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Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
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The modes of the thermoviscous flow over a strongly non-uniform background have been
obtained. Corresponding matrix projecting operators that decompose every mode, or every
possible type of the hydrodynamic motion, from the overall field perturbation have been writ-
ten in the explicit form. Projecting has been used in order to get dynamic nonlinear equations.
Acting by the projector corresponds to the entropy mode of the system of conservation laws,
while the acoustic mode which is supposed to be dominating yields in the governing equation
for the acoustic heating caused by the attenuated acoustic beam. An example of calculations
of heating in the viscous flow between two parallel plates has been given.
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1. Introduction

Acoustic waves are not only a possible type of hydrodynamic motions. Many appli-
cations of hydrodynamics and, in particular, aerodynamics deal with slow motions (in
comparison to acoustic waves): the vortex and entropy ones that are basic for hydrody-
namic motions as well as acoustic waves. The complete classification of hydrodynamic
motions of a free stream was made by CHU and KOVASZNAY [1] on the basis of an
analysis of the linear flow. The modes have been determined as mathematical links
between wave perturbations specific for every type of motion. In general, every small-
amplitude disturbance in the free stream can be decomposed into three independent
different types of motion: the acoustic, vortical and entropy modes. Only the first one
corresponds to the pressure fluctuation propagating with the sound speed, the last two do
not cause any pressure perturbation. The results by Chu and Kovasznay relate to hydro-
dynamic motions over a uniform background without main streams which considerably
simplifies the definition of the modes.



218 A. PERELOMOVA

Aerodynamics pays a great attention to possibly correct description of flow in a
boundary viscous layer. It was proved experimentally that the appearance of the vor-
ticites by the wing of an airplane may cause unstability of a flight; the engineering
is aim at the reducing of the turbulence appearing in the flows with large Reynolds
numbers as well. The mathematical description of the hydrodynamics in the bound-
ary layer is extremely difficult since the background is strongly non-uniform in the
normal direction to the boundary. To consider vortices, the initial system of the con-
servation equations is traditionally reduced: the continuity equation is of no account
since the dynamics of an incompressible liquid is considered. The effect of thermal
conductivity is of no account as well: neglecting the thermal conductivity makes the
linear system governing the linear incompressible flow complete. Recent discussions
[2, 3] suggest that these points are essencially inconsistent since an acoustic wave can
propagate only over a compressible medium. Furthermore, it has been proved that the
effect of thermal conductivity could not be discarded in the studies of temperature vari-
ations: this approximation is well-understood for a typical liquid like water but should
be revised for other liquids [4]. The important point is that the entropy mode (slow
heating) appears and may grow due to nonlinear interactions in a viscous flow. The
entropy mode is a specific compound of a flow, it participates in the nonlinear inter-
action of modes. Ignoring this mode and going to an incompressible flow that essen-
tially simplifies the calculations is incompatible with a correct physical description of
the flow.

These reasons made author to work out governing equations in the boundary layer
accounting for the most general flow as possible. The initial point is the overall sys-
tem of equations of the conservation laws. The next steps are to define the modes as
eigenvectors of the linear flow in order to get matrix projectors and then to investi-
gate the nonlinear flow using those matrix projectors. The first results on this way were
published in [5]. There appeared also a number of papers by the author concerning in-
vestigations of nonlinear flow in the plane and quasi-plane geometry over uniform and
non-uniform media [6, 7, 8].

Our idea is to fix relations between specific perturbations (velocity components,
density and pressure) for every mode following from the linear equations, and to ap-
ply these relations in the studies of nonlinear dynamics. Since modes are defined by
eigenvectors correspondent to the dispersion relations of the linear problem, the links
do not depend on time. Therefore, an overall field of the linear dynamics may be sepa-
rated by projectors to the independent modes at any moment. Fixing the relations when
going to the nonlinear flow yields in a system of coupled evolution equations for the
modes in the most general case of flow. A further simplification of the equations de-
pends on the concrete problem to be solved (e.g. the acoustic mode is dominating).
When a plane boundary in a viscous flow is present, there appears a near-boundary flow
like the Blasius layer, and a linearization occurs on account of the near-boundary flow
as a background. The background stream in the problem relating to a motion between
two parallel plates is the Couette flow.
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2. Basic conservation equations taking into account equations of state
in the general form

