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Acoustic signals of small arm’s fire, the muzzle blast and the shock wave generated by a
supersonic bullet in air, are difficult to mask and can be exploited for localization of the hidden
sniper. This paper presents the system of acoustic measurements, based on a number of both
directional and omnidirectional microphones detecting the shock wave only, yielding exact
solution for the sniper direction in spite of certain errors in the directional measurements. The
system has a self-correcting ability concerning the sound directional measurements which
contributes to the system technical feasibility. Auxiliary muzzle blast measurements would
yield the sniper position.
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1. Introduction

Recent bad experience in the former Yugoslavia and Iraq, as well as the yet ear-
lier ones in Somalia, shows the threat posed by well-hidden snipers to peace-keepers
and civilians. Equipped with relatively cheap and light arms, snipers can easily mask
their position to avoid detection and elimination. Only the acoustic signals: the muzzle
blast to some degree, and primarily the shock wave [1] generated by a supersonic bullet
passing by, could be exploited for the effective sniper detection as they cannot be in
principle masked. This requires an appropriate system to be installed in the protected
area that makes necessary the acoustic measurements and evaluates the sniper position
or, at least, his direction, allowing one to direct a proper counter-fire.

Such systems are studied in recent literature [2, 3], where the two above mentioned
acoustic measurements are used to localize the sniper. Assuming the known bullet ve-
locity and correct detection of the muzzle blast among possible, nearly simultaneous
other blasts, these two measurements allow one to compute the sniper position with
rather low accuracy; experiments show the 50% chance of successful counter-fire [4].
The substantial difficulty arises from at least two problems connected with the acoustic
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measurement of the muzzle blast: 1) this is the relatively low-frequency signal whose
arrival time can be detected with low resolution, and 2) it propagates over a rather large
distance in air of generally variable properties bending the sound propagation path and
somehow enlarging the propagation time. This contributes to the evaluation error of the
sniper distance (it is evaluated from the time difference between the muzzle blast and
the shock wave arrival times at the measuring microphone, assuming the known bullet
velocity).

Reasonably, one is interested in destroying the sniper whose fire is directed at him
and posing the real threat to him, that is which fire miss-distance is small. Thus the in-
teresting shock wave signal propagates over a rather small distance through the assumed
reasonably uniform air. Moreover, this is the very characteristic N -shaped signal with
the rising time much below 1µs, thus the shock wave arrival time can be detected with
high resolution by a proper wide-band microphone measuring the high-frequency sig-
nals. This makes the acoustic measurements of the shock wave much more accurate and
reliable than the measurement of the muzzle blast. Even the information about the bullet
dimension – thus on the used sniper’s arm – is included in the shock-wave N -shaped
signal, and can be exploited for defence purposes.

These peculiar properties of the shock-wave measurements, whose significance is
seemingly underestimated in the existing literature, deserve high attention in the con-
sidered problem of the acoustic sniper localization. In fact, only the shock wave arrival
time measurements are discussed in this paper. Naturally, using the shock wave mea-
surements alone, one cannot evaluate the distance covered by the speeding bullet and the
position of the sniper; the muzzle blast measurements must be used for that, according
to the well developed method presented in [3]. However, the shock-wave measurements
are able to yield, as it is shown in this paper, the accurate direction of the bullet velocity,
assumed to be close to the sniper direction, that is sufficient to direct the counter-fire.
Moreover, the accurate direction to the sniper allows us to detect the sniper with other
than acoustic observations, the optical detection of the hot muzzle gases, for instance.

The evaluation of the bullet velocity direction requires measurements of the shock
wave arrival times at a number of observation points (microphones). As known, the
shock wave generated by a supersonic bullet has the form of a cone; its axis is the bullet
path (assumed straight) and the conical angle depends on the bullet velocity (assumed
constant). The measurement data must be sufficient to solve the geometrical problem
of finding the cone parameters and thus finding the sniper direction. The problem is
essentially nonlinear and quite difficult if only the shock wave arrival times are known
at the given microphone positions. To ease the computation task, we propose here the
directional measurements instead by two directional microphones placed in certain dis-
tance from each other; a number of additional omnidirectional measurements would
improve the localization accuracy and assure the solution uniqueness. These auxiliary
microphones could be planted “in field” over the safeguarded area, transmitting their
raw observations to the system computer by standard radio-links.

