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The article presents a novel method of speaker individual characteristics normalization and
linear transmission distortion compensation aimed at improving the effectiveness of short iso-
lated utterances recognition. To achieve this goal, spectral transformation banks of a speaker’s
signal and the division of speakers into classes were applied. The article also discusses the
form of spectral transformation, the method of its parameter values optimization, the method
of transformation banks definition, the method of speaker classes selection and the way of
iterative improvement of recognition results. Moreover, the study puts forward a fast method
of speaker classes selection on the basis of the fundamental voice frequency. The efficiency of
the proposed solution has been validated by the recognition results obtained by means of four
versions of a recognition system using Hidden Markov Models (HMM) and the mel frequency
cepstral coefficients (MFCC) parametrization.

Keywords: automatic speech recognition, speaker normalization, transmission distortion
compensation.

1. Introduction

The complex challenge facing automatic speech recognition (ASR) has not been
adequately coped with yet. The existing systems providing a satisfactory efficiency of
recognition suffer from such drawbacks as a small vocabulary and/or the limitation of
cooperation to a chosen group of speakers (speaker dependent ASR), or the little ro-
bustness to interferences and distortions. It often happens that a system which func-
tions properly for one speaker fails for another one or does not function well in the
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case of distortions caused by transmission or recording. ASR systems work on the ba-
sis of statistical language models which comprise, among other things, certain acoustic
and grammatical qualities. If trained in given acoustic conditions, such a system usu-
ally loses some of its efficiency when these conditions change, as they influence the
speech signal spectrum. A similar phenomenon can be observed when speakers change,
as the time-dependent signal spectrum varies from one speaker to another one. Training
speaker and channel independent ASR systems is a solution to this problem and can be
done with recordings coming from numerous speakers and at diverse transmission con-
ditions. Still, such a generalizing approach implies a smaller classification capability,
which in turn means lower recognition effectiveness.

This is the reason why modern ASR systems contain algorithms of adaptation and/or
normalization of the transmission conditions and individual speaker characteristics.
Their acoustic models are trained in the way which guarantees the highest classifica-
tion capability with the use of the aforementioned algorithms. The term “adaptation” is
used here with regard to methods which modify parameter values of a model without
changing parameters of the analysed signal. Normalization refers to methods altering
signal parameters leaving the model parameter values unchanged.

1.1. Review of adaptation and normalization methods

There exist numerous methods of transmission conditions adaptation or normal-
ization. CMN (Cepstral Mean Normalization), CDCN (Codeword Dependent Cepstral
Normalization) [1], VTS (Vector Taylor Series) [2] methods rely on signal parameters
correction by means of addition of the estimated corrective values. These values are
estimated in a way providing the best statistical match of the corrected input parame-
ters to the model trained on the clean signal. Another form of such matching is the
cepstral parameters histogram equalization proposed in [3]. The main disadvantage of
aforementioned algorithms is the necessity of long (at least a dozen seconds or some-
thing like that) input signal fragment analysis, as the input data must be statistically
relevant.

Relatively recently missing features methods were devised [4–6]. They cannot be
classified in the straight way as the normalization or adaptation algorithms, but their
principle is worthy of mention. These methods involve the dividing of the signal into
sub-bands and only the sub-bands whose contents have been marked as reliable are
taken into consideration in the recognition. The main disadvantage of such methods is
the complex and not completely solved task of the reliable sub-band marking.

So far there have been more solutions aimed at the problem of the speaker adapta-
tion than at the channel adaptation, although both issues are related. The VTLN (Vocal
Tract Length Normalization) method [7, 8] consists in scaling the frequency axis of the
analysed signal spectrum in order to compensate formant frequency shifts caused by
differences in the vocal tract length for various speakers.

Algorithms of the MLLR (Maximum Likelihood Linear Regression) type utilize
the affine transformation either of the signal parameter space or of the model parameter
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space. The transformation can be aimed e.g. at maximization of the classification ability
of the model (Conditional MLLR) [9]. A serious disadvantage of the MLLR methods is
the number of parameter values to be estimated, that is why some algorithms providing
the reduction of this number were proposed, e.g. [10].

A large class of adaptation algorithms is formed by methods of the MAP (Maximum
a Posteriori) [11, 12] type which involve the adaptation of model parameter values by
using their probability density functions (pdfs) given a priori and the available signal
parameters of the adapted speaker. And again, these methods need long fragments of
the input signal to work well.

Another important group of adaptation algorithms is constituted by methods involv-
ing a division of speakers into classes, e.g. the CAT algorithm (Cluster Adaptive Train-
ing) [13], in which the model parameter values for a given speaker are determined as the
weighted sum of parameters from various classes. On the other hand, the Eigenvoices
method [14, 15] performs also the form of soft-clustering, as it analyses the model pa-
rameter space by the PCA method. In the adaptation stage, the result model parameters
are estimated as a vector in the subspace spanned by PCA output vectors.

The aforementioned adaptation and normalization algorithms are characterized by
the following strong regularity: together with the increase in the number of parameters
whose values have to be computed, one can notice a simultaneous increase in their ef-
ficiency. Unfortunately, this increase means also the necessity of providing fragments
of the signal lasting at least a dozen seconds or something like that. The so-called rapid
methods, such as Eigenvoices or CAT require signal fragments of at least several sec-
onds. Furthermore, rapid algorithms need training with a training set of at least several
tens of speakers.

