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The foundations of nonlinear acoustics may be traced nearly 250 years back in time, but
only the last 50 years have shown an increasing number of attempts to exploit the research
results in nonlinear acoustics. Based upon the fundamental equations of fluid dynamics, the
second-order acoustic equations may be derived which can be reduced to a compound equation
describing several of the most important and fast developing areas of research in nonlinear
acoustics. The relations between this compound equation and Burgers’ equation, Korteweg-
DeVries equation, the K–Z–K equation, Westervelt’s equation and the general second-order
wave equation are discussed in depth. Finally, it is shown how the derivatives of the compound
equation can be applied to nonlinear acoustic research related to materials characterisation by
use of theB/A-ratio, to underwater acoustics by use of the parametric acoustic array and to
focused, high-power ultrasonic fields.
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1. Introduction

While description and exploitation of acoustical phenomena can be traced more than
2000 years back in time, nonlinear acoustics is a “rather new” discipline being only
about 250 years old, starting in 1755 with Euler’s formulation of the equations of con-
tinuity and momentum for the motion of a fluid [1]. While most of the theoretical basis
for nonlinear acoustics was developed during the first 200 years after Euler’s first con-
tributions, the last 50 years have in particular brought a substantial contribution to our
knowledge about nonlinear acoustic phenomena. Like in many other fields of science
the progress in nonlinear acoustics has in particular been supported by the enormous de-
velopment in computational procedures and facilities permitting a fast solving of non-
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linear equations. The last 50 years have been characterised by the emerging of new
fields of research, new concepts and new applications of nonlinear acoustics. Among
these should be mentioned material characterisation exploiting the concept of second
and higher order acoustic nonlinearity parameters, underwater applications of the para-
metric acoustic array, and medical applications of focused ultrasonic fields. These areas
of research in nonlinear acoustics of fluids will be treated more in depth in this paper
after their appropriate theoretical bases have been developed.

2. Features of the theoretical basis of nonlinear acoustics

It is a generally accepted fact that the World is nonlinear. In order to be able to deal
with scientific and engineering problems it has been necessary to linearize the equations
describing the problems. And in most cases with success. However, when it comes to
high amplitudes of pressure and particle velocity or to strongly nonlinear materials as
for instance two-phase components, it has been necessary to leave the pleasant linear
concepts and to consider the real nature of the problems. This has also been the case for
acoustics of fluids.

When dealing with nonlinear equations, the principle of superposition of solutions
no longer holds, and interactions between waves start to be of importance. This leads to
the appearance of a number of new physical phenomena, frequently so significant that
they cannot be considered as small corrections to a linear theory.

The fundamental equations of Fluid Dynamics may be written as:

∂ρ/∂t + ∂/∂xi(ρui) = 0, (1)

ρ(∂ui/∂t + uj∂ui/∂xj) = ρFi − ∂p/∂xi + ∂/∂xj [η(∂ui/∂xj

+ ∂uj/∂xi)] + ∂/∂xi[η′∂uk/∂xk], (2)

ρcvDT/Dt + ρcv(γ − 1)/β[∂ui/∂xi] + ∂qi/∂xi − Φ− q′ = 0, (3)

where (1) is the equation of continuity, (2) are the equations of motion (the Navier-
Stokes equations), and (3) is an equation of energy. In (1)–(3),p andρ denote the pres-
sure and the density of the fluid, respectively,xi denotes the spatial coordinates (i = 1, 2
and 3) andt is time.ui is the particle velocity in thei’th direction, whileFi is an exter-
nal body force per unit mass.η andη′ are the shear and the bulk viscosities of the fluid,
respectively, whileT denote the absolute temperature.cv is the specific heat at constant
volume, whileqi andq′ denote the rate of heat flux vector (comprising heat conduction
and radiation) and the internal heat production rate per unit volume, respectively.Φ is
the viscous dissipation function.

