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In this paper the spectral characteristics of a strain-stress state of an infinitely long elas-
tic hollow circular cylinder with arbitrary thickness rotating about its axis of symmetry with
time-dependent angular velocity is investigated. It is assumed that a cylinder is empty inside
and surrounded by ideal (non-viscous) compressible fluid or gas. The exact solution of this
problem is obtained using the Fourier transform with respect to time. Calculations are carried
out for a case of the Armco iron tube immersed in water. The detailed analysis of temporal
and spatial spectral characteristics of the elastic displacements and stresses, the material den-
sity and the power flow density averaged in the period of vibrations in elastic cylinder, are
presented.
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1. Introduction

Many details of such type as a hollow elastic circular cylinder rotating around its
axis of symmetry at a variable angular velocity are often encountered in the techno-
logy. These bodies as a rule are surrounded by fluid or gas. Since the angular velocity
is varying in time, the sound waves (noise) are radiated. The spectral characteristics
of these waves have resonance properties [1]. The stresses and displacements in the
rotating elastic cylinder have analogous resonance characteristics [2]. The re-reflection
of elastic waves on the inside and outside surfaces of the tube and sound radiation into
the surrounding medium can be a cause for complicated distributions of displacements
and stresses in this solid. Therefore, it is important to take into account the resonance
ranges of frequencies, where the strain-stress state of cylinder is considerably different
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from its static state, because amplitudes of vibrations can reach the critical values. In
real construction systems these elements and the surrounding acoustical medium occupy
a finite volume. The investigation of the wave process formation is so complicated that
solutions become unclear and do not permit to present the main mechanisms of wave
generation for the conditions mentioned above. Therefore, in this paper we consider the
simplified mathematical model of that problem.

A non-uniform rotation of elastic cylinder or cylindrical tube in vacuum was stud-
ied first in the papers [3, 4], but without detailed numerical analysis. Many works were
devoted to rotation of the elastic cylinders and disks in vacuum with constant angular
velocity. First solution of this problem was given long time ago by LOVE [5], neverthe-
less new questions concerning rotary motions of elastic bodies appeared in the field of
vision of many authors now (see, e.g. [6–11]).

In this paper we study the dynamical plane strain-stress state of hollow circular
cylinder of infinite length rotating in an infinite space, occupied by ideal (non-viscous)
compressible fluid or gas. It is, in fact, the second part of paper [12], where the spec-
tral characteristics of the sound waves radiated by a hollow circular elastic cylinder
were studied. The particular case of solid cylinder analysis of spectral characteristics of
strain-stress state was carried out in [13], and the pulse sound radiation and stresses in
the body were studied in [14, 15].

2. Spectral characteristics of the displacement and stresses

An elastic circular hollow cylinder of infinite length, surrounded by a compressible
ideal (non-viscous) fluid or gas, rotates with time-varying angular velocity around its
axis; as a result, non-uniform centrifugal force is excited as a function of time too [16].
Since the rotating body is in contact with acoustic medium, the centrifugal force plays
the role of a source of elastic wave propagation in the cylinder and sound radiation in
the exterior space. So, the body and the surrounding liquid have mutual influence on
the acoustic wave formation. In this article, main attention is focused on the processes
generated in the cylinder material.

The dynamical equilibrium of an elastic hollow cylinder rotating with variable an-
gular velocity about a fixed axis is described by means of the differential equation [3, 4]:

(λ + 2µ)
(

∂2u

∂r2
+

1
r

∂u

∂r
− u

r2

)
+ ρ0

srΩ
2(t) = ρ0

s

∂2u

∂t2
(b < r < a), (1)

where u ≡ u(r, t) is the radial displacement, Ω(t) is the angular velocity of the body
axial rotation, t is the time, λ, µ are the Lamé elastic parameters and ρ0

s is the density of
elastic material in equilibrium state, r is the radial polar co-ordinate with an origin on
the axis of symmetry, a, b (b < a) are the radii of the cylinder surfaces.