It is shown in Sec. 3 that only two directional measurements suffice to evaluate the
cone parameters. The angular accuracy of the measurements is expected to be much
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lower than the temporal accuracy of the shock wave arrival time measurements, which
can be assumed to be exact. A number of omnidirectional measurements (yielding exact
data of the shock wave arrival times) helps us to overcome the problem with inaccurate
directional measurements that can contribute much to the localization accuracy. Three
systems are discussed in Sec. 6, based on 2 directional microphones plus 4 omnidirec-
tional ones distributed over the safeguarded area, and 3 + 3 or 4 + 2 corresponding
microphones; the numbers are necessary to obtain the systems of directional measure-
ment self-correcting ability, the remedy to the technical problem of directional mea-
surements. Numerical simulations show that the convergent (exact) solution is obtained
(provided that the microphones are suitably placed with respect to the bullet path) even
for directional measurement inaccuracy as large as 1% or even more.

2. The shock-wave geometry

Assuming constant velocity v and a straight bullet path, the generated weak shock
wave in air has a form of a cone S1 (Fig. 1) of axis k (the normalized vector directed
against the bullet velocity, toward the sniper) and a tip O1, the position of the bullet
tip at the given observation time t1. The acoustic signal of the shock wave propagating
with velocity c in the direction normal to the shock wave cone, arrives to the observers
positioned at ri (in given Cartesian coordinates) at the shock wave arrival times ti. All
the observers residing on the shock wave cone S1 would detect the wave at the same
time t1 (simultaneously). Here we only consider the shock wave generated by the bullet
tip moving with the supersonic velocity v > c. This corresponds to the front edge of the
acoustic N -shaped signal [5].

O1

k
wave-front

S1

Fig. 1. The shock wave cone at the observation time t1 when the supersonic bullet tip position is O1.

At the time t2 > t1, the shock wave cone tip moves to the point O2:

O2 = O1 − vk(t2 − t1), (1)

and the cone broadens by the distance d normal to the cone S (Fig. 2),

d = c(t2 − t1), (2)

where c is the sound velocity in air (constant in the assumed homogeneous air). The
shock wave conical angle is
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sinϑ = [c(t2 − t1)]/[v(t2 − t1)] = c/v, (3)

assuming the supersonic bullet.
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Fig. 2. The shock wave expands over time with the sound velocity in air c.

The important conclusion results from the above that shifting the observation point
r2 (where the shock wave arrives at the time t2) by the distance d, Eq. (2), against the
outward normal n2 to the observed shock wave-front (the cone S2), places the point r′2
on the first cone S1 (Fig. 2); generally

r′i = ri − cni(ti − t1), (4)

for i-th microphone measuring the shock wave arrival time ti at position ri.

3. Directional measurements

Let the two directional microphones placed at r1 and r2 detect the shock wave arrival
times t1, t2, and simultaneously the sound propagation directions n1 and n2 (which are
the outward normals to the shock wave cone), respectively. It is shown below that these
two measurements suffice to evaluate 1) the cone axis k and 2) its tip O1, as well as
3) the conical angle ϑ, that is 4) the bullet velocity v, and finally 5) its path in space
determined by {O1,k, v}.

Consider a line described by its point ri and the vector ni along it. The line is the
sound ray generated at Pi and arriving in ri at the time ti (Fig. 3). The bullet path
described by the point O1 and the vector k crosses the rays (ri,ni), i = 1, 2, at points
Pi at the same angle

ϑ′ = π/2− ϑ, (5)

as it results from the geometry shown in Fig. 2. This yields the following vector equa-
tions (a dot meaning the scalar product)

ri − αini = Pi, i = 1, 2,

k = ±(P1 −P2)/ ‖P1 −P2 ‖,
k · n1 = k · n2 < 0,

(6)
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where the last inequality helps us to choose the correct sign to k; αi are unknown con-
stants (scalars).
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Fig. 3. The cone axis k crosses two normals to the cone surface n1,2 at the same angle ϑ′.