1.2. The scope of this study

This paper focuses on the compensation of transmission conditions and the normal-
ization of the speaker individual characteristics in recognition of very short and isolated
utterances of a duration below one second. Systems of this kind are applied to control
devices and it is desirable that they work effectively in various transmission conditions
and with various speakers. Due to the very short duration of utterances, the employment
of methods known from the literature does not guarantee the achieving of satisfactory
results. The reason already mentioned is the too little adaptation data available to apply
methods such as CMN, MAP or MLLR. Another reason is the fact, that most of the
known methods are based on the iterative adaptation of parameter values. The starting
point of the adaptation is of utmost importance here: if the algorithm is initialized im-
properly, the adaptation becomes inefficient. In the case of short utterances, the small
amount of data available increases the probability of inadequate initialization, or, in
other words, of wrong initial recognition. Therefore, instead of an iterative method, this
study proposes a parallel method based on using spectral transformation banks.

This study is organized as follows: Sec. 2 presents the main principles and the gen-
eral scheme of the devised algorithm; Sec. 3 describes a form of the proposed spectral
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transformation and a method of optimization of the corresponding parameters; Sec. 4
discusses a method of dividing speakers into classes and a method of determining pdfs
of mel frequency cepstral coefficients (MFCC) within these classes; Sec. 5 presents
a method of the spectral transformation banks construction; Sec. 6 focuses on an algo-
rithm of fast selection of speaker classes on the basis of analysis of the fundamental
voice frequency; Sec. 7 presents the variants of the ASR system used in the research
and the manner of implementing the recognition result improvement in them; Sec. 8
discusses the results obtained.

2. Principles and general scheme of the recognition improvement method

The algorithm devised is designed to cooperate with the ASR system with a small
vocabulary. The normalization will concern such individual characteristics as the tim-
bre of voice and shifts in formant frequencies related to differences in the vocal tract
length. The compensation of transmission distortions will encompass constant in time
linear distortions of smooth frequency response magnitude, such as distortions coming
from microphones and other elements of the electroacoustic path or from the charac-
teristic of the speaker’s mouth radiation related to his or her position in relation to the
microphone. It was assumed that there were no distortions that would totally remove
information from signal sub-bands or no strong reverberation resulting in a deep comb
filtering [16] and distorting the time structure of the signal by causing delays compara-
ble to the duration of the analysis frame. However, in most residential and office spaces
or inside cars this kind of reverberation does not appear. It was also assumed that the
noise level is so low that its influence can be neglected. The general outline of the pro-
posed method is shown in Fig. 1.

Each 20 ms frame of the discrete signal, with the sampling frequency fs = 16 kHz,
after windowing and determining of the discrete amplitude spectrum s0 of length
L = 256 (the bin for fs/2 was not taken into consideration) is subjected to transfor-
mation in spectral transformation (ST) banks. The transformation involves scaling of
the frequency axis by g(f) functions banks and linear filtering by LF banks. Each of the
M speaker classes can have a different ST bank. Then the MFCC parameterization is
carried out together with the observation probabilities P (ot)(1) computing with MFCC
pdfs separate for each class (see Sec. 4) and approximated with the sum of 5 Gaussians
(GMM). A phoneme was the basic language unit being modeled. We used 35 phonemes
including 6 vowels. The next stage was utterance recognition. We chose a {m, kg, kLF }
combination (m – speaker class, kg − g(f) function, kLF – LF) that guarantees the
highest value of the recognition score defined in the system (see Sec. 7). This recog-
nition score has a function similar to the confidence measure. To improve recognition,
we also deployed an iterative algorithm increasing the variety of g(f) functions and
LF used within the version {m, kg, kLF } chosen earlier. Moreover, we used the estima-

(1) P (ot) is an abbreviated marking of observation probabilities of HMM states for vectors ot of MFCC
parameters, for t = 1...T , where T stands for utterance duration in frames.
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tion of fundamental frequency F0 to reduce the computational cost by the preliminary
assignment of the speaker to a proper class on the basis of the F0 value.

Fig. 1. The outline of transmission distortions compensation and speaker individual characteristics nor-
malization, ST – spectral transformation, g(f) – frequency axis scaling function, LF – linear filter,

F0 – fundamental voice frequency.

Figure 2 shows the general outline of the ST banks construction and speaker classes
determination method. Before the division of speakers into classes takes place, one can
optionally take into account spectral transformations for speakers, determined for each
speaker from the training set in relation to any other member of this set. After designat-
ing the speaker classes there is also a possibility of carrying out transformations aimed
at increasing the classification capability of MFCC pdfs determined within the classes
in the following stage. The parameter values of these transformations serve also as one
of the initial parameters in the process of determining final transformations of speaker
spectra within the classes. The sets of parameter values of final transformations serve as
the basis of the ST banks construction.

We used the “CORPORA” database of the Polish language [17], which includes
45 recording sets done by 37 speakers (25 males, 12 females) of age from 9 to 70
years. Each recording consists of 365 utterances (200 first names, 33 alphabet letters,
10 digits, 8 control commands and 114 short sentences). The recordings were made in
a plain office environment. A condenser microphone was used and the digitalization
with parameters fs = 16 kHz, 12 bits/sample were done. The base is also segmented
and labeled (phoneme is the unit).
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Fig. 2. The outline of the ST banks construction and speaker classes determination method.