When a perturbation procedure is applied to the fundamental equations of fluid dy-
namics, (1)–(3), – of which Eq. (2) is a nonlinear equation – and to an equation of state,
maintaining only terms to the second order, the second order acoustic equations may be
derived [2]. The perturbation procedure may be written as:
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ρ = ρ(0) + ρ(1) + ρ(2) + . . . . ; T = T(0) + T(1) + T(2) + . . . . ;

and
ui = 0 + ui(1) + ui(2) + . . . . ;

p(ρ, T ) = p(0)(ρ(0), T(0)) + [(∂p/∂ρ)T ](0)(ρ− ρ(0))+[(∂p/∂T )ρ](0)(T − T(0))+. . ..

where each term is theacoustic Mach number, Ma = u/c, smaller than the previous
term. If the perturbed quantities are inserted into the fundamental equations of fluid dy-
namics (1), (2) and (3), and only terms to second order are used, the first-order equations
may be shown to lead to the well-known, linear equation of sound, while the equations
comprising the second-order terms constitute the fullsecond order acoustic equations.

When the fluid is considered lossless the second-order form of the equation of con-
tinuity may be written as:

∂ρ(2)/∂t + ui(1)∂ρ(1)/∂xi + ρ(1)∂ui(1)/∂xi + ρ(0)∂ui(2)/∂xi = 0 (4)

while the equation of motion, i.e. Euler’s equation for a lossless case, may be written as:

ρ(0)∂ui(2)/∂t + ρ(1)∂ui(1)/∂t + ρ(0)uj(1)∂ui(1)/∂xj = −∂p(2)/∂xi. (5)

The equation of state for adiabatic processes will for the lossless case be:

p(2) = (∂p/∂ρ)sρ(2) + (∂2p/∂ρ2)sρ
2
(1)/2. (6)

Combining the equations (4)–(6), theinhomogeneous, and nonlinear, second-order
wave equationwill appear as:

∂2ρ(2)/∂t2 − c2
0∂

2ρ(2)/∂x2
i = (c2

0/ρ(0)){(1 + (ρ(0)/c0)(∂c/∂ρ)s}∂2ρ2
(1)/∂x2

i

= β(c2
0/ρ(0))∂

2ρ2
(1)/∂x2

i . (7)

This expression shows, that the first-order sound field has become the source func-
tion for the second-order contributions.

The full second-order acoustic equations may for the assumption of quasi-plane
waves be reduced to a compound equation covering several of the most important and
fast developing areas of research in nonlinear acoustics [2, 3]. Thecompound equation
may for finite-amplitude waves be written in a non-dimensional form as:

∂/∂y

{
∂V/∂σ−V (∂V/∂y)−G(∂2V/∂y2)−D(∂/∂y)

y∫

−∞
(∂V/∂y′)e−(y−y′)/ωtdy′

}

= (N/4){∂2V/∂ξ2 + (1/ξ)(∂V/∂ξ)}, (8)
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whereV = u/u0, σ = (B/2A + 1)Mkx (the dimensionless nonlinearity distance),
andy = kc0t. ξ is a dimensionless radial coordinate governing the influence of diffrac-
tion on nonlinear wave propagation.u0 is the particle velocity amplitude at the source,
andB/A is the second order nonlinearity ratio expressing the material nonlinearity of
the fluid.k is the acoustic wave number andω is the angular frequency.

The coefficients,G, D andN are determining the type of the nonlinear partial dif-
ferential equation, governing various types of finite-amplitude wave fields.

ForG =| 0, and forD = N = 0, the compound equation reduces to:

∂V/∂σ − V (∂V/∂y) = Γ−1(∂2V/∂y2) (9)

which is the boundary-value form ofBurgers’ equation[2] for a thermo-viscous fluid,
including the influence of nonlinearity and attenuation.G = Γ−1, whereΓ is the so-
calledGol’dberg number[4], describing the relative influence of nonlinearity and dis-
sipation. Gol’dberg showed that forΓ < 1, a shock formation during propagation of
an originally sinusoidal finite-amplitude wave is not likely to take place. Rea is the
acoustic Reynolds numberexpressing the ratio between kinematic and dissipative ef-
fects andΓ may be expressed byΓ = (B/A + 2)u0ρ0x/b = (B/A + 2)Rea, where
b = (4/3)η + η′ + κ(c−1

v − c−1
p ). κ is the coefficient of heat conductivity of the fluid,

while cv andcp denote the specific heats at constant volume and constant pressure of
the fluid, respectively.