On the strength of Eq. (2),

(r2 −P2) · n2 − (r1 −P1) · n1 = d = c(t2 − t1), (7)

and the second of Eqs. (6) multiplied by ‖P1 −P2 ‖:

(r1 − α1n1 − r2 + α2n2) · n1 = (r1 − α1n1 − r2 + α2n2) · n2, (8)

one obtains:

α1 =
(r2 − r1) · n2 + c(t1 − t2)

1− n1 · n2
,

α2 =
(r1 − r2) · n1 + c(t2 − t1)

1− n1 · n2
,

sinϑ = −n1 · k > 0, i = 1, 2,

(9)

where ni,k are normalized vectors: ‖ ni ‖= ni · ni = 1, similarly k · k = 1. The
solution does not exist if n1 ·n2 = 1, which particular case (where both ri reside on the
same generatrix of the cone) is neglected in this study.

The cone tip O1 can be evaluated from the right-angled triangle (O1,P1, r1), Fig. 4,
where both ϑ and

‖P1 − r1 ‖= (r1 −P1) · n1 = α1 (10)

are known, yielding

O1 = r1 + α1

(
k

n1 · k − n1

)
= P1 − k

α1

sinϑ
,

v = −c/(n1 · k).
(11)

This concludes the searched solution.
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Fig. 4. The consistency condition of omnidirectional measurement at r3 results from comparison
of the conical angle ϑ.

4. The measurement consistency criterion

Having three or more directional measurements of the same shock wave, the same
k, v and other parameters should result from Eqs. (9), (11), evaluated from different
pairs of data but including the same (ri,ni, ti). For example, Eqs. (9) applied to the
pairs (1, 2) and (2, 3), should yield the same α2

α2 =
(r1 − r2) · n1 + c(t2 − t1)

1− n1 · n2
=

(r2 − r3) · n3 + c(t2 − t3)
1− n1 · n3

(12)

in order to obtain the same P2 and thus the same k. This consistency condition (applied
for different αi) will be exploited later in order to reduce the measurement errors causing
the above equation to fail.

Now consider an omnidirectional measurement of the shock wave arrival time t3
by a microphone placed at point r3 (Fig. 4). It is assumed here that the same shock
wave (the same bullet) is detected by the directional microphones yielding the data
(ri,ni, ti), i = 1, 2, and the evaluated shock wave tip O1 at the time t1. The shock
wave cone tip at the time t3 is O3:

O3 = O1 − vk(t3 − t1), (13)

according to Eq. (1). Naturally, the cone has the same conical angle ϑ = arcsin(c/v),
hence

(r3 −O3) · k
‖r3 −O3 ‖ = cosϑ. (14)

If the measurements are exact then

ξ =

√
1−

[
(r3 −O3) · k
‖r3 −O3 ‖

]2

+ k · n1 (15)

equals zero (k · n1 = − sinϑ), otherwise ξ 6= 0 indicating the incorrect measurement
data. The condition ξ = 0 is the consistency condition of omnidirectional measurement
data with respect to the pair of directional measurements which can include certain
errors concerning the directions ni. According to the earlier assumption that the arrival
time is measured exactly, the omnidirectional measurements are considered to be exact.
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Introducing matrix notations where vectors ri,Oi,k,ni are row matrices and r′,k′
etc. are their transposed (column) matrices, the above equation can be conveniently
rewritten in the form

ξ(3) =

√
z(I− k′k)z′

zz′
+ kn′1, z = r3 −O3 (16)

(I is a unitary matrix). All the earlier vector equations can be rewritten and evaluated
in a similar manner, and the same notations are applied to both vectors and the corre-
sponding matrices.