The set of equations describing hydrodynamics in a viscous heat-conducting medium
has the following form:
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The final term in the first equation of (1) is written in the Cartesian tensor notation.
For details of the notations, the reader is referred to the Appendix. The system (1) is in-
complete since two thermodynamic relations are necessary: e(p, ρ), T (p, ρ). The reason
of the choice of e(p, ρ) instead of the entropy s(p, ρ), which is used in the most papers
[9, 10], is that the internal energy is a specific feature of the chemical structure of the
substance and it does not depend on the type of a possible motion (acoustic modes are
known as quasi-isentropic). Following the ideas of the previous papers by the author
([11] and the papers referred there), let us use the most general form of these relations
as an expansion in the Fourier series:
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The two-dimensional viscous flow over the half-space z > 0 along the x-axes relates
to the two-component velocity vector in the coordinates (x, z):

v = (u,w) + u0, (3)

where u0 means the background flow and (u,w) mark field perturbations. Accordingly
to the geometry of problem and boundary conditions,

u0 = (U0(z), 0) and U0(0) = 0. (4)

The system (1), (2) taking into account (3), (4) yields in the following equations
written with an accuracy up to quadratic nonlinear terms:
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where
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1
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and β =

1
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(
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1− E2

E1
E5

)

are constants, c is the small-signal sound velocity (equation of state for a perfect gas
gives the quantities α = −γ = −Cp/Cv, β = 0, c =

√
γp0/ρ0). Quadratic nonlinear

equations for a flow in media other than a perfect gas can be obtained by letting γ be
equal to B/A + 1. The first equation of (5) follows from the energy balance and the
continuity equation.

3. Modes as the basic types of linear motion

The initial system (5) contains four dynamic equations and therefore there are four
independent modes of the linear flow: two acoustic ones, vorticity and entropy modes
that obviuosly differ from those over the uniform background. The starting point of the
investigations of vortices (linear vortices are called also waves of Tollmienn–Schlicht-
ing) is to consider an incompressible liquid as already mentioned in the introduction.
Formally, if the thermal conductivity is ignored, the left-hand linear terms of the three
first equations of (5) do not involve perturbations of density, so the vortex mode may be
defined on the basis of these three equations. Note that the right-hand quadratic terms of
all these equations do include perturbations of density that leads to inconsistency when
going to the nonlinear dynamics. If the thermal conductivity is strong, the corresponding
linear term proportional to the perturbation of density could not be neglected as well.
Excluding the continuity equation leads to a principle impossibility to consider changes
of flow related to the entropy mode.

Let us define the modes accordingly to the relations of specific variables following
from the overall linearized system of dynamic equations (5). Using the right-hand part
of the system (5) as a basis of the modes definition and introducing the follwing two
non-dimensional functions

V0(z) = U0(z)/U∞, φ(z) = V0z(z)l0, (6)

we rewrite it in the non-dimensional quantities x∗, z∗, t∗, u∗, w∗, p∗, ρ∗ (see Appendix).
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In the new variables (asterisks will be omitted everywhere below in the text) a linear
analogue of (4) is obtained:
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with constant parameters δ1, δ2, ε, R and Re being the Reynolds number determined
in Appendix.

The definition of the modes on the basis of (7) could not be proceeded in a direct
way, i.e. by determining the dispersion relations and further links of every mode due
to the compexity of the problem: V0, φ are functions of z. Since the geometry of the
viscous flow over the boundary supposes strong non-uniformity in the vertical direction,
all disturbances may be thought not on the basis of plane waves but as functions like
ψ(z) exp(iωt− ikxx).