The radial σr(r, t), hoop σθ(r, t) and axial σz(r, t) stresses in the circular cylinder
are determined from relations [3, 4, 16]:

σr = λe + 2µer, σθ = λe + 2µeθ, σz = λe, (2)
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where er(r, t), eθ(r, t) are the radial and hoop components of the tensor of deformation,
respectively:

er =
∂u

∂r
, eθ =

u

r
, e = er + eθ. (3)

The pressure amplitude in acoustic fluid p(r, t) is determined by the wave equa-
tion [17]

∂2p

∂r2
+

1
r

∂p

∂r
=

1
c2

∂2p

∂t2
(a < r < ∞), (4)

where c is the sound velocity. The pressure p(r, t) is connected with radial displacement
of the particles w(r, t) in acoustic medium by relation

∂2w

∂t2
+

1
ρ0

∂p

∂r
= 0 (a ≤ r < ∞), (5)

where ρ0 is the equilibrium density of liquid.
On the interface of two media, the solutions must satisfy the boundary conditions:

σr + p = 0 (r = a),

∂u

∂t
=

∂w

∂t
, (r = a),

σr = 0 (r = b).

(6)

The integral Fourier transformation with respect to time is used for the solution of
problem [18]

fF (ω) =

∞∫

−∞
f(t)eiωtdt (−∞ < ω < ∞), (7)

where ω is the integral transform parameter (the circular frequency). So, taking into
account the causality principle [17] and the fact that Ω(t) = 0 for t ≤ t1 (t1 > −∞),
the initial conditions must be satisfied:

u = 0 = p, t ≤ t1. (8)

Applying the Fourier-transform (7) to Eqs. (1) and (4), the following ordinary dif-
ferential equations for the F-transforms are obtained:

[
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+

1
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+
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)]
uF (r, ω) + rK2

L(ω) = 0 (b < r < a), (9)
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+
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d

dr
+ k2

)
pF (r, ω) = 0 (a < r < ∞). (10)
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Here k = ω/c is the wave number in acoustic medium, kL = ω/cL is the wave
number in elastic body, cL =

√
(λ + 2µ)/ρ0

s is the velocity of longitudinal wave in
the cylinder, KL(ω) =

√
ΩF (ω)/c2

L is the additional “longitudinal wave number”,
connected with time modulation of the angular velocity of cylinder rotation, where

ΩF (ω) =

∞∫

−∞
Ω2(t)eiωtdt. (11)

The boundary conditions (6) in the Fourier-transforms have the forms:

σF
r + pF = 0 (r = a),

uF = wF (r = a),

σF
r = 0 (r = b).

(12)

Here the functions pF (r, ω) and uF (r, ω) must be analytic in the upper half-plane
Im ω > 0 and singular, but integrated on Im ω = 0 [17].

Then in the space of Fourier-transforms, the exact solutions of Eqs. (9) and (10) are
found in the following form:

pF (r, ω) = (λ + 2µ)X2
L(ω)P (r, ω) (a ≤r < ∞), (13)

uF (r, ω) = aX2
L(ω)U(r, ω) (b ≤r ≤ a), (14)

where

P (r, ω) = BH
(1)
0 (kr), X2

L(ω) = K2
L(ω)a2, (15)

U(r, ω) = A1(ω)J1(kLr) + A2(ω)N1(kLr)− (r/a)x−2
L , (16)

A1, A2, B are unknown constants of integration. Here and below Jn(z) and Nn(z)
(n = 0, 1, 2) are the Bessel and Neumann functions, respectively, H

(1)
n (z) (n = 0, 1)

are the Hankel functions of the first kind.
Then from the transformed relations (2), (3), (5), the Fourier-transforms of the radial

displacement in acoustic medium and stresses in the cylinder are also obtained:

wF (r, ω) = aX2
L(ω)W (r, ω) (a ≤ r < ∞), (17)

σF
θ,j(r, ω) = (λ + 2µ)X2

L(ω)Σj(r, ω) (b ≤ r ≤ a, j = r, θ, z), (18)
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where

W (r, ω) = −(xLς)−1BH
(1)
1 (kr),

Σr,θ(r, ω) = xL[A1(ω)J∓02(kLr) + A2(ω)N∓
02(kLr)]− 2(1− α)x−2

L ,

Σz(r, ω) =
1− 2α

2(1− α)
[Σr(r, ω) + Σθ(r, ω)] ,

J∓02(kLr) = (1− α)J0(kLr)∓ αJ2(kLr),

N∓
02(kLr) = (1− α)N0(kLr)∓ αN2(kLr).