The Burgers’ equation has, sinceBURGERS’ [5] development of the equation in
1948 for description of certain turbulence problems, been used extensively for descrip-
tion of the propagation of finite-amplitude plane, cylindrical and spherical waves in
thermo-viscous fluids [2].

ForD =| 0, and forG = N = 0, and in the limit ofωt ¿ 1, the compound equation
reduces to a symbiosis of theKorteweg–deVries equationinvolving nonlinarity and
dispersion and Burgers’ equation involving nonlinarity and dissipation:

∂V/∂σ − V ∂V/∂y = D{(ωt)(∂2V/∂y2)− (ωt)2(∂3V/∂y3)}. (10)

This equation describes the propagation of finite-amplitude waves in relaxing fluids.
In the absence of attenuation, Eq. (10) reduces to the general Korteweg–deVries equa-
tion describing among others the propagation of solitons. In the absence of dispersion,
Eq. (10) reduces to Burgers’ equation.

For G =| 0 andN =| 0 and forD = 0, the compound equation reduces to a form
of theKhokhlov-Zabolotskaya–Kuznetzov equation (the K–Z–K Eq.)[6, 7] governing
the influence of nonlinearity, attenuation and diffraction in the same scale on finite-
amplitude wave propagation. The K–Z–K equation – used for description of focused,
high-power ultrasonic fields – may be written in a dimensionless form for the acoustic
pressure as:

{4(∂2/∂y∂σ)−∇⊥2 − 4αr0(∂3/∂y3)}P = 2(r0/ζ)(∂2/∂y2)P 2, (11)
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whereα is the absorption coefficient [α = ω2b/(2ρ0c
3)], and r0 = ωa2/2c0 is the

Rayleigh distance for a monochromatic source.ζ = ρ0c
3
0/(βωp0) is the so-called dis-

continuity distance, i.e. the distance from the finite-amplitude wave source for the first
formation of a discontinuity at a zero-crossing for wave propagation in a lossless fluid.
β = 1 + B/2A. P = p/p0, wherep0 is the pressure amplitude at the source. In the
absence of diffraction, i.e.∇⊥2P = 0, the K–Z–K equation reduces to the Burgers’
equation. A transformation between pressurep and particle velocityu in the equations
may be done by using the linear plane-wave impedance relation:p = ρ0c0u.

Burgers’ equation may also be shown to be a reduced form ofWestervelt’s equation
which has formed the basis for the development of the concept ofparametric acoustic
arrays. Westervelt’s equation may for the pressure variation be written as:

{∂2/∂x2 − (1/c2
0)∂

2/∂t2}p− (δ/c4
0)∂

3p/∂t3 = −{β/(ρ0c
4
0)}∂2(p)2/∂t2, (12)

whereδ = 2c3
0α/ω2.

Westervelt’s equation may also be derived from Lighthill’s equation for dynami-
cal sound generation, or from the second-order wave equation including attenuation.
Neglecting attenuation, Westervelt’s equation reduces to the lossless form of theinho-
mogeneous second order wave equationfor the pressurep:

∂2p/∂x2 − (1/c2
0)∂

2p/∂t2 = −{β(ρ0c
4
0)
−1∂2(p2)/∂t2} (13)

which has the same form as Eq. (7) for the densityρ.

