

The attenuation coefficient is close to zero for the fast wave and tends to unity for the
slow wave as β increases. It means that the slow wave is strongly damped, and only the
fast wave can be measured practically in experimental studies.

Figure 7 presents the ultrasonic tester of type UMT-01-UNIPAN, used for measure-
ment of ultrasonic waves in peat sediment, and indirectly for measurement of the solid
mass fraction of the sediment.

Fig. 7. Ultrasonic equipment.

Figure 8 presents the comparison of the ultrasonic wave velocity measured in the
saturated peat cake (see Fig. 7) with the velocity of the fast wave. The reference velocity
was estimated experimentally to be c ≈ 86 m/s.
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The theoretical curve is plotted for the following parameters: a11 = 0.5, a22 =
0.4, a12 = 0.05 and β = 0.01. Both the theoretical and experimental curves agree
qualitatively very well.

Fig. 8. Velocity of ultrasonic wave in peat compared with the phase velocity of the fast wave computed
theoretically.

5. Final remarks

The model of wave propagation in sediments was developed for the purpose of
analysis of the dispersion and attenuation properties of these media. The phase velocity
dispersion curves and the attenuation coefficients for these waves were determined. The
analysis presents us what can happen to the ultrasonic waves when they are passing
through these media, and helps us to answer the question whether the ultrasounds can
be used for identification of the mass fractions in sediments.

Our preliminary experiments show that it is possible to use the ultrasounds for deter-
mination of the solid mass fraction or the moisture content in sediments. Some difficul-
ties which arose during our experimental studies, concerned mainly the proper choice
of the power and frequency of the ultrasonic waves for the given suspension. If one
chooses unsuitable frequency or power, the measurement of the density may prove to
be not possible, because of dispersion and damping of the waves. The emitted wave may
not reach the receiving head.

The theoretical models show us that the waves are attenuated and damped. It is
shown that any ultrasonic wave generated in sediment may split into two parts, one of



ULTRASONIC WAVES IN DENSIFIED SUSPENSIONS 645

which is transported by the fast wave and the other by the slow one. The analysis shows
that the slow waves are strongly damped, so the impulse transported by these waves
may disappear on the way, and only the impulse transported by the fast wave has the
chance to arrive at the receiving ultrasonic head. Figure 8 proves this because the high-
frequency ultrasonic head of 600 kHz (β = 0.05) and not the low-frequency one of
40 kHz (β = 0.75) enabled us to make the measurements in the saturated peat cake.

As it results from Eqs. (24)2 and (25)2, the attenuation coefficient li depends on
the coefficient b (related to fluid viscosity, porosity and permeability), the solid mass
concentration α, elastic coefficients of the individual constituents a11, a22, a12 and the
wave frequency ω. For the given medium, we can control only the wave frequency of
ultrasonic waves, so it should be chosen properly to obtain the minimal attenuation
coefficient.
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