3.1. Acoustic modes

The potential flow imposes two acoustic modes with ∂u/∂z − ∂w/∂x = 0. In the
limit of Re−1 = 0, R−1 = 0, χ = 0, φ = 0, (7) yields naturally the dispersion relation
for the acoustic modes: (
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−∆

)
p = 0. (8)

Then, two acoustic modes are determined by links of specific perturbations:
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Note that taking into account the linear thermoviscous terms proportional to R−1, Re−1,
χ result in the corrected eigenvectors that differ from (9) by operators proportional to
these small values. They will be obtained in the Sec. 6 below.
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3.2. The Tollmienn–Schlichting (vortex) mode

Formally, the limit of an incompressible fluid (ρ = 0) corresponds to the vor-
ticity mode. The first relation for the velocity components of vortex flow is obvious
(∇v = 0):

∂u/∂x + ∂w/∂z = 0. (10)

An expression for pressure perturbation follows from the last two equations of (7):

2φ∂w/∂x + ∆p = 0. (11)

Both (10) and (11) define the Tollmienn–Schlichting (TS) mode due to links of the
specific perturbations of pressure and velocity components:
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0


 pTS. (12)

The symbols of the operators are listed in the Appendix.

3.3. The entropy mode

The last type of a possible motion is the entropy mode related to a slow isobaric
heating:

En =



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wE

ρE
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
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As a reffering value, perturbation of density is chosen since all other perturbations are
equal to zero. Corrections due to the thermoviscosity will be obtained in the Sec. 6
below.

4. Projecting operators

Every mode is completely defined by one of the specific perturbations – pressure
or density or velocity components since there are strict relations between them. They
form a complete basis, no other type of motion can exist. In the linear flow, overall
perturbation can be decoupled into modes by the orthogonal projectors.
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The overall perturbation is a sum of modes which, taking into account (9), (12) and
(13), looks:

ψ =
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The inverse to the L matrix yields immediately in matrix projectors being the tensor

products as follows:
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The projectors possess all properties of orthogonal projectors and their sum is a unit
matrix operator since all eigenvectors of the linear system are taken into account.

PTS + PA1 + PA2 + PEn = I,

PTS · PA1 = PTS · PA2 = . . . = 0,

PTS = PTS · PTS, . . .

(16)

where I and 0 are unit and zero matrices. In the linear flow, the projectors separate every
mode from the overall perturbation, for example:

PTS




p

u

w

ρ


 =




pTS

uTS

wTS

ρTS


 , (17)

and so on. Moreover, when the projector is acting on the system of dynamic equations
(7), one gets a linear evolution equation for the mode corresponding to this projector, in
fact three equations for every referring value. For the first (rightwards) acoustic mode
the linear evolution equation is:

∂pA1/∂t + V0(z)∂pA1/∂x + ε−1∆1/2pA1 = 0. (18)

A perturbation of density of the entropy mode satisfies the linear equation:

∂ρEn/∂t + V0(z)∂ρEn/∂x = 0. (19)

The acting of PTS at (7) yields in the well-known well-known equation for the TS
mode, when rewritten for the new variable such as the stream function Ψ (u = ∂Ψ/∂y,
w = −∂Ψ/∂x):

∆∂Ψ/∂t + V0∆∂Ψ/∂x− ∂Ψ/∂x · ∂φ/∂z − Re−1∆2Ψ = 0. (20)

When Ψ is sought in the form Ψ = Φ(z) exp(iωt − ikxx), the well-known Orr–
Sommerfeld (OS) equation follows from (20):

(V0(z)− c)
(
∂2

zΦ− k2
xΦ

)− Φ∂zφ =
i

Re kx

(
∂4

zΦ− 2k2
x∂2

zΦ + k4
xΦ

)
. (21)

That equation is an initial point of the laminar flow stability and determines an eigen-
value Φ(z) and complex phase velocity c = ω/kx = cr + ici for every pair (kx, Re).
The sign of ci is namely a criterion of the flow stability: a negative value corresponds to
the growth of perturbation and thereby to the non-stability of the flow.
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5. Coupling dynamic equations for nonlinear flow

In the non-dimensional quantities, taking into account the nonlinear terms of the
second order, the dynamic equations are as follows:
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)
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with a vector of the second-order nonlinear elements ψ̃ standing for the right-hand side:
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∂w
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)
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. (23)

Acting by every projector at the nonlinear system (22) results in a set of coupled non-
linear equations. The reader is referred to the papers [6–8, 11] for the detail applications
of projecting to the different problems of hydrodynamics. It should be noted that in the
nonlinear right-hand side all values present a sum of specific perturbations of all modes:

p = 2∂2
x∆−1(φΨ) + pA1 + pA2,

u = ∂zΨ + ε∆−1/2∂xpA1 − ε∆−1/2∂xpA2,

w = −∂xΨ + ε∆−1/2∂zpA1 − ε∆−1/2∂zpA2,

ρ = ε2 (pA1 + pA2) + ρEn.