(19)

Here ς = κ/κs, κ = ρ0c and κs = ρ0
scL are the wave resistances in acoustical

medium and solid, respectively, α = c2
T /c2

L, cT =
√

µ/ρ0
s is the velocity of the shear

wave in elastic material, xL = kLa.
If the boundary conditions (12) are satisfied, then the constants of integration are

determined, in particular:

An(ω) = (−1)n∆n/(x3
L∆) (n = 1, 2), (20)

where

∆ = H
(1)
1 (x)[J−02(xL)N−

02(yL)−N−
02(xL)J−02(yL)]

− ςH
(1)
0 (x)[J1(xL)N−

02(yL)−N1(xL)J−02(yL)],

∆1 = 2(1− α)H(1)
1 (x)[N−

02(yL)−N−
02(xL)]

+ ςH
(1)
0 (x)[2(1− α)N1(xL)− xLN−

02(yL)],

∆2 = 2(1− α)H(1)
1 (x)[J−02(yL)− J−02(xL)]

+ ςH
(1)
0 (x)[2(1− α)J1(xL)− xLJ−02(yL)],

x = ka, yL = kLb.

(21)

Thus, using the Eqs. (14), (16), (18), (19), we can obtain the formulae for complex
amplitudes of the displacement and stresses in the cylinder.

3. Regularized form for the solution of problem

The analysis of spectral characteristics in a wide frequency range is connected with
the difficulties, which appear in the numerical calculations for ω ≈ 0 [13]. In parti-
cular, it is visible during the numerical realization of the inverse Fourier-transforms by
replacement of a semi-infinite interval of integration by a finite interval, which includes
the value ω = 0 [15, 19]. In consequence of the indeterminate expression of “zero
divided by zero”, the integrands have very large values near ω = 0, even if the calcu-
lation is made with double precision. Meanwhile, it is easy to make sure that functions
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U(r, ω), Σj(r, ω) (j = r, θ, z) for ω → 0 approach the expressions which correspond
to the solutions for the case of constant angular velocity of cylinder rotation [20, 21]:

U0(r) = 0.125
[
2− α

α
ε2 a

r
+

2− α

1− α
(1 + ε2)

r

a
−

(r

a

)3
]

,
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−ε2
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)2
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(r
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)2
]

,
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(a
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)2
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(r

a

)2
]

,

Σz0(r) = 0.25(1− 2α)
[
2− α

1− α
(1 + ε2)− 2

(r

a

)2
]

,

(22)

where ε = b/a.
Then for regularization of the numerical calculations of complex amplitude module

of the displacement and stresses including point ω = 0, we must write the functions
U(r, ω), Σj(r, ω) (j = r, θ, z) from Eqs. (16) and (19) as the sums:

U(r, ω) = U0(r) + U1(r, ω),

Σj(r, ω) = Σj0(r) + Σj1(r, ω) (j = r, θ, z),
(23)

where

U1(r, ω) = {[∆̃1J1(kLr)−∆2ψ1(kLr)]− xL[(r/a) + x2
LU0(r)]∆̃}/(x3

L∆̃),

Σr,θ1(r, ω) = {[∆̃1J
∓
02(kLr)−∆2ψ

∓
02(kLr)]

− [2(1− α) + x2
LΣr,θ0(r)]∆̃}/(x2

L∆̃),

Σz1(r, ω) =
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2(1− α)
[Σr1(r, ω) + Σθ1(r, ω)] ,

(24)

and

∆̃ = J−02(xL)− ψ−02(xL)J−02(yL) + ϕ0(x)[J1(xL)− ψ1(xL)J−02(yL)],

∆̃1 = 2(1− α)[1− ψ−02(xL)]− ϕ0(x)[2(1− α)ψ1(xL)− xL],

ϕ0(kr) = −ς
H

(1)
0 (kr)

H
(1)
0 (x)

, ϕ1(kr) =
H

(1)
1 (kr)

H
(1)
0 (x)

,

ψn(kLr) =
Nn(kLr)
N−

02(yL)
(n = 1, 2), ψ±02(kLr) =

N±
02(kLr)

N−
02(yL)

.