For our research, we divided the database into the training set consisting of 25 sets
of recordings (20 speakers) and the test set of 20 recordings (17 speakers).

3. Spectral transformation

The scaling of the frequency axis and linear filtering are conducted on the signal
amplitude spectrum. Considerable advantages of this method are the small number of
parameters whose values have to be determined, the physical meaning of its parameters,
its universal quality and the relative independence from the training set. The aforemen-
tioned physical meaning of the parameters matters in such analyses as the interpolation
of parameters carried out in the proposed iterative improvement of recognition (see
Sec. 7). The relative independence from the data of the training set is desirable when
this set is small. In the case of sets employed in the research the postulated method
yields good results for speakers outside the training set, whereas the Eigenvoices method
proves ineffective for such speakers as shown in [18].

3.1. The transformations applied in the method

It was assumed that the scaling function fb = g(f) is piecewise linear (Fig. 3),
where fb and f stand for the frequency before and after the transformation, respec-
tively. The parameters f1, . . . , fN and fb max = fmax are constant, whereas the val-
ues of the fb 1, . . . , fb N parameters are established through optimization. They are
also constrained in such a way as to guarantee the monotonicity of g(f). In the imple-
mentation it was assumed that f1 = 1.4 kHz, f2 = 2.3 kHz, f3 = 4.1 kHz and
fmax = 8.0 kHz.

The linear filtering was performed by the minimum-phase FIR filter. The location
of the transfer function zeros was limited so that they did not lie too close to the unit
circle, which in turn prevents too high local attenuation. In the implementation it was
assumed that the number of zeros is 4 and that their maximal radius is 0.8. The radii and
angles delineating the position of zeros are determined by optimization.
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Fig. 3. Scaling function g(f).

3.2. Optimization of transformation parameter values

Transformation parameter values for a given speaker are set optimally, while the
objective of optimization is to maximize the recognition result of isolated signal frames
of this speaker. This in turn ensures the universality and independence of the obtained
transformations from the current contents of the system vocabulary. The recognition
of isolated frames is performed on the basis of the given joint MFCC pdfs henceforth
referred to as reference pdfs. The determination of the transformation parameter values
is carried out in several points of the algorithm. Depending on these particular points, the
reference pdfs may be pdfs for speaker classes or individual pdfs for a single speaker.
In the case of switching from marginal pdfs to joint pdfs, it was assumed that they
are statistically independent. Segmentation and labeling available in the database were
used. The recognition result for vowels was maximized with the simultaneous limitation
preventing a parallel decrease in recognition for other phonemes. The reason for such
a procedure was that the adequate recognition of vowels is crucial in recognizing short
utterances from a small vocabulary.

The starting point for defining the optimization objective function is the expected
value of the error in recognizing isolated frames for a given phoneme r – relation
(1). The error is understood here as the difference of the log-likelihood obtained for
phoneme r and the maximum log-likelihood obtained for other phonemes, weighted the
function w:

cr =
∫

<D

w


ln (p2,r (o))− max

j=1...R
j 6=r

{ln (p2,j (o))}

 p1,r (o) do, (1)

where D denotes the dimension of the vector o (the number of MFCC), p1,r is the
joint MFCC pdf for the phoneme r of the speaker whose spectrum is being transformed
(this pdf depends on the transformation parameter values and changes in the process of
optimization), p2,r is a constant joint reference pdf for the phoneme r. The following
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versions of the function w were proposed: w1(x) = x and w2(x) = u(x), where u(x)
denotes a unit step function.

The value of function (1) may be estimated by the following relation:

c̃r =
1
N

N∑

n=1

w


ln (p2,r (on,r))− max

j=1...R
j 6=r

{ln (p2,j (on,r))}

, (2)

where N denotes the number of the vectors on,r, which are MFCC vectors of a given
speaker for the phoneme r obtained from signal frame spectra after spectral transfor-
mation with certain values of its parameters changed in the process of optimization.
Hence, the vectors on,r change during optimization. The estimator (2) is unbiased and
consistent.

Let Cvow denote the average value of c̃r for vowels and Ccon stand for the average
value for consonants. Cconb takes on the value Ccon computed at the start of optimiza-
tion: in version 1 – for neutral parameter values of spectral transformation (no trans-
formation); in version 2 – for parameter values of a certain preliminary transformation
defined in the course of selecting speaker classes. The following objective functions
were proposed:

C1 =
{

Cvov, Ccon ≥ Cconb,
Cvow − α1 · (Cconb − Ccon) , Ccon < Cconb,

(3)

for the function w in (2) equal w1 and

C2 =
{

Cvow, Ccon ≥ Cconb,

Cvow · αCconb−Ccon
2 , Ccon < Cconb,

(4)

for the function w in (2) equal w2. In the implementation we set penalty coefficients
α1 = 2 and α2 = 0.87.

From (2), (3), and (4) it follows that in the case of the function C2 we calculate the
recognition result of isolated frames, whereas in the case of function C1, we also take
into account the dynamics of recognition errors understood herein as the difference of
log-likelihoods.

The estimator (2) is applied to objective functions C1 and C2 and their values de-
pend on the chosen set of frames used to determine the vectors on,r. Hence, the value of
the objective function is influenced by the estimation error. We made attempts at using
a stochastic optimization algorithm [19] where sets of frames are drawn in each itera-
tion. However, this method did not yield satisfactory results and finally just one set of
frames was chosen at the start of optimization. The set was rich enough to make the
estimation error much smaller than the obtained recognition result improvement and to
come up with an appropriate generalization, i.e., the obtained improvement was also
maintained for other selected sets of frames.

