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In this paper the acoustic power of the circular membrane, excited both by the edge and
external exciting forces uniformly distributed over the whole surface, is examined. Some dif-
ferent amplitudes of exciting factors and some differences between the phases of excitations
were considered. It has been assumed that the source of a sound is located in a flat, rigid and
infinite baffle and is sourrounded by a lossless and homogeneous fluid medium. The vibra-
tions are axisymmetric and time-harmonic. Employing the Cauchy’s theorem of residues and
asymptotic formulae for the Bessel functions, the asymptotes for active and reactive power
consisting of elementary functions are obtained. The acoustic power radiated by the mem-
brane was shown graphically in terms of the parameters describing both kinds of excitations.

Key words: acoustic radiation power, vibrations of a spherical membrane, excitation produced
by edge and surface loads, amplitude-phase effects.

Notations

a membrane radius,
c propagation velocity of a wave in a fluid medium,

H
(1)
n first kind,n-th order Hankel function,
Jn n-th order Bessel function,
k0 wave number,

p(r) acoustic pressure,
P total sound power radiated by a membrane,

Pactive active power,
Preactive reactive power,

r radial variable of a point on the surface of the membrane in polar coordinates,
S membrane’s area,
s amplitude of the external excitation force per unit area of the surface,
t time,
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T streching force per unit length,
η transverse deflection of membrane’s points,

ρ0 rest density of the fluid medium,
σ mass of membrane per unit area,
ω frequency.

1. Introduction

The analysis of magnitudes determining radiation of surface sound sources such as
membranes or plates is very important from the practical point of view. The possibil-
ity of using purely theoretical results to design an acoustic system, which can exist as
damping noise components, is of essential importance. We can influence the radiation
of source in adiction to surface excitement, a driving force applied to its edge. In this
way the power of radiation is dependent on both the amplitude of excitation at the edge
and on its phase.

In the paper [5] the abilities of control amplitudes and phases of both clamped edges
of annular plate excited at the same time by external surface force were investigated.

W. J. RDZANEK, W. P. RDZANEK JR, Z. ENGEL have obtained integral formulae,
which determine the dependence of the acoustic power radiated by annular plate on
the amplitude of excitation of external edge and stiffness constants associated with the
boundary conditions [3].

It is very desirable to find elementary formulae describing the influence of parame-
ters connected with a source on the acoustic sound power. This problem is mathemati-
cally complicated and it is impossible to obtain some formulations for the power valid
for all frequencies.

The analysis of sound power radiated by a circular membrane excited to vibration
by the edge and external surface force have not been presented in the literature yet. In
spite of its simplicity, this problem has a great practical importance because it can be
applied to design and build active damping noise systems.

Making use of Cauchy’s theorem, the asymptotes for the sound power were reached
in an elementary form. The asymptotes determine the dependence of the acoustic power
on parameters characterizing the excitations.

2. Assumptions

The membrane, the radius of which equals a is stretched on the circle by forceT
referred to unit length. Further it was assumed that its mass per unit area of surface is
equal toσ. The source considered is embedded into a flat, rigid and infinite baffle and
vibrations are axisymmetric and time-harmonic with frequencyω (Fig. 1). The sound
wave is radiated in a homogenous, lossless fluid medium. The external exciting force is
uniformly distributed on the whole surface of the membrane and is time-harmonic. This
excitation is mathematically described by

FW (t) = se−i(ωt+ϕ), (1)
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wheres is amplitude of excitation referred to unit area of the surface, andω, ϕ denote
frequency and phase.

The second kind of excitation is produced by means of the edge and can be expressed
in the form of

w(t) = η0e
−i(ωt+ϕ0); (2)

by η0 andϕ0 we have denoted amplitude of excitation and its phase, respectively.
The above equality represents the boundary condition at the edge of membrane.

Fig. 1. The configuration of a vibrating system with both kinds of excitations.

For time-harmonic and axisymmetric vibrations a transverse deflection can be for-
mulated as

η(r, t) = η(r)e−iωt, (3)

whereη(r) is a function determining the value of a transverse deflection’s amplitude in
terms of the radial distance.

The equation of motion for the considered source is given by the following formula

T∆rη(r, t)− σ
∂2η(r, t)

∂t2
= FW (t), (4)

where∆r is the radial component of operator∆.
On the basis of formulae (1), (2), (3), the equation of motion and boundary condition

can be presented in the following form [2, 8]:
(
T∆r + ω2σ

)
η(r) = se−iϕ, η(a) = η0e

−iϕ0 . (5)

Solving the above equation together with the boundary condition and introducing
the following notations:

f =
s

Tk2
, k2 =

ω2σ

T
, λ = ka, (6)
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we obtain

η(r) =
(
η0e

−iϕ0 − fe−iϕ
) J0(kr)

J0(λ)
+ fe−iϕ, (7)

whereJn is then-th order Bessel function.