(25)

In the formula (24)2 sign “minus” corresponds to index “r”, and sign “plus” – to in-
dex “θ”.
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The significant characteristic of wave process in the elastic body is also the vari-
able density of material ρs(r, t), which is connected with the vector of particle velocity
v(r, t) by the linearized mass balance equation [22]:

∂ρs(r, t)
∂t

+ ρ0
sdivv(r, t) = 0, ρ0

s = ρs(r, 0). (26)

In this case the Fourier-transform for function ρs(r, t)− ρ0
s is obtained as

ρF
s (r, ω) = ρ0

sX
2
L(ω)Rs(r, ω), (27)

where
Rs(r, ω) = Rs0(r) + Rs1(r, ω) (28)

and

Rs0(r) = 0.125
[
2− α

α
ε2

(a

r

)2
− 2− α

1− α

(
1 + ε2

)
+ 3

(r

a

)2
]

(29)

is the relative density corresponding to the case of Ω(t) = Ω0, i.e. if

ρs(r, t) = ρs(r) = ρ0
s[1 + X2

L0Rs0(r)], XL0 = Ω0a /cL. (30)

The second term on the right-hand side of Eq. (28) is a regularized part of spectral
function for a density ρs(r, t):

Rs1(r, ω) = −{[∆̃1J
′
1(kLr)−∆2ψ

′
1(kLr)]− [1− x2

LRs0(r)]∆̃}/(x2
L∆̃), (31)

where

ψ′1(kLr) =
N ′

1(kLr)
N−

02(yL)
. (32)

Here the prime denotes the derivative of function with respect to kLr.

4. Time-average flux of elastic energy

For estimation of the strain energy transmission in elastic cylinder we consider the
Umov-Poynting’s vector of power [22, 23]. In the case of axisymmetrical plane prob-
lems this vector has only a radial non-zero component

Pr(r, t) = −σr(r, t)vr(r, t), Pθ(r, t) = 0, Pz(r, t) = 0. (33)

In the conditions of time-harmonic excitation of cylinder vibrations:

Ω(t) = Ω0(1 + ε0 sinω0t) (−∞ < t < ∞), (34)

the time average of power flow over a period T0 = 2π/ω0 is

Ir(r, ω0) =
1
T0

T0∫

0

Pr(r, t)dt (b ≤ r ≤ a). (35)
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Here ε0 is the small nondimensional parameter for determination of the amplitude dis-
turbance of this velocity, ω0 is the circular frequency. In this case

u(r, t) = aU(r, t),

σγ(r, t) = (λ + 2µ)Σγ(r, t) (γ = r, θ, z),

ρs(r, t) = ρ0
s[1 + Rs(r, t)],

vr(r, t) = cLVr(r, t),

(36)

where

{U,Σγ , Rs, Vr} (r, t) = (1 + 0.5ε2
0) {U0, Σγ0, Rs0, Vr0} (r)

− 2ε0Im
[{U1, Σγ1, Rs1, Vr1} (r, ω0)e−iω0t

]

− 0.5ε2
0Re

[{U1, Σγ1, Rs1, Vr1} (r, 2ω0)e−2iω0t
]
,

Vr0(r) = 0, Vr1(r, ω) = −ixLU1(r, ω).

(37)

Then substituting σr(r, t) and vr(r, t) in the Eq. (35), we obtain

Ir(r, ω0) = −2X4
L0κsc

2
Lε2

0Re[Σr1(r, ω0)V ∗
r1(r, ω0)

+ (ε0/4)2Σr1(r, 2ω0)V ∗
r1(r, 2ω0)], (38)

where V ∗
r1 is the complex conjugate of Vr1.

5. Numerical results and discussion

Analysis of the spectral characteristics is carried out for the case of a rotating Armco
iron cylinder [24, 25] surrounded by water. For the numerical calculations, the fol-
lowing physico-mechanical constants are used: for material of the cylinder – ρ0

s =
7700 kg/m3, cL = 5960 m/s, cT = 3240 m/s [26] and for water – ρ0 = 1000 kg/m3,
c = 1493 m/s [27].