Owing to the character of the objective functions used – they can be discontinuous
and have many local maxima – a two-stage optimization algorithm was proposed. In
the first stage an evolutionary algorithm [20] is applied to find a region in which the
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global maximum is supposed to be located. In the second stage the Nelder-Mead sim-
plex method is employed to find the exact location of the maximum. A similar proposi-
tion of a hybrid algorithm can be found e.g. in [21].

4. Division of speakers into classes

The recognition based on using one MFCC pdf for all speakers are not efficient
enough due to the considerable variability of the speakers characteristics. On the other
hand, the use of numerous pdfs coming from individual speakers does not enable an
effective normalization of other speakers’ individual characteristics by means of the
proposed spectral transformation method. Thus it is justified to resort to an transitional
solution and to use pdfs for speaker classes. The suggested methods of the speaker
classes selection and MFCC pdfs determination are described below. Owing to the small
size of the training set, the speakers were divided into two classes.

Let us assume that there are N {ν1, . . . , νN } speakers in the training set and that we
know the values of the similarity measure between speakers i and j denoted as di,j . We
also know the number of classes M (M < N) to which all speakers will be assigned.
In order to designate speaker classes, in which there is a specific central speaker νm, for
each combination q: {νq

1 , . . . , νq
m, . . . , νq

M }, where νq
m are those selected from among

N speakers, we compute

dq
sum =

N∑

n=1

{
dj,n : j = arg max

m=1...M

{
dνq

m,n

}}
(5)

and then we find the number of the optimal combination qopt, for which dq
sum took on the

highest value. The set of speakers (νq opt
1 , . . . , ν

q opt
M } is taken as the class centers. The

remaining speakers are assigned to classes so that a given speaker belongs to a class in
which his or her similarity to the central speaker has the highest value.

4.1. Version 1 of the speaker classes determination method

The similarity measure among the speakers has the following representation:

di,j =
1
R

R∑

r=1

D∏

d=1

∫
<

pd,r,i (x) · pd,r,j (x) dx

√∫
<

p2
d,r,i (x) dx · ∫

<
p2

d,r,j (x) dx
, (6)

where pd,r,i denotes pdf of the d-th MFCC coefficient for phoneme r for the speaker i.

4.2. Version 2 of the speaker classes determination method

The speaker classes were designated on the basis of the measure (6). Next, the pre-
liminary optimizations of spectral transformation parameter values for all speakers of
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a given class were carried out, with the reference pdfs equal to those of the central
speaker in the class. The objective function C2 and version 1 of determining value Cconb
were used in these optimizations. The MFCC pdfs for classes were determined with the
obtained preliminary transformations taken into consideration.

4.3. Version 3 of the speaker classes determination method

The similarity measure (6) does not take into consideration the classification capa-
bility of pdfs being compared, as it is only a similarity measure of the same phonemes
of two speakers. Hence a distance between speakers was introduced(2) . It takes into
account not only the similarity between the same phonemes but also the distance from
other phonemes:

di,j =
R∑

r=1

bi,j,r

R∑
k=1
k 6=r

bi,j,k

, bi,j,r = − ln




∫

<D

√
pr,i (o) · pr,j (o)do


 , (7)

where pr,i denotes the joint D-dimensional MFCC pdf for phoneme r for the speaker
i, and bi,j,r is the Bhattacharyya distance between pdfs pr,i and pr,j . The Bhattacharyya
distance is often employed to compare pdfs [22, 23]. Distance (7) decreases along with
the increase in similarity among speakers. Hence in (5) the search for the maximum
should be replaced with the search for the minimum. One of the properties of the dis-
tance (7) is the normalization of the influence of different phonemes r.

It was suggested that the division into classes should be done after conducting pre-
liminary speaker spectral transformations of the everyone-to-everyone type. Hence the
values di,j are determined with these transformations taken into consideration. In the
transformation parameter values optimization the distance (7) was applied in the objec-
tive function.

After the designation of speaker classes and before the determination of the final
MFCC pdfs, a one more optimization is conducted. The speaker spectra in a given class
are transformed so as to minimize the objective function which is the sum of the values
of distance (7) for each speaker in the class, excluding the central speaker, to the average
pdf in the class determined on the basis of the data from speakers after the spectral
transformation, and constantly updated in the course of optimization. The final MFCC
pdfs for the classes were determined with regard to the transformations obtained.

5. Spectral transformation banks

The LF banks and g(f) banks are determined independently and separately for each
speaker class. The input data for bank construction algorithms are the sets of spectral
transformation parameter values determined for each speaker from the training set.

(2) The term “distance” was used here despite the fact that it does not follow the triangle inequality.
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5.1. Determination of bank elements

The method of hierarchical clustering, with Ward’s distance between the clusters,
was applied to determine the elements of the ST bank. Ward’s distance allows for linking
clusters at each step of the algorithm operation in such a way that the total error, related
to the approximation of the elements undergoing clustering by cluster centroids, grows
minimally. The scheme of the algorithm is as follows:

Let x denote a vector containing transformation parameters that undergo clustering.
The same algorithm is used both for g(f) (then x consists of parameters
{fbi: i = 1, 2, 3}), and for LF (then x = h, where h stands for filter frequency response
magnitude). Let K denote the target number of clusters and N stand for the number of
vectors x undergoing clustering.