(24)

The equations governing a flow may be written algorithmically by projecting of
the basic system into a specific evolution equation for every mode. Final equations are
very difficult to solute since they are general differential equations with multipliers and
operators being functions of z.
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6. Heating caused by losses in energy of an acoustic beam

As a limit that simplifies considerably the mathematics, let us go to a quasi-plane
viscous flow over non-uniform background. The longitudinal derivative ∂x is supposed
to be much larger than the transversal one ∂z (in other words, kx is much larger than
kz). That allows to present the Laplace operator as a series of the small value kz/kx:
∆ = ∂2

x(1 + ∂2
z/∂2

x); thus ∆1/2 ≈ ∂x(1 + 0.5∂2
z/∂2

x). This is a standard procedure in
the theory of acousctics: the equation governing an acoustic beam, i.e. the Khokhlov–
Zabolotskaya–Kuznetsov (KZK) equation, is obtained in this way [9, 10]. The corrected
acoustic and entropy modes are as follows (the vortex one keeps the same as before in
Eq. (12)):

A1 =
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
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ε(−1 + 0.5 (∂z/∂x)2 − ∂x(B/2− δ1 − δ2))
−ε∂z/∂x

ε2(1− ∂x(δ1 + δ2))




pA2,

En =




0
εδ2∂x

0
1


 ρE .

(25)

B means the overall attenuation due to thermoviscous phenomena:

B = δ1 + δ2 + ε
(
R−1 + Re−1

)
. (26)

All calculations before are proceeded with an accuracy O(kz/kx, B). The correspond-
ing projectors can be corrected accordingly to the new definition of modes in the ther-
moviscous flow (25). Similar calculations relating to the quasi-plane flow over a uniform
background were proceeded by the author in the paper [11]. In particular, the entropy
projector has the form:

PEn =




0
εδ2∂x

0
1




(−ε2 2ε2∂−2
x φ∂z − ∂x(δ1 + δ2) −2ε2∂−1

x φ 1
)
. (27)
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The projector PEn, when acting on system (22), yields an evolution equation for
the density of the entropy mode caused by the progressive acoustic waves if only in-
puts of the rightwards progressive acoustic mode are hold in the right-hand side of the
nonlinear vector. For the flow over an ideal gas without thermal conductivity E1 =
(γ − 1)−1 , δ1 = 0, δ2 = 0, it reads in the leading order:

∂ρEn

∂t
+V0(z)

∂ρEn

∂x
= (γ − 1) ε3

(
pA1

∂pA1

∂x
− 0.5BpA1

∂2pA1

∂x2
−B

(
∂pA1

∂x

)2
)

+ ε4φ(z)
∫

pA1
∂2pA1

∂x∂z
dx. (28)

In flows over media other than perfect gas, γ should be replaced by B/A + 1. The
pressure of acoustic rightwards propagating wave is a solution of the nonlinear evolution
equation as follows:

∂pA1

∂t
+

(
V0(z) + ε−1

) ∂pA1

∂x
+

γ + 1
2

εpA1
∂pA1

∂x
− ε−1B

2
∂2pA1

∂x2

+
ε−1

2

∫
∂2pA1

∂z2
dx = 0, (29)

which in fact is analogous to the KZK equation with transferring over the background

flow term V0(z)
∂pA1

∂x
. More precisely, Eq. (29) corresponds to one of the branches of

the KZK equation, the rightwards beam, whereas the KZK equation satisfies both the
acoustic modes and includes temporal derivatives of the second order. The acoustic field
must satisfy the corresponding boundary conditions as well.