The measurement consistency condition ξ = 0 will help us to reduce the directional
measurement inaccuracy. Assuming ri, ti to be known exactly and admitting certain er-
rors δi in the measured shock wave propagation direction ni, this condition yields an
equation for δi. Several omnidirectional measurements (at points r3, r4, . . . ) are neces-
sary to obtain a sufficient number of equations in order to evaluate all the components
of vectors δi of interest. Regretfully, Eqs. (16), (9) and others are highly nonlinear and
their solution may not be unique, in general. It is assumed here that the measurement
can be only slightly inaccurate which allows us to apply the perturbation analysis with
respect to δi. The resulting linear equations for the measurement errors δi can be eas-
ily solved. It is a matter of numerical testing how large δi can be admitted to obtain
convergent solution for given microphone positions ri, and the bullet miss-distance and
direction −k.

5. Perturbation analysis

Assuming the measured (normalized) direction ni + δi instead of the correct ni, it
is evident that the equality

δi · ni = 0 (17)

results from the normalization condition (ni + δi) · (ni + δi), neglecting higher order
terms. Equation (17) shows that δi has only two independent components orthogonal to
ni. We may choose them in directions of two orthogonal vectors:

e(1)
i = ni × ri,

e(2)
i = ni × e(1)

i ,
(18)

again normalized after evaluation of the vector products denoted here by ×. In matrix
notations:

ei = [e(1)
i ; e(2)

i ],
δi = diei,

(19)

where di is the row matrix with two components fully characterizing the measurement
errors (for the already chosen ei).
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In perturbation analysis di is infinitesimal, but in real computations, for δi small but
finite, the corrected vectors ni ← ni + δi must be always normalized in order to keep
the earlier equations, like Eq. (15), valid. The perturbation analysis (for infinitesimal
di) of Eqs. (9) yields in the matrix notations using the summation convention:

δαi = δjaji,

[aji] =
1

1− n1n′2

[
α1n′2 α2n′1 + (r1 − r2)′

α1n′2 + (r2 − r1)′ α2n′1

]
,

(20)

where α1,2 are unperturbed scalars evaluated from Eq. (9) within zero-order accuracy
with respect to δi. Note that δj · n′i is a scalar. To indicate the set of data: (n1, t1, r1)
and (n2, t2, r2) used for evaluation of these coefficients, the superscript (1, 2) will be
introduced in the subsequent analysis like a

(1,2)
i , i = 1, 2.

Similarly, one can obtain the perturbation equations for

δOi = δjOji, δk = δjkj , and δξ = δjξj (21)

(the unperturbed ξ has zero value). Note that again, δk is a vector orthogonal to k:

(δk)k′ = 0 (22)

because of normalization of k. It can be evaluated from the perturbation of P1 − P2,
Eqs. (6); the perturbation of ξ is evaluated from Eqs. (15) provided that the perturba-
tions to Oi, Eqs. (11)–(13) are evaluated first. The explicit formula are too long to be
presented here; note only the introduced perturbation matrices Oji,kj ,ξj in Eqs. (21)
which will be applied in further analysis.

6. Self-correcting systems

Two directional measurements introduce four unknown errors: d(1,2)
i , i = 1, 2 (each

δi has two independent components d(1,2)
i ). Four independent conditions from the mea-

surement consistency conditions, for instance, are needed to evaluate d(j)
i , i, j = 1, 2

and to retrieve the correct values of ni.
This shows that two directional and four omnidirectional (introducing no extra er-

rors) measurements of the shock wave generated by the passing-by bullet are sufficient
for evaluation of correct ni in spite of the measurement errors. The correct values of
ni allow one to evaluate the correct bullet path parameters, k,O1 and v, that is to ob-
tain correct sniper localization. One may conclude that the directional measurements
yield only the first guess of these parameters to ease the corresponding computation
task based on the perturbation analysis.

Another measurement systems can be proposed as well. For example, three direc-
tional measurements (ni, ti, i = 1, 2, 3) introducing six unknowns d(1,2)

j , i = 1, 2, 3,
and three omnidirectional ones (at different ri, i = 4, 5, 6) which can be exploited for
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formulation of six consistency conditions ξ(i,j), evaluated using different pairs of di-
rectional data: (n1,n3) and (n2,n3), for instance. The other possibility is to formulate
three consistency conditions like in Eq. (12) for αi, appended by three ξi chosen to ob-
tain the best conditioned system of equation. Yet another system uses four directional
measurements and two omnidirectional ones; they will be discussed below in some de-
tails. Note however that directional measurements are much more expensive than the
omnidirectional ones, thus the first above mentionad system, “2 + 4”, is preferred over
two other: “3 + 3” and “4 + 2”.