1. Initialization. From N > K of the input vectors x create N one-element clusters.
2. Compute Ward’s distance for each cluster pair i, j:

µi,j =
Ni+Nj∑

n=1

∥∥xi+j
n − xi+j

c

∥∥2

L
−




Ni∑

n=1

∥∥xi
n − xi

c

∥∥2

L
+

Nj∑

n=1

∥∥xj
n − xj

c

∥∥2

L


 , (8)

where x with the index n denotes the n-th element, and with the index c – stands
for the centroid of clusters i or j or of the cluster resulting from the joining of
clusters i and j. The centroid is determined as the arithmetic mean of elements
in a given cluster. Ni stands for the number of elements in cluster i; analogously,
Nj . ||•||2L denotes the squared modified Euclidean norm described below.

3. Link clusters i and j of the least µi,j obtained and decrement N by 1.
4. If N > K, return to step 2. Otherwise, terminate the algorithm and take the

centroids of the obtained clusters as bank elements. In the case of filter clustering,
approximate the obtained frequency response magnitude by the filter parameters
of the given order.

The squared modified Euclidean norm used in (8) was defined as:

‖x‖2
L = xT · L · LT · x = xT ·D · x = (V · x)T · (V · x) , (9)

where V is a full rank matrix transforming the parameter space. Hence D is a positive-
definite matrix which can be factorized by means of the Cholesky factorization into two
lower-triangular matrices L. For the function g(f) matrix L has the size of 3 and the
values of all non-zero elements are determined in the optimization presented below. In
the case of filters matrix L has the size of 256. To decrease the number of optimized pa-
rameters, one determines only the values of the parameters located on the main diagonal
(building vector l). Further, the number of optimized values is reduced by approximation
of vector l in the cosine basis.

In the optimization, the objective function was minimized:

l (L) =
N∑

n=1

N∑

m=1

(
‖xn − xm‖2

L − (Cn,n − Cn,m)
)2

, (10)
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where N denotes simultaneously the number of input vectors x for the bank construc-
tion algorithm and the number of speakers in a given class, as every x is a vector of
spectral transformation for a given speaker. Matrix L was optimized separately for each
speaker class and each version of the determination of spectral transformation parame-
ters. Cn,m denotes the value of the objective function used in determining spectral trans-

Fig. 4. Examples of LF frequency response magnitudes for speakers (continuous lines) and elements
of the LF bank determined on this basis (dashed lines).

Fig. 5. Examples of functions g(f) for the speakers (continuous lines) and elements of function g(f)
banks determined on this basis (dashed lines).
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formation parameters obtained for speaker n, whose spectrum was transformed with the
parameters xm. The reference pdfs used in determining the value Cn,m were the pdfs
for a given speaker class. Depending on the version, functions C1 or C2 were applied.
Owing to the form of function (10), the Levenberg–Marquardt algorithm was used [24].
The goal of the optimization presented here is to increase the correlation coefficient be-
tween differences in the recognition result for isolated frames and the squared norm of
the difference of spectral transformation parameter vectors, as the intended use of ST
banks is to enhance recognition. The following results were obtained: the correlation
coefficient increased from 0.64 to 0.80 for parameters describing LF and from 0.61 do
0.84 for parameters defining g(f).

In the implementation the target number of bank elements was K =Kg =KLF =4.
Figures 4 and 5 show examples of LF frequency response magnitudes and g(f) deter-
mined for speakers, together with elements of ST banks constructed on their basis.

5.2. Transmission distortions taken into account

The LF banks determined in the manner presented above did not guarantee a sat-
isfactory compensation of channel distortions. Therefore, a modification consisting in
cascade joining of compensations for transmission differences and differences between
speakers was introduced into the algorithm. Five frequency response magnitudes of pop-
ular microphones were approximated by means of the AR model of the 7th order, with
the application of the Yule–Walker method [25]. They were marked as q1 to q5. Three
of them were used in the training procedure, whereas all 5 were used in the tests. Ad-
ditionally, two linear characteristics of the slope +6 dB/8 kHz and −6 dB/8 kHz were
created and marked as q6 and q7, respectively. The model changes in the characteristics

Fig. 6. Examples of elements of the LF bank determined without the modification taking into consideration
transmission distortions (continuous lines) and with such a modification (dashed lines).
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of the speaker mouth radiation and in changes related to directional frequency response
magnitudes of the microphones. It was assumed later that q0 denotes the frequency
response magnitude of the unit transfer function and that q−1

i is the inverse of qi.
The modification of the filter banks determination method consisted in completing

the set of N frequency response magnitudes hn, constituting the input to the bank con-
struction algorithm, with those modified by modeled linear distortions. The completed
set has the following representation:{

hn ◦ q−1
i ◦ q−1

j : n = 1, ..., N, i = 0, 1, 2, 3, j = 0, 6, 7
}

. (11)

The operation ‘◦’ in (11) is understood as the element-wise vector multiplication.
Figure 6 shows elements of LF banks obtained from the set of input characteristics
before and after the modification of this set.