3. The second-order acoustical nonlinearity parameterB/A

Studies of the second-order acoustical nonlinearity parameterB/A by a number
of fluids of industrial, chemical and biological interest have been carried out over the
past. In particular the relations betweenB/A and the molecular structure of the fluids
have attracted great attention. For biological fluids,B/A’s relation to the intermolecular
potentials, the water fraction and the ratio of bound-to-free water, has been studied in
some depth [9].B/A is in particular related to the velocity of sound and its derivatives
with respect to pressure and temperature of the fluids and it can be developed from
a Taylor series expansion of the equation of state of the fluid for adiabatic changes,
retaining only terms to second order [10, 11]:

p− p0 = A{(ρ− ρ0)/ρ)}+ (B/2){(ρ− ρ0)/ρ}2, (14)

where:
A = ρ0(∂p/∂ρ)0,s = ρ0c

2
0,

B = ρ2
0(∂

2p/∂ρ2)0,s = 2ρ2
0c

3
0(∂c/∂p)0,s.
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B/A may now be written as:

B/A = 2ρ0c0(∂c/∂p)0,s = 2ρ0c0(∂c/∂p)T

+ (2c0Tβ/cp)(∂c/∂T )p = {∂(1/ψ)/∂p} − 1, (15)

whereβ is the volume coefficient of thermal expansion [= V −1(∂V/∂T )p] and [V =
1/ρ], andψ is the adiabatic compressibility (the reciprocal of stiffness) for the fluid.

The expressions forB/A have been used extensively for calculations of the value of
the second-order acoustical nonlinearity ratio based onthermodynamicalinformation
about the fluids investigated. Of the contribution toB/A arising from the derivatives of
the velocity of sound with respect to pressure and temperature, the pressure derivative
is the most important as it contributes most and is easiest to determine.

Based onFUBINI ’s [12] Fourier series solution to the fundamental equations for
finite-amplitude wave propagation through a lossless fluid and by introduction of an
expression for the attenuation of the fundamental and the second-harmonic waves [9],
a finite-amplitude methodhas been developed for experimental determination ofB/A
of fluids. In this method the formation of the second harmonic amplitudep2(x) as a
function of distance,x, from the source is measured, and the ratio of this amplitude and
x times the square of the source amplitudeps is extrapolated back to the finite-amplitude
wave source leading to an expression forB/A through:

[p2(x)/xp2
s]→0 = [(2 + B/A)πf/(2ρ0c

3
0)] exp { − (α1 + α2/2)x}, (16)

whereα1 andα2 denote the attenuation coefficients for the fundamental and its second
harmonic amplitudes, respectively. This expression has been used extensively for de-
termination ofB/A from measurements of the second harmonic amplitude in a broad
variety of fluids.

Considerable attempts have been made over the past to exploitB/A as a tissue
characterizing parameter due to its proven relation to the molecular and macroscopic
structure of tissues [9]. However, the scatter of theB/A values measured using the
thermodynamical and the finite-amplitude method have shown, that the inaccuracy of
the methods is still too high for using theB/A as a diagnostic tool. Moreover, the
in vitro character of the methods limits their practical applicability. The accuracy with
which B/A can be measured in fluids is about 10% for the finite-amplitude method
and about 5% for the thermodynamical method. Among other, less extensively used,
methods for determination ofB/A should be mentioned optical methods, parametric
arrays [19] and cavity resonance.

Recognising that many fluids are mixtures of immiscible components, some sys-
tematic studies have been carried out on these fluids. These studies have verified the
applicability of an expression like:

[B/A]eff = (1/ζ2
eff)

n∑

1

(ζ2
i (B/A)ixi), (17)
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where the effective adiabatic compressibilityζeff =
n∑
i

ζixi and where the sum of the

n volume fractionsxi is
n∑
i

xi = 1, for determination of ann-component mixture of

mutually immiscible materials when their individualB/A values are known [13].
While the so-calledBallou’s rule[14], expressing a linear relation betweenB/A of a

liquid and the inverse velocity of sound of the liquid, seems to hold for liquid metals and
some other liquids, recent studies ofB/A by n-alkane liquids [15] using the Tait equa-
tion for describing thepVT-relation for the liquid, and studies ofB/A in 1-alkanols,
ketones and alkyl acetates [16] have shown, that this simple relation betweenB/A and
the velocity of sound is not in general satisfied. In [15] it was shown that the use of the
Tait equation was leading to nearly the same accuracy as the use of the thermodynam-
ical method’s direct measurement of the sound velocity as a function of pressure and
temperature. The chemical families studied in [16] showed thatB/A increases with the
number of carbon atoms present in the chain and it also increases with the length of the
chain, supporting the observation in [17] that the longer the molecule, the more sound
propagates within the molecule.