At the first glance, the system of four directional measurements seems to be self-
correcting without omnidirectional measurements. Namely, we can formulate the suffi-
cient number of consistency conditions like Eq. (12) using different pairs of the direc-
tional measurements only. Regretfully, the rank of such system appears to be only six,
indicating that two other equations are necessary, namely resulting from independent
omnidirectional measurements.

6.1. The system “2+4”

The system of equations resulting from two directional measurement data: ti,ni+δi

at positions ri, i = 1, 2, and four omnidirectional measurements: tj at different rj , j =
3, . . . , 6, results from four consistency criteria ξ(j), Eq. (16). Explicitly, according to
Eq. (21):

δiξ
(j)
i = xj , i = 1, 2, j = 3, 4, 5, 6, (23)

what can be further transformed using Eq. (19) to obtain the complete system of equa-
tions for the unknown d

(l)
i , i, l = 1, 2:

2∑

i,l=1

d
(l)
i q

(l)
ij = xj , q

(l)
ij = e

(l)
i ξ

(j)
i , (24)

where the values of xj are ξ(j) evaluated from Eq. (16) using the measurement data (that
is the values of ni including certain error δi, what causes ξj 6= 0).

This solved, yields the measurement errors δi which – subtracted from the measured
data-yield the correct directions ni. In practice, δi are not infinitesimal and the values
of ξ

(j)
i are evaluated from inaccurate values ni = ni + δi. Although the ni − δi is

considered to be closer to the correct ni, it is evident that the correct solution can be
obtained repeating the calculations in a recursive manner. If convergent, they yield the
searched correct ni, and finally the correct bullet path parameters, particularly the most
important k.

6.2. The system “3+3”

Three directional measurement data, (ni, ti) at microphone positions ri, i = 1, 2, 3,
substituted into Eqs. (9), yield different values of the same αj due to inaccurate ni.
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The perturbation expansion yields three equations resulting from comparison of the
same αi, i = 1, 2, 3, Eq. (12):

δk[a
(i,m)
k1 − a

(i,n)
ki ] = xi, (25)

where xi = α
(i,n)
i − α

(i,m)
i is the difference of the two values of αi computed from

Eqs. (9) using different pairs of measurements: (i,m), m 6= i, and (i, n), n 6= i; the
same i is indicated in the superscripts of the perturbed coefficients evaluated from
Eqs. (20).

Another three equations can be chosen from several possible consistency conditions
(16) concerning three (l = 1, 2, 3) omnidirectional measurements and evaluated using
different pairs of directional measurements. One should choose those which yield the
best conditioned final system of equations. The chosen equations of the form:

δkξ
(l;n,m)
k = x

(n,m)
l , (26)

appended to the earlier formulated Eqs. (25) yield a complete system of equations for
six unknown components d(1,2)

k , k = 1, 2, 3, cf. Eq. (24). Like in the previous section,
the localization problem is solved iteratively, with each step improving the values of ni

used for evaluation of xi for the next step. One may also seek the least-square solution
to all possible equations (25), (26), but this usually reduces the condition factor of the
equation matrix and thus worsens the convergence of iterations mentioned above.

6.3. The system “4+2” and higher

The last system discussed here is based on four directional and two omnidirectional
measurements. The corresponding equations are formulated in the way presented in
the previous sections, using some of the multiple consistency conditions (12) and (16).
They yield a still larger system of equations, here of dimension eight, that is to be solved
iteratively, if the iterations converge.

Naturally, the system of equations can be formulated neglecting directional mea-
surement in one point and using the method “3 + 3” (or even “2 + 4” if two ni are
neglected). This makes it evident that six directional measurements alone (without ex-
tra omnidirectional ones) suffice for the solution of the sniper localization problem.
Such system is not, however, much technically attractive taking into account the cost of
directional measurements.