6.1. Application to a viscous flow between two parallel plates

The final equation governing acoustic heating is Eq. (28) with an acoustic source
in the right-hand side which is a solution of Eq. (29) modified by the transferring term
(modified KZK). It is known that the analytical solution of the KZK equation is very
difficult for and the solution of the modified Eq. (29) is even much more difficult.

As an acoustic wave, a non-diffracting beam caused by a plane transducer of radius
d placed between two parallel plates (d is dimensionless since the dimensional radius
divided by the distance l0 between parallel plane plates) is considered. The pressure of
the acoustic beam is a result of the product of the transversal Gaussian function and
a periodic solution of the Burgers equation for the plane wave of amplitude P0 with a
transferring term:

p(x, z, t) = P0 exp
(−z2/d2 − 0.5Bxk2

ak

)
sin(kak(x− t(V0(z) + ε−1)). (30)
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Here, kak is the characteristic longitudinal wavenumber of the acoustic wave (dimen-
sionless value which equals to dimensional wavenumber multiplied by the distance l0
between the plates). The acoustic wavelength is supposed to be much smaller than both
the radius of transducer and distance between plates:

kak À 1, kak À d−1. (31)

According to the first relation of (31) the variations of the background flow are supposed
to be slow in comparison with the pressure variations in the acoustic beams and there-
fore the transferring term is involved in equation (30) in a simple way. Simultaneously,
1 À d. The latter condition allows to consider an unbounded beam.

The background viscous flow between two parallel plates is a solution of the lin-
earized Navier-Stokes equation and is a so-called Couette flow:

V0(z) = z + 0.5− 0.5Re−1 ∂p0

∂x
(z + 0.5) (z − 0.5) . (32)

The dimensionless transversal co-ordinates z = 0.5, z = −0.5 correspond to the up-

per plate and to the lower one,
∂p0

∂x
= const is a longitudinal gradient of the back-

ground pressure. Formula (32) yields a following expression for φ(z): φ(z) = 1 −
zRe−1∂p0/∂x. The velocity of the Couette flow tends to zero at the lower plate and to
1 at the upper one (U∞ in dimensional quantities). Figure 1 a demonstrates the geometry
of the background flow.

- 0.4 - 0.2 0.2 0.4
z

0.5

1

1.5

V0

- 0.4 - 0.2 0.2 0.4

z

0.5

1

qa) b)

Fig. 1. a) Geometry of the background flow (the Couette flow) when Re−1∂p0/∂x equals to 0, 5, 10
(from the lower curve to the upper one); b) Heating caused by a non-diffracting beam: the thin line shows
the heat release over the uniform background. The solid line denotes an additional heating due to the non-
uniformity of the background viscous flow when Re−1∂p0/∂x equals to zero. The dashed and dropped

curves correspond to additional heating when the values of Re−1∂p0/∂x equal to 5 and 10.

Temporal averaging over a period of the acoustic wave gives in the leading order an
equation for the heat production (isobaric decrease of density) with an averaged acoustic
source:



MODES AND PROJECTORS OF THE VISCOUS NON-UNIFORM FLOW . . . 229

− q =
〈

∂ρE

∂t

〉
= −0.5BP 2

0 exp(−Bxk2
ak − 2z2/d2)

· ε3
(
k2

ak (γ − 1) + εφ(z)z/d2
)
. (33)

The value q denotes the dimensionless release of acoustic energy in the unit time and
in the unit volume. The last term in the brackets caused by the presence of the non-
uniform background flow expresses additional losses of the acoustic energy due to the
non-uniformity. After temporal averaging, the acoustic source in the right-hand side of
equation (33) does not depend on time and the losses of energy are proportional to the
time.

An illustration of the heat release is presented in Fig. 1b: the thick line shows the
heat release by the first term in brackets, while the thin line shows the heat release
by the second term in brackets of the formula (33) corresponding to different values
of Re−1∂p0/∂x. The illustration is an approximate one: the relative amplitudes of the
curves depend on B, kak, ε, V0(0) accordingly to (30) and (33) and can be evaluated for
every concrete flow. The value d = 0.1 was taken for the calculations. Because of the
background non-uniformity, the heating in the upper half of the space is more intense,
while it is less intense in the lower space. The integrated release of energy in a unit cross
section and in a unit time decreases when Re−1∂p0/∂x > 0 and remains unchanged
when Re−1∂p0/∂x = 0.