Several tables comprising the compiled values ofB/A of fluids measured and cal-
culated using, in particular, the thermodynamical and the finite-amplitude methods can
be found in the open literature [2, 9, 15, 16, 18], and only a few values shall be given
here to indicate the variability of the second-order acoustical nonlinearity ratioB/A.

Fluid B/A
Distilled Water at 20◦C 5.0
Sea water (35 ppm salinity) 5.25
Methanol at 20◦C 9.42
Ethanol at 20◦C 10.52
Monatomic gas at 20◦C 0.67
Diatomic gas at 20◦C 0.40
Whole porcine blood at 30◦C 6.2
Haemoglobin at 30◦C 7.6
Corn oil at 20◦C 10.7
Olive oil at 20◦C 11.1
Mineral oil at 20◦C 11.3
Saturated marine sediments 11.8
Bubbly liquids (vol. conc. 10−3) > 3000 [19]

4. Parametric acoustic arrays

The concept of theparametric acoustic arraywas conceived by P.J.WESTERVELT

based on his theory of “scattering of sound by sound” [20]. An account of the early
developments in parametric acoustic arrays may be found in [21] and more recent results
and practical design information may be found in [22].
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The parametric acoustic array offers a side-lobe free, narrow beam at low frequen-
cies from a physically small array. Moreover, it offers a very wide bandwidth relative
to the central frequency of thedifference-frequency (secondary) signal.But the price
is a low conversion efficiency from the primary signals to the secondary signals. The
source level of the secondary signal is typically 40 dB less than the primary signal
source level for a normally used down-shift ratio of 10 (the downshift ratio is deter-
mined byχds = f0/fs, wheref0 = (f1 + f2)/2 andf1 andf2 are the two primary
signal frequencies, andfs is difference-frequency). However, in spite of this price, the
parametric acoustic array has recently found applications in several EU-funded MAST
for the study of long-range underwater communication in shallow-water channels [23]
and by investigations of the seabed and of sub-bottom profiles [24].

Due to beam-broadening and array length shortening by increasing absorption, when
acoustic saturation effects are involved, most use of the parametric array takes place
at lower primary source levels not leading to saturation effects [21]. The secondary
field of the parametric acoustic array can, for lower source amplitudes, be evaluated
in two different ways depending on whether the major nonlinear interactions between
the primary waves, and thus the production of the secondary wave, take place within
the collimated zone (i.e. the nearfield) of the primary signals or in the spreading beams
of their farfield. For more strongly absorbing liquids the interaction will beabsorption
loss limitedin the primary nearfield, while lower absorption will preserve the acoustic
energy for the farfield, thus permitting aspreading-loss limitedarray to be formed. The
criteria for, in which of the two regions the major interaction between the primaries
takes place, may be expressed by:

Rp = αT R0χds. (18)

HereαT = α1+α2, i.e. the sum of the absorption coefficients at the two primary fre-
quencies, whileR0 is the Rayleigh distance of the transmitting transducer. ForRp À 1,
an absorption limited array described byWESTERVELT’s model [8] will result, while
the most frequently occurring case, the spreading-loss limited array, will be based on
Rp ¿ 1.