Figure 1 shows the moduli of complex amplitudes U(r, ω), Σγ(r, ω) (γ = r, θ, z),
Rs(r, ω) as functions of the nondimensional frequency x = ka (the wave radius of
cylinder) and the radial co-ordinate geometrical parameter r/a for the three values of
relative tube thickness ε = 0.25; 0.5; 0.75. Since the amplitudes of high harmonic
resonances are small in comparison with the amplitude of the basic tone, the decibel
scale on the applied axis is used for proportional representation of spectral curves. In
the selected range of frequencies (0 ≤ xL ≤ 25), the resonance amplitudes of funda-
mental tone of vibrations are better observed and significantly exceed the corresponding
static values. The whole frequency spectra have brightly expressed resonance charac-
ter too as a consequence of the elastic waves reflections between the outer and inner
cylindrical surfaces. Therefore, the resonance locations are dependent on the thickness
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of cylindrical object. In particular, if the tube thickness decreases, then waves on reso-
nance frequencies are subjected to the influence of geometrical dispersion phenomena,
i.e. the resonance locations are non-monotonic functions of parameter thickness ε.

This effect is well illustrated in the Fig. 2, where the curves of identical levels of
time-averaged power |Ir(r, ω0)| are plotted. The cylinder of outer radius a = 0.457 m
performs N0 = 50 revolutions per second [20] (Ω0 = 2πN0 rad/s), with the relative
amplitude of angular velocity modulation ε0 = 0.1. It may be noticed that because the
amplitude falls sharply on high frequencies, module of this sign-changing characteristic
is also calculated in dB. Here the power distributions are obtained along the radius of
the shell and for fixed values of parameter ε. It is shown that the first, low-frequency
resonance moves to lower frequency range if parameter ε decreases. At the same time,
the resonances of higher orders shift to the side of high frequencies, and more quickly
when shell thickness decreases. The thin spectral structure of the power flow at point
r/a = 0.8 for three cases of tube thickness (ε = 0.25, 0.5, 0.75) and ε0 = 0.3
is illustrated in the Fig. 3. We can observe spectral lines on the fundamental carrier
frequencies ω0 (the big picks and dips) and on doubled frequencies (the small picks
and dips). In the Fig. 4 the spectral picture for these last resonances are demonstrated
separately by calculation with taking into account only the second term of the Eq. (38).
In the both Fig. 3 and Fig. 4 destructive resonances correspond to negative values of the
power flow.

The Fig. 5 shows the distributions of same characteristic (in dB) as the function
of new non-dimensional radial variable y = (r/a − ε)/(1 − ε) and non-dimensional
thickness of tube ε for several values of carrier frequency ω0. Here the un-expected
phenomenon is observed: diagonal line r/a ≈ r∗/a = ε(2 − ε) is as interface of two
different parts of cylinder’s cross-section. In the first part b ≤ r < r∗ the power levels
are low and wave modes are not clearly expressed. In the second part r∗ < r ≤ 1, the
regularity of modal picture with essential amplitudes is noticed and amplitude levels
decrease with frequency increasing.

The Fig. 6 illustrates three-periodic time amplitudes of non-dimensional displace-
ment U(r, t), radial, hoop and axial stresses Σγ(r, t) (γ = r, θ, z), and also the material
density Rs(r, t) on tube cross-section at resonance frequencies of the first three tones of
vibrations, respectively, xL0 = 1.6866; 4.7125; 8.6278, and for ε = 0.25 (τ = cLt/a).
These plots display smooth radial distributions of time-harmonic strain-stress state in
a thick cylindrical tube. It is shown that for resonance frequencies of vibrations, the
radial stress assumes its extremal values inside the cylinder and minimal values on the
boundary surfaces. The hoop stress is extremal on inner “dry” surface of the cylinder
and for absolute value it is three times as large as the maximal radial stress. The axial
stress, which is the superposition of the radial and hoop stresses, may be significant on
the inner surface and inside cylinder too.