3. The total sound power

The acoustic power is calculated according to the definition

P = 1/2
∫

S

p(r)v∗(r)dS, (8)

where

p(r) =
−ik0cρ0

2π

∫

S0

v(r0)
exp(ik0 |r− r0|)

|r− r0| dS0 (9)

is the sound pressure ,v∗ is the conjugate value for the vibration velocity of membrane’s
points,|r− r0| is the distance from the membrane’s point to a point in the soundfield,
ρ0 – rest density of fluid medium,k0, c correspondingly denote the wave number and
propagation velocity,S, S0 is membrane’s area.

The total sound power radiated by some surface sources can be expressed in its
Hankel representation

P = πρ0ck
2
0

∞∫

0

W (x)W ∗(x)xdx

µ
, (10)

where

W (x) = −iω

a∫

0

η(r)J0(k0xr)rdr (11)

is the function characterizing a source,µ =
√

1− x2 for 0 ≤ x ≤ 1, µ = i
√

x2 − 1 for
1 ≤ x ≤ ∞ [6, 7].

On the basis of expression (10), the total sound power can be formulated briefly as

P = Pactive − iPreactive, (12)

wherePactive andPreactive denote the active and reactive sound power.
Substituting the solution of the equation of motion into Eq. (11) we get as a result

W (x) = −i
ωa2

β

{
fe−iϕ J1(βx)

x

+(η0e
−iϕ0 − fe−iϕ)

αδJ0(βx)− xJ1(βx)
δ2 − x2

}
, (13)
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where the following notations have been introduced:

β = k0a, δ =
λ

β
, α =

J1(λ)
J0(λ)

. (14)

Futher some mathematical calculations lead to

W (x)W ∗(x) =
ω2a4f2

β2

{
J2

1 (βx)
x2

+
(
1 + q2 − 2q cos l

) [αδJ0(βx)− xJ1(βx)]2

(δ2 − x2)2

− 2 (q cos l − 1)
J1(βx)

x

αδJ0(βx)− xJ1(βx)
δ2 − x2

}
, (15)

where:
q =

η0

f
, l = ϕ− ϕ0. (16)

Since the above notations being dimensionless, they are very convenient for describ-
ing the excitations.

3.1. The active power

The formulation for the active power is derived from formula (10) by performing
integration along the real axis within the limitsx ∈ (0, 1) [6]

Pactive = πρ0ck
2
0

1∫

0

W (x)W ∗(x)xdx√
1− x2

. (17)

Inserting Eq. (15) into (17) and introducing the following notations:

P0 = πa2ρ0cω
2f2, E1 =

1∫

0

J2
1 (βx)dx

x
√

1− x2
,

E2 =

1∫

0

[δαJ0(βx)− xJ1(βx)]2 xdx

(δ2 − x2)2
√

1− x2
,

E3 =

1∫

0

J1(βx) (αδJ0(βx)− xJ1(βx)) dx

(x2 − δ2)
√

1− x2
,

A = 1 + q2 − 2q cos l, B = 2(q cos l − 1),

(18)
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we transform the formula for active power to the form [4]

Pactive = P0 (E1 + AE2 −BE3) , (19)

where the magnitude ofP0 is regarded as a unit of the acoustic power.
The integrals given by formulae (18) can be calculated on the basis of the Levine’s

and Leppington’s method and of the Cauchy’s theorem of residues. It is necessary for
computation to assume thatδ < 1.

Computing the integralE1 we introduce the function of complex variablez = x+iy,

F1(z) =
J1(βz)H(1)

1 (βz)
z
√

1− z2
, (20)

which satisfies the following conditions:

ReF1(x) =
J2

1 (βx)
x
√

1− x2
, ReF1(iy) = 0, (21)

where byH(1)
n we have denoted the first kind,n-th order Hankel function.

Choosing the suitable, closed path of integrationC within and along which the con-
sidered function is analytical, regular and unique and using the Cauchy’s theorem, we
obtain [1] ∮

C

F1(z)dz = 0. (22)

The obtained equation can be transformed to the symbolic form

P

1∫

0

+

∞∫

1

+
∫

R∞
+

0∫

i∞
=

1
2

ResF1(0),

where symbolP denotes that the integral within the limits (0,1) is interpreted as the
Cauchy principal value.

The integral computed along the great circle when its radius increases infinitely is
equal to zero. The equality (21) results in the fact that there is also no contribution from
the integral calculated along the imaginary axes [6]. Finally we get

E1 = Re

{
πi

1
2

ResF1(0)
}

+

∞∫

1

ImJ1(βx)H(1)
1 (βx)

x
√

x2 − 1
dx. (23)

The integral within the limits(1,∞) can be evaluated using the stationary phase method
and the asymptotes for Bessel functions.