Westervelt’s solution to the absorption loss limited array may be written as:

ps(R, θ) = ω2
sp1p2Sβ(4πρ0c

4
0RαT )−1[1 + k2

s/α2
T (sin4(θ/2))]−1/2, (19)

whereps is the difference-frequency signal amplitude, whileωs andks denote the angu-
lar frequency and the wave number of the secondary wave, respectively.S denotes the
cross-sectional area of the collimated beam region, andp1 andp2 denote the pressure
amplitudes of the primary waves.β = 1+B/2A, andR andθ are coordinates in a cylin-
drical coordinate system. The bracket leads to the half-power beamwidthθh expressed
by: θh

∼= 2(αT /2ks)1/2. This expression shows that a narrowing of the secondary beam
will take place for a decrease in the primary frequencies and for an increase in the sec-
ondary frequency.

Spreading-loss limited arrays will show a half-power beamwidth increasing with
the source distanceR and asymptotically approaching the half-power beamwidth of the
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product of the two primary beam directivity patterns. For a spreading-loss limited array
the secondary signal pressure amplitude may be derived from Westervelt’s solution by
multiplying this solution with the factor:K = ϕ2

cr
2
0/(8r2), whereϕc is the effective

beamwidth of the zone of interaction over which the phase of the carrier wave field may
be assumed to be constant,r0 is the Fresnel distance of the carrier wave andr is the
effective source radius [25].

The effective length of the parametric array is governed by (2α)−1, whereα is
the small signal absorption coefficient in nepers/meter. The difference-frequency sound
pressure levelSLs (in dB rel.1µPa· m) may for sea water be expressed by:

SLs = SL1 + SL2 + 20 log fs + Q− 286.5, (20)

wherefs is the difference-frequency in kHz,SL1 andSL2 denote the sound pressure
levels of the two primary signals. The source level coefficientQ may be determined
from Fig. 1 in [26]. The numeric 286.5 is arising from 20log[1000ρ0c

3
0/(21/2πβ)].

Recent studies [23] oflong-range, shallow-water communicationhave shown, that
a destructive summation takes place of the secondary signal fields produced parametri-
cally before and after interaction between the sea surface and the parametric array, as
the two fields have a phase difference of up toπ for a pressure-release surface. There-
fore, the surface reflection effect will introduce a reduction in the secondary signal level
depending on the characteristics of the parametric source and the geometry it operates
under. The geometry influence shows that the amplitude reduction due to surface effects
approaches a constant value at grazing angles normally encountered at long distance un-
derwater communication. Also the roughness of the sea surface will have a substantial
effect on the reflection, and thus on the long-range propagation, of parametric acoustic
signals. The loss of coherence of the primary signals after reflection – and scattering –
by a very rough sea surface essentially truncates and terminates the parametric array at
the surface. This reduces the application of parametric acoustic arrays for underwater
communication due to destructive influences at the interaction between the array and
the sea surface.

The SIGMA project [24] comprised the application of a vertically down-looking
parametric array forbottom and sub-bottom profilingand an oblique parametric array
for studies of the seabed materials using inverse techniques. The primary frequencies of
the vertical array was between 55 and 65 kHz, thus leading to secondary frequencies of
3–9 kHz. The experimental results confirmed the sensitivity of the vertical array to plat-
form stability. Due to the small “footprint” made by the narrow parametric beam, minor
seabed slopes or movements of the towed fish carrying the parametric transducer and
the receiver, the return signals disappeared. This constitutes a considerable limitation to
bottom studies using parametric arrays instead of linear arrays.

By the oblique parametric array, operating at a primary frequency around 75 kHz
and using secondary frequencies in the range of 1–12 kHz, the return signals were re-
ceived using a towed array of hydrophones. A roll of the platform of more than 3◦ would
also here prevent the forward scattered signal from reaching the towed array, leading to
an interruption in the return signals.
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These recent results show some limitations in the application of the parametric
acoustic array. The arrays advantages like their narrow and side-lobe free beams form
basis for the limitations in their application, and the interaction process giving rise to
the beam qualities may be terminated by the moving rough sea surface. Attempts to
improve the conversion efficiency are numerous. Replacing the array nearfield with liq-
uids having a higherβ-value and a lower density and in particular a lower velocity of
sound have been carried out [25] and a gain of 10–14 dB was found. Also replacing
the two high-frequency primary waves with an amplitude modulation of a carrier wave
could increase the secondary pressure level with 2.5 dB [25]. The use of higher primary
pressure amplitudes, while suppressing cavitation in the nearfield by putting this part of
the array under pressure, and still avoiding saturation effects have been done with the
gain of some dB’s on the secondary amplitude level. However, it may be fair to say, that
in spite of its many positive qualities, a real break-through in the underwater application
of the parametric acoustic array is still waiting.