7. Conclusions

Thermoviscous flows over a strongly non-uniform background belong to the most
difficult problems of hydrodynamics. The author has worked out an algorithmic proce-
dure to distinguish different types of hydrodynamic motions with the help of projecting
in this complex problem. The dynamic equation for every mode is a result of acting of
a corresponding projector on the differential system of the conservation laws. Matrix
projectors have been derived in an explicit form.

In particular, the equations governing the acoustic beam and acoustic heating are de-
rived in the Sec. 6. Examples of calculations of the acoustic heating caused by a strongly
attenuated non-diffracting beam propagating over the Couette background flow with
different curvatures are presented. It has been shown that in the case of a viscous flow
between two plane parallel plates, where the losses of energy by a strongly attenuated
non-diffracting acoustic beam is the reason of heating, the main flow non-uniformity
results in an additional heating.

The possibilities of the method overcome the application to acoustic heating. This
method gives a complete set of governing equations for every mode. The basic diffi-
culty is rather mathematical one, i.e. it is the absence of analytical solutions for the
complicated differential equation in partial derivatives.



230 A. PERELOMOVA

Appendix

ρ density (ρ0 denotes unperturbed value, ρ′ = ρ−ρ0 denotes an
excess density),

p pressure (p0 denotes unperturbed value, p′ = p − p0 denotes
an excess pressure),

e internal energy per unit mass (e′ denotes an excess quantity),
T temperature (T ′ denotes an excess quantity),
η shear viscosity,
ς bulk viscosity,
χ thermal conductivity,
xi space coordinates (x1 = x, x2 = z),
v velocity,
vi the component of v in direction xi: v1 = u, v2 = w,

u0 = (U0(z), 0) velocity of the background flow,
δik the Kronecker delta, equal to unity for i = j and zero

otherwise,
Cp, Cv the specific heats per unit mass at constant pressure and vol-

ume, relatively,
ω circular frequency,
k wavenumber with components kx, ky,

E1, . . . E5 dimensionless coefficients in the Taylor series of internal
energy,

Θ1, Θ2 dimensionless coefficients in the Taylor series of temperature,

c =
√

p0(1− E2)
ρ0E1

a small-signal sound velocity,

PA1, PA2, PTS, PEn matrix projecting operators distinguishing every mode (right-
wards acoustic, leftwards acoustic, vortex and entropy) from
the overall flow,

U∞ characteristic velocity of the background flow,
l0 characteristic scale of the background flow,
Ψ stream function of a vortex flow.

Dimensionless quantities

V0(z) = U0(z)/U∞ velocity of the background viscous flow,
φ(z) = V0z(z)l0 transversal gradient of velocity of the background viscous

flow,
x∗ = x/l0 longitudinal coordinate,
z∗ = z/l0 transversal coordinate,
u∗ = u/U∞ longitudinal compound of velocity perturbation,
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w∗ = w/U∞ transversal compound of velocity perturbation,
t∗ = tU∞/l0,
ρ∗ = ρ′/ρ0,
p∗ = p′/ρ0U

2∞,
ε = U∞/c,

Re = U∞l0ρ0/η is the Reynolds number,
R = U∞l0ρ0/ (η/3 + ς) viscous coefficient,

δ1 =
Θ1

E1CV ρ0cl0
χ,

δ2 =
Θ2

(1−E2)CV ρ0cl0
χ

coefficients associated with thermal conductivity.

Operators

∂x, ∂z denote
∂

∂x
,

∂

∂z
relatively,

∂−1
x , ∂−1

z denote
∫

dx,
∫

dz,

∆ the Laplacian, correspondent in the Fourier space to the operator
−k2

x − k2
z ,

∆1/2 an operator, correspondent in the Fourier space to the operator(−k2
x − k2

z

)1/2,
∆−1/2 an operator, correspondent in the Fourier space to the operator(−k2

x − k2
z

)−1/2.
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