7. Numerical examples and conclusions

The first considered system, “2 + 4”, is the cheapest one. Numerical results show
that fortunately, it performs also better than others, yielding a convergent system of
equations for larger domains of bullet path parameters and larger directional measure-
ment inaccuracy.
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In the numerical example presented here for the system “2 + 4”, the microphones
are placed on the ground (this is also the sniper’s post level) and distributed over the
protected area about 20 m long (Fig. 5; squares represent directional microphones, cir-
cles – omnidirectional ones). The bullet miss-distance is assumed to be 2 m above the
ground, and its velocity is 3c. The directional inaccuracy is modelled by performing
calculations for 20 random directions ni + δi within 1% limit off the correct ni. If all
calculations converge to correct ni then the corresponding bullet path is plotted with
dashed, otherwise with solid line. The example shows that the system fails in only few
cases of sniper’s fire aimed at different points from different sniper’s posts.
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Fig. 5. The simulation of the system “2+4” for 1% measurement inaccuracies of directional measurements.
Axes units are 1 [m]. Dot lines shows successful evaluation of the sniper direction k, and solid lines indicate

cases of not convergent iterations.

The other two systems are substantially inferior, failing in much more cases of the
similar simulations. This is caused by a generally larger condition factor of the matrix
of equations. For smaller measurements errors however, all three systems perform well;
Fig. 6 presents the case “4 + 2” assuming measurement errors hundred times smaller
that in the case “2 + 4”. More extensive simulations, beyond the scope of this paper, for
realistic cases of the microphone distribution, sniper’s positions and bullet path orienta-
tion with respect to the protected area, would reveal the true value of the above proposed
systems.

Having the bullet path evaluated (characterized by O1,k, v), one can easily exploit
the other acoustic information about the fire – the acoustic signal of the muzzle blast.
Assuming a small miss-distance of the sniper’s fire and sufficiently large distance (L)
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Fig. 6. The simulation for the system “4 + 2” with directional errors within 0.01% only. Dot lines present
successful computations; cases where they failed are represented by solid lines.

to the sniper, the muzzle blast signal propagates nearly along the bullet path. This gives
the approximation concerning the time difference between the measured shock wave
(t1) and muzzle blast (to) arrival times:

L/c− L/v = to − t1 (27)

(t1, t2, . . . are assumed close), from which one easily finds L and thus the sniper’s
position measured along the evaluated bullet path.

Concluding, the acoustic system is proposed for the localization of the sniper posi-
tion fully exploiting the most reliable [6] and impossible to mask information delivered
by a supersonic bullet. Making two or more directional, and a number of supplemental
omnidirectional measurements of the shock wave signal with adequate accuracy (note
that this is a “single-event” measurement that cannot be repeated to improve it), one
can evaluate the bullet path parameters (particularly the most important bullet velocity
direction −k pointing at sniper’s post) and the bullet velocity with improved accuracy.
The proposed system has the ability to correct the directional measurement inaccuracies.
The numerical examples based on perturbation linearization of highly nonlinear equa-
tions governing the geometry of the considered problem show that this self-correcting
ability works well for the measurement errors as large as 1%, which can be expected
to be technically feasible. Fully nonlinear analysis would certainly even lower this re-
quirement admitting still larger directional measurement inaccuracy and making the
presented concept of the sniper localization even more attractive for implementation,
saving precious life of peace-keepers and innocent civilians from the snipers’ threat.
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Instantaneous evaluation of the sniper’s direction (−k) is essential also for this rea-
son that it may enable us to apply the other countermeasures. For example, properly
directed optical (infrared) sensor can pick-up the cloud of hot muzzle gases detect-
ing precisely the sniper’s post. In many cases, fast response is necessary to prevent
the change of the sniper’s post; perhaps automatic counter-fire is necessary. Knowing
known of such countermeasures, the sniper would try to act fast, which would surely
contribute to degradation of his fire, making it less lethal in any case.
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