The picture becomes absolutely different if the radial co-ordinate is fixed and thick-
ness is variable. The same time characteristics as in the Fig. 6, but with r/a = 0.8 and
ε ∈ [0, 0.8) for two resonance frequencies xL0 = 1.6866 and 4.7125 are shown in
Fig. 7. Here we observe the effect of the space-time coincidence, when the resonance
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ε = 0.05 ε = 0.2 ε = 0.4

ε = 0.6 ε = 0.8 ε = 0.95

Fig. 2. The frequency-radial distribution of the modulus of time-average power flux |Ir(r, ω0)| (in deci-
bels) in an elasic hollow cylinder for ε0 = 0.1.

ε = 0.25 ε = 0.5 ε = 0.75

Fig. 3. The time-average power flux |Ir(r, ω0)| (in decibels) at point r/a = 0.8 of elasic hollow cylinder
for ε0 = 0.3 and ε = 0.25; 0.5; 075.

ε = 0.25 ε = 0.5 ε = 0.75

Fig. 4. The part of the time-average power flux |Ir(r, ω0)| (in decibels) with taking into account only
the second term of the Eq. (38) in a point r/a = 0.8 of an elastic hollow cylinder for ε0 = 0.3 and

ε = 0.25, 0.5, 0.75.
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appears not only in consequence of wave excitation on resonance frequency, but also
owing to the “resonance” values of tube thickness [28]. Note, that the similar effects
are met in non-specular reflection of a bounded acoustic beam from an elastic object
(see e.g. [29]), where angle of beam incidence is the “resonance” parameter, and in the
theory of electrodynamics [30], where the transparency coefficient, dielectric constant,
impedance etc. also can be used as spectral parameters. In our case it is shown that on
spatial resonance, the absolute values of hoop and axial stresses are several times greater
than radial stress (more than four times on frequency xL0 = 1.6866 and two times on
xL0 = 4.7125).

Finally, Fig. 8 demonstrates the transition through resonance by changing of the fre-
quency of the radial displacement harmonic signal U(r, t) for r/a = 0.8 and ε = 0.25.
Here the powerful amplitude is excited on resonance frequency of the first harmonic.

Fig. 8. The transition through resonance of base tone of vibrations by changing the frequency of radial
displacement harmonic signal U(r, t) for r/a = 0.8 and ε = 0.25.

6. Conclusions

The rotation of an elastic hollow circular cylinder with a non-constant angular veloc-
ity in a compressible fluid or gas is a cause of very complex wave processes in an elastic
material. First of all the outside acoustic medium, contacting with rotating objects, has
a large influence on formation of the dynamical strain-stress state in body, especially on
resonance characteristics. Significant part of the elastic energy is transformed in sound,
that is a cause of finiteness of width and amplitudes of the spectral lines of resonance
excitation of displacement, stresses and material density in the tube. On the other hand,
additional inner surface of object plays the role of a resonator for re-reflected elastic
waves. On the basis of obtained results, we have arrived at the following conclusions:

1. The spectral complex amplitudes of radial displacement, components of the stress
tensor and also density of the material have a resonance character. If the tube
thickness decreases, then resonance lines of these amplitudes shift quickly into
high frequencies.

2. The analysis of time-averaged power flux in the material of a cylinder shows that
this characteristic has no constant direction. It appears as a resonance combina-
tion of constructive and destructive types in the spectrum. The fine structure of
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power flow is formed with participation of fundamental (primary) and double
frequencies.

3. The numerical results show two types of the power flow space distribution, each
of them is characterized by different wave regularity. The key parameter of this
phenomenon is relative thickness of shell.

4. The strain-stress characteristics in a hollow cylinder have visible values not only
on the first, lowest resonance, but also on high resonances. On these resonances,
non-homogeneity of radial distribution of these characteristics are displayed espe-
cially expressive. On the low resonance frequencies, the hoop stress concentration
on inner cylindrical surface occurs. The resonance amplitudes of hoop and axial
stresses exceed the relative values of the radial stress by 2–3 times.

5. When the hollow cylinder vibrations are excited on the fixed frequencies, spatial
resonances appear if relative thickness parameter ε = b/a (0 < ε < 1) is con-
sidered as a variable value. On spatial resonances, the hoop and axial stresses are
more dangerous than the radial stress.
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