5.3. Additional bank elements determination

Even when one employs hierarchic clustering, it is impossible to increase the num-
ber of filters or functions g(f) available on its lower levels, since it is limited by the
number of speakers in the training set. A more substantial variety of filters and g(f)
functions was achieved by means of the iterative method. For each cluster resulting
from the algorithm in Subsec. 5.1, two additional elements xd1 and xd2, were deter-
mined by means of the method given below. The algorithm of determination of addi-
tional elements employs direct search as it should correspond to the algorithm applied at
the stage of the proper recognition by the iterative method. The direct search was used
there with regard to the properties of the objective function (see Sec. 7).

1. Initialization. Set i = 0.
If a given cluster contains more than 1 element, set:

xd1 = xc + λ1/2v,

xd2 = xc − λ1/2v,

where λ and v denote, respectively, the greatest eigenvalue and the corresponding
eigenvector of the covariance matrix of elements xn of a given cluster, and xc

stands for the centroid of this cluster. Set matrix B0 to the matrix containing
elements xc, xd1 and xd2 (row vectors) in its subsequent rows. Proceed to step 2.
If a given cluster contains one element, set:
a) for filters:

xd1,m = (0.8 + 0.4 ·m/L) · xc,m,

xd2,m = (1.2− 0.4 ·m/L) · xc,m,

for m = 0 . . . L− 1, where x.,m denotes the m−th element of vector x.
b) for g(f) functions:

xd1 = 1.1 · xc,

xd2 = 0.9 · xc.

Terminate the algorithm.
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2. Increment i by 1. Set j = 1. Repeat steps 3–6 for each element xn of the cluster.
3. Set matrix Aj to the identity matrix of size 3.
4. Compute the distance (9) of the cluster element xn to 3+2(j−1) elements which

are rows of the matrix E = Aj ·Bi−1. Mark the three rows of matrix E, for which
minimal distances were obtained, according to the increasing distance order as
k1, k2 and k3. Construct matrix Aj+1 by adding two rows to matrix Aj . They
have to equal the means of rows of matrix Aj indexed as k1 and k2 and as k1 and
k3. This corresponds to creating two new points of the direct search.

5. If j < J , increment j by 1 and return to step 4.
6. Obtain the number of a row of matrix E = Aj+1·Bi−1 satisfying the following

condition: the distance (9) from the element in this row to the element xn of the
cluster is the shortest one. Save the row of matrix Aj+1 with this number and
mark it as an.

7. Determine a new matrix Bi by solving the following well-determined or over-
determined set of equations by means of the least squares method.

A(r)B(r)
i = X− a(r)xc, Bi =

[
xT

cB
(r)T
i

]T
, (12)

where matrix A(r) consists of subsequent rows an, in which the first element was
omitted. The first elements of vectors an build a column vector a(r). Matrix X
contains cluster elements xn in its subsequent rows.

Fig. 7. Iterative determination (J = 2) of linear combination of elements xc, xd1 and xd2 closest to the
given element x. Combinations added in iteration 1 – x1 and x2; in iteration 2 – x3 and x4. The upper index

denotes the closest combination in the given iteration.
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8. Compute the total error in the i-th iteration εi = ||(A(r) ·B(r)
i −X+a(r)xc) ·L||F ,

where index F stands for the Frobenius norm and matrix L was determined by
optimization as described in Subsec. 5.1.

9. If i < I and the decrease of error εi in relation to the error εi−1 remains above
the set threshold, return to step 2.

10. Choose the 2nd and the 3rd rows of matrix Bi as additional elements xd1 and
xd2 of the given cluster. In the case of filter clustering approximate the obtained
frequency response magnitude by filter parameters of the given order.

The method used above does not guarantee the generally monotonic decrease of the
error εi, however, in practice we observed a satisfactory decrease of this error. The num-
ber of iterations used in the implementation was J = 4 and I = 8. Figure 7 shows an
example of the iterative computation of the linear combination of elements xc, xd1, xd2.

6. Assigning speakers to classes on the basis of F0 estimation

The improvement of the recognition result by means of ST banks involves a high
computational cost, as it means parallel recognition performed for many transforma-
tions. In order to partially reduce the computational effort required to assign the speak-
ers into classes, F0 estimation was applied. It was noted that in the case of two classes,
the algorithms presented in Sec. 4 in principle divided speakers according to their sex.

The introduced algorithm of F0 estimation is based on the amplitude spectrum of
the frame, which is already determined in the process of MFCC parameterization. The
method involves the detection of maxima and minima in the spectrum. The value of
F0 for the frame is computed as the weighed mean of distances between the maxima,
while for utterances, it is computed as the mean of F0 for frames whose weight values
exceeded the preset threshold. The weights were defined in such a way so that they
constituted the measure of the spectrum harmonicity.

The classification is performed by comparing the estimated F0 value for utterances
with the value of the decision threshold, which was set to 190 Hz on the basis of the data
from the training set. The threshold value was determined in the way which corresponds
to the Bayes decision criterion, which minimizes the mean decision error, provided that
both speaker classes are equally probable [26].

7. Isolated words recognition

Isolated words recognition was performed by means of 4 ASR system versions.
A vocabulary consisting of 18 words in Polish (10 digits and 8 commands) was used.

7.1. ASR system versions

Version A. Every phoneme was modeled by one HMM state. One transition proba-
bility matrix for the whole system was used. Modeling of phoneme duration probability
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was applied. The first stage of utterance recognition involves finding the optimal path
of states by means of the Viterbi algorithm followed by the division of this path into
a sequence of pseudo-syllables. The second stage consists in comparing the obtained
sequence of pseudo-syllables with the patterns of words from the vocabulary.

In the case of using the recognition improvement method by means of ST banks, the
best solution was chosen with regard to the recognition score in the following represen-
tation:

Psco = Psyl · P γ
acou, (13)

where Psyl denotes pseudo-probability which is the measure of the adjustment of the
recognized sequence of pseudo-syllables to the pattern of the given word. Pacou stands
for the probability of the winning Viterbi path normalized by being raised to the 1/T
power, where T denotes utterance duration in frames. Weight γ was experimentally set
to 0.1.

Version At. Phonemes were modeled by means of two or three HMM states. The
Baum-Welch algorithm was used in the training procedure [25]. No additional phoneme
duration modeling was employed. In the Viterbi algorithm a constraint of preventing
the obtaining of paths with forbidden three-phoneme sequences was used. Furthermore,
a mechanism of analysing the best Q paths was introduced, where Q = 8 was obtained
experimentally. The recognition score (13) was applied. The experimentally set weight
in this version was γ = 1.5. The remaining elements of the system did not differ from
those in version A.

Version B. The phoneme modeling in this version was the same as in version A. The
phoneme duration probability modeling was also employed again. The recognition was
performed by determining the probabilities of the winning Viterbi paths obtained from
separate HMM models for each word from the vocabulary. Word models consisted of
the sequences of states corresponding to phonemes in a given word. The path proba-
bility serves also as the recognition score when the recognition improvement method is
used.

Version Bt. Phoneme models used in this version were similar to those used in
version At. The modeling of the phoneme duration probability was not applied too.
Other elements were the same as those in version B.

In recognition with employment of ST banks, the MFCC pdfs in classes are ob-
tained according to the procedure described in Subsecs. 4.1–4.3. In versions At and
Bt there are additional transition matrices and vectors of initial state probabilities for
the phonemes. The values of these additional parameters are determined separately for
each speaker class. The remaining elements of the system are the same for all classes.
In the training procedure of a system designed to cooperate with the ST bank, we used
a feedback consisting in cyclically performed recognition and choice of combinations
of the speaker classes and ST bank elements combinations for each utterance, with the
current system parameter values. These choices were taken into consideration in the
further training. In the case of simulating transmission distortions, the system training
procedure involves non-distorted data and ST banks that were not modified according
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to the method presented in Subsec. 5.2. The recognition is performed by means of an
appropriate modified bank.

7.2. Iterative improvement of recognition

The iterative recognition improvement algorithm outlined below is used for a speaker
class and the ST bank elements chosen earlier for a given utterance on the basis of the
recognition score analysis. As this score can be a discontinuous function, the following
optimization method was selected. Moreover, the method is an optimization with con-
straints and ensures that the spectral transformation parameter values remain in the set
limits.

1. Initialization. Set j = 0. Set matrix B1 to a matrix containing vectors xc, xd1

and xd2 of a given LF bank element in its subsequent rows (see Subsec. 5.3).
Set matrix B2 to a matrix consisting of elements analogous to a given element
of the g(f) bank. Let matrix A1,0 = [e1 e2 e2 e3 e3]T, and matrix
A2,0 = [e1 e2 e3 e2 e3]T, where ei denotes a 3-element column vector taking
on the value of 1 on the i-th position and the value of 0 on other ones.

2. Increment j by 1. Compute the recognition score for 5+4(j− 1) sets of spectral
transformation parameter values obtained from the equations E1 = A1,j ·B1 and
E2 = A2,j · B2, respectively. Each set of parameter values consists of filter pa-
rameters (frequency response magnitude) and g(f) parameters corresponding to
the rows of matrices E1 and E2 with the same number. Determine the row num-
ber of matrices E1 and E2 (identical for both) for which the maximal recognition
score was obtained.

3. Determine two row numbers of matrices E1 and E2 (both numbers refer to the
same row in the two matrices) for which a maximal recognition score was ob-
tained, but for which the corresponding rows of matrix A1,j differ from the row
of matrix A1,j with the number determined in step 2.

4. Determine two subsequent row numbers of matrices E1 and E2 for which the
maximal recognition score was obtained, but for which the corresponding rows
of matrix A2,j differ from the row of matrix A2,j with the number obtained in
step 2. Moreover, these are not row numbers chosen in step 3.

5. If there were no 4 row numbers chosen in steps 3 and 4, complete the row num-
bers to 4 by those, for which the maximal recognition score was obtained and
which were not selected in steps 2–4.

6. Create matrices A1,j+1 and A2,j+1 by adding 4 rows to matrices A1,j and A2,j

that correspond to the means of the rows of matrices A1,j and A2,j with the
number selected in step 2 and to the row numbers selected in steps 3–5. This
operation means the obtaining of 4 new points of direct search.

7. If j < J , return to step 2. If this is not the case, compute the recognition score
value for 5 + 4j sets of spectral transformation parameter values obtained from
equations E1 = A1,j+1 ·B1 and E2 = A2,j+1 ·B2, respectively. Choose the result
providing the maximal recognition score value as the final one.

The number of iterations in the implementation was set to J = 4.
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8. Recognition results

Table 1 gives the numbers of the ST bank construction methods and the methods
of speaker classes determination, which are further used in Tables 2 and 3. Table 2
presents isolated words recognition results for 4 versions of the ASR system in the
case when there are no simulated transmission distortions. Table 3 shows the results
obtained with the simulation of transmission distortions. The distortions were applied
at random, separately for each utterance, first as one of the characteristics q0 to q5,
and then as one of the characteristics q0 or q6 or q7 (see Subsec. 5.2). In all the cases,
the results presented were obtained by means of a method guaranteeing the highest
recognition. The changes in the recognition results after assigning speakers to classes
by means of the F0 estimation are provided in parentheses (columns 4–7). Recognitions
without correction were performed by means of the system trained without dividing
speakers into classes and without taking into consideration the spectral transformation
(column 3).

Table 1. Numbers of ST banks construction and speaker classes determination methods used
in Tables 2 and 3.

ST bank constr.
method no.

ver. no. of speaker
classes determ. method

ver. of
function

w used in (2)

ver. no. of value
Cconb

determ. method

Does the bank allow
for transm. distort.?

1 2 w1 1 no

2 3 w2 2 no

3 3 w1 1 no

4 3 w1 2 no

5 1 w2 1 yes

6 3 w2 2 yes

Table 2. Isolated words recognition results obtained with no simulated transmission distortions.

speaker
set

system
version

result w/o
correction [%]

correction w/o iterations correction with iterations

bank constr.
method no.

result [%] bank constr.
method no.

result [%]

1 2 3 4 5 6 7

training A 98.00 4 (2) 98.67 (0.00) 4 (1) 98.89 (−0.44)
At 98.89 4 (2) 99.33 (0.00) 4 (2) 99.33 (0.00)
B 99.33 2 (2) 100.0 (0.00) 2 (2) 99.78 (+0.22)
Bt 99.56 4 (2) 99.56 (+0.22) 4 (4) 99.56 (+0.22)

test A 94.17 4 (4) 95.56 (−0.28) 2 (2) 96.11 (+0.56)
At 95.28 2 (2) 97.22 (−1.39) 4 (1) 97.22 (0.00)
B 96.11 2 (2) 97.78 (−0.28) 2 (3) 98.06 (−0.28)
Bt 97.22 4 (2) 97.50 (+0.28) 2 (2) 97.78 (−0.28)
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Table 3. Isolated words recognition results obtained with simulated transmission distortions.

speaker
set

system
version

result w/o
correction [%]

correction w/o iterations correction with iterations

bank constr.
method no.

result [%] bank constr.
method no.

result [%]

1 2 3 4 5 6 7

training A 92.44 5 (6) 97.33 (+0.67) 6 (6) 97.78 (+0.22)
At 96.00 5 (5) 99.56 (−0.44) 5 (5) 99.33 (0.00)
B 98.00 6 (5) 99.56 (−0.44) 6 (6) 99.56 (−0.22)
Bt 97.11 5 (5) 99.56 (+0.22) 6 (5) 99.56 (0.00)

test A 88.89 3 (6) 94.44 (0.00) 6 (6) 94.72 (+2.22)
At 91.11 5 (5) 96.39 (+0.28) 6 (5) 96.94 (−1.11)
B 94.72 6 (5) 96.94 (+0.84) 6 (6) 97.22 (0.00)
Bt 96.67 6 (5) 97.78 (−0.28) 6 (6) 97.50 (−0.28)

Depending on the system version, the reduction of the recognition error rate with no
simulated microphone distortions for the training set (the better result was selected from
columns 5 and 7) varied from 0% (version Bt) to 100% (version B), and on average it
amounted to 46%. For the test set it varied from 20% (version Bt) to 50% (version B),
and on average it amounted to 36%. With the simulation of microphone distortions, the
recognition error reductions varied for the training set from 71% (version A) to 89%
(version At) and on average they amounted to 81%. For the test set they varied from
33% (version Bt) to 66% (version At) and on average they amounted to 50%.

The application of the iterative recognition improvement proved successful in 9 out
of 16 cases presented in Tables 2 and 3 (column 7). The recognition turned out worse
only in 2 cases. The majority (7 out 9) improvements were recorded in test sets after the
iterative mechanism had been applied.

The application of the class selection on the basis of F0 estimation had a neutral
influence on the recognition results. In relation to the standard method of class deter-
mination, the change in recognition results, averaged with the data from Tables 2 and 3
(columns 5 and 7), amounted to +0.007% with the standard deviation of 0.597%.

We have not presented here results obtained for CMN, VTS, Eigenvoices, MLLR
and cepstral parameters histogram equalization methods, which have been obtained in
the preliminary research because these methods failed in the task of very short utter-
ances recognition, i.e. they worsened the recognition results.

9. Conclusions

The paper presents a new method of linear transmission distortions compensation
and speaker individual characteristics normalization designed to cooperate with very
short isolated utterances recognition systems. The suggested approach employs spectral
transformation banks and the division of speakers into classes. Other methods discussed
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herein are the method of further recognition improvement by means of the iterative algo-
rithm and the reduction of the computational complexity of the method by a preliminary
selection of speaker classes on the basis the speaker’s fundamental frequency.

The proposed solution has turned out efficient: even with a small training set, the
average error rate reduction for various ASR system versions was 36% in the test set
with no transmission distortions. With the simulation of these distortions it amounted
to 50%. The highest recognition results were achieved mostly with the application of
version 3 of the proposed speaker class determination method.
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