Taking into consideration that

ResF1(0) = − i

π
, (24)
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we obtain

E1 =
1
2

(
1 +

cos γ√
βπβ

)
, (25)

where the following notation has been introduced:

γ = 2β + π/4. (26)

The integralsE2 andE3 can be calculated in an analogous way by choosing the
suitable functions and path of integration [1]. For integralE2 the following function is
introduced:

F̃2 =
zF2(z)

(δ2 − z2)2
√

1− z2
, (27)

where

F2(z) = α2δ2J0(βz)H(1)
0 (βz) + z2J1(βz)H(1)

1 (βz)

− αδz
[
J0(βz)H(1)

1 (βz) + J1(βz)H(1)
0 (βz)

]
. (28)

Basing on the Cauchy’s theorem concerning the residues and on the following
relations:

ImF2(δ)
δ2

= 0, Im

(
dF2(δ)

dz

)
= −2δ2β

πλ

(
1 + α2

)
, (29)

we obtain the final result

E2 =
1
2

{
1 + α2

√
1− δ2

+
(1− α2δ2) cos γ + 2δα sin γ√

βπβ(1− δ2)

}
. (30)

To evaluate the integralE3, the function is introduced in the form

F̃3(z) =
F3(z)

(z2 − δ2)
√

1− z2
, (31)

where

F3(z) =
1
2
αδ

[
J1(βz)H(1)

0 (βz) + J0(βz)H(1)
1 (βz)

]
− zJ1(βz)H(1)

1 (βz). (32)

In this case the path of integration is the same as that used in integralE2.
Some mathematical calculations lead to

E3 =
α

λ
√

1− δ2
+

1√
βπβ (1− δ2)

[
λα

β
sin γ + cos γ

]
. (33)

The formula (19) together with the formulae (25), (30) and (33) represent the active
sound power radiated by the investigated source.
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3.2. The reactive power

The reactive power can be derived from the integral formulation [8]

Preactive = πρ0ck
2
0

∞∫

1

W (x)W ∗(x)xdx√
x2 − 1

. (34)

Computing the above integral we use the stationary phase method and the following
asymptotic formulae for Bessel functions:

J2
0 (βx) ≈ 1

πβx
{1 + sin 2βx} , J2

1 (βx) ≈ 1
πβx

{1− sin 2βx} ,

J0(βx)J1(βx) ≈ − 1
πβx

cos 2βx.

(35)

After some mathematical transformations, the reactive power according to the
Eqs. (18), (26) can be expressed in the final form

Preactive =
P0

πβ

{
f2

(
1− 1

2

√
π

β
sin γ

)
+

[
A

1− α2(1− 2δ2)
2(1− δ2)

+ B

]
Ω

+
1

2(1− δ2)

√
π

β

[(
4A(δ2α2 − 1)

1− δ2
−B

)
sin γ

+ αδ

(
8A

1− δ2
+ B

)
cos γ

]}
, (36)

where

Ω =
arcsin δ

δ
√

1− δ2
. (37)

The active and reactive sound power is expressed by the elementary formulae which
are convenient for further numerical calculations.

4. Conclusions

On the basis of the asymptotic formulae for the acoustic power and of the more
general integral formulation (17), (34) we come to a conclusion that both the active
and reactive sound power of the considered source for arbitrary values of parameters:q,
β, λ reach maximum value when the difference of phases between excitation equalsπ
(Fig. 3, 4). That is when a transverse deflection of points on the surface of the membrane
and the displacement at the edge have opposite directions.
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For some nearby resonance frequencies we observe a distinct increase of the acous-
tic power (Fig. 5). Neglecting of damping causes that the sound power increases in-
finitely when frequency of the excitations tends to the resonance value.

The acoustic sound power radiated by a source can be controlled by means of se-
lection of appropriate amplitudes, phases and frequency characterizing both kinds of
excitations. The derived formulae, having elementary form, are very useful for some
numerical calculations.

Fig. 2. The active and reactive sound power plotted in terms of parameterη0/f for β = 15, δ = 0.5 and
for some values of the differences between the phases associated with the excitations.

.

.

.

.

.

.

Fig. 3. The active and reactive sound power in terms of parameterϕ−ϕ0 in the case ofη0/f = 1, β = 15.
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Fig. 4. The active and reactive power plotted as a function of parametersη0/f andϕ − ϕ0 for β = 15
andδ = 0.5.

Fig. 5. The active acoustic power in terms ofϕ − ϕ0 for frequencies correspondingly near and far from
the resonance whenβ = 15, η0/f = 1.
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