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Weakly nonlinear sound propagation in a gas where molecular vibrational relaxation takes place is
studied. New equations which govern the sound in media where the irreversible relaxation may take
place are derived and discussed. Their form depends on the regime of excitation of oscillatory degrees
of freedom, equilibrium (reversible) or non-equilibrium (irreversible), and on the comparative frequency
of the sound in relation to the inverse time of relaxation. Additional nonlinear terms increase standard
nonlinearity of the high-frequency sound in the equilibrium regime of vibrational excitation and decrease
otherwise. As for the nonlinearity of the low-frequency sound, the conclusions are opposite. Appearance
of a non-oscillating additional part which is a linear function of the distance from the transducer is an
unusual property of nonlinear distortions of harmonic at the transducer high-frequency sound.
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1. Introduction. Basic equations

and starting points

The non-equilibrium physics was born and started
to rapidly develop in the sixties of the XX-th century
in connection with the need of a deeper study of un-
usual hydrodynamics of media where irreverible pro-
cesses take place (Zeldovich, Raizer, 1966; Gordi-
ets et al., 1973; Osipov, Uvarov, 1992). The most
important of them are gases with excited degrees of
oscillatory freedom of molecules. Non-equilibrium pro-
cesses are established as well in discharge plasma, the
rarified levels of the upper atmosphere, interstellar me-
dia, and so on. There was reported relaxation of rota-
tional, translational, and electronic degrees of freedom
of a molecule. Difference in relaxation times follows
from difference of probabilities of various elementary
events. Chemically reacting media are also relaxing;
the duration of reaction is the characteristic time of
relaxation. If a chemical reaction is irreversible, the
sound propagates over the reacting medium unusually.
The irreversible relaxation results in anomalous disper-
sion and absorption of ultrasonics waves in such media

(Zeldovich, Raizer, 1966; Osipov, Uvarov, 1992;
Kogan, Molevich, 1986;Molevich et al., 2005). In-
terest in the non-equilibrium phenomena in the physics
of gases was originally connected with the study of
these anomalies.
This paper is devoted to the nonlinear features

of sound propagation in the low-frequency (when the
characteristic frequency of the sound, ω, is much
smaller than the inverse time of relaxation, 1/τ) and
high-frequency regimes in the vibrationally relaxing
gas. It is well-known, that dispersion, due to reversible
relaxation, leads to an increase in the phase speed
with enlargement in the sound frequency. Vice versa, in
the non-equilibrium regime, the phase speed decreases.
The nonlinear features of sound propagation depend
on the frequency of the sound and on the type of vi-
brational excitation, equilibrium or not. The nonlinear
distortion is not longer determined by the standard
parameter of nonlinearity; and the type of distortion
differs from the standard one.
We consider a gas whose steady state is maintained

by pumping energy into the vibrational degrees of free-
dom by power I and heat withdrawal from the trans-
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lational degrees of freedom of power Q, while both I
and Q refer to the unit mass (Sec. 2). The relaxation
equation for the vibrational energy per unit mass com-
plements the system of conservation equations in the