5. Focused ultrasonic fields

TheK–Z–K equationhas over the past formed basis for a number of studies of fo-
cused ultrasonic fields as for instance in relation to acoustic microscopes, high-intensity
focused ultrasonic surgery and occlusion of blood vessels, lithotripsy and cavitation
induced tissue destruction. For a source radius of curvatured, the dimensionless coor-
dinateσ may be transformed toσ′ = σr0/d, which inserted into the K–Z–K equation
leads to [27, 28]:

[(∂2/∂y∂σ′)− (4G)−1∇⊥2 −K1(∂3/∂y3)]P = (K2/2)(∂2/∂y2)P 2, (21)

whereK1 = αd, K2 = βωp0d/(ρc3
0) and where the linear focal gainG = r0/d.

This form of the K–Z–K equation may be transformed [28] into a series of cou-
pled partial differential equations in terms of the Fourier components of the pressure,
and the equations may be solved using a PC-based procedure. This frequency-domain
technique, calledthe spectral method, has been extensively studied over the past where
monochromatic waves or tone bursts were used. However, in many biomedical appli-
cations the acoustic waves consist of a small number of cycles or even a single cycle.
While the excessive computer time used by calculations involving shock formation due
the nonlinearity can be reduced by exploiting the physics in the nonlinear process [28],
the situation becomes more difficult if absorption is frequency dependent in a complex
way like in tissues and if the beam is strongly focused. The parabolic approximation
behind the K–Z–K equation demands that the angular spectrum is narrow, or in other
words, that the wave is very close to a plane wave. This is not the case for strongly
focused beams or for beams having substantial irregularities in their transverse struc-
ture. This weakness limits the applicability of the K–Z–K equation to cases where the
diffraction effects are weaker and where the focusing gains are relatively low. In [29] it
was shown that the application of the K–Z–K equation for description of focused beams
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was only correct when the ratio of transducer aperturea to focal distanced, a/d < 0.5.
This demand is in particular caused by the fact that the parabolic approximation is not
able to cover the influence of edge waves. However, as shown in [28] the use of a coordi-
nate transformation originally suggested in [30] made it possible to investigate focusing
gains near 200.

In order to overcome some of the problems related to the spectral method,LEE et al.
[31] developed atime-domain algorithmfor solving the K–Z–K equation. This al-
gorithm used a marching scheme based upon an operator-splitting method and it per-
mits for each step to take individual account of acoustic nonlinearity, attenuation and
diffraction. The focused field in anelectrohydraulic lithotripterwas calculated using the
time-domain method [32]. Recently, another time-domain approach accounting for full
diffraction and arbitrary absorption effects has been developed and used for simulation
of the pressure field created in tissues by a highly focused source [33]. Also here an
operator-splitting algorithm is used to solve a set of equations accounting for the effects
of nonlinearity, attenuation and diffraction.

6. Conclusions

The development in nonlinear acoustics, started nearly 250 years ago, has brought
a substantial series of important contributions to the progress of this field of research
in acoustics. While the theoretical basis and the numerical tools have advanced very
far, the practical applications of the research results in nonlinear acoustics are still lack-
ing behind. Apart from the parametric acoustic array, which hitherto has not found a
wider application even in underwater acoustics, no single instrument, more extensively
used and solely based on nonlinear acoustics has been developed. Nonlinear acoustics
research results have instead found applications by their ability to explain certain ob-
servations in relation to, for instance, materials characterisation and use of high-power
ultrasound in medicine and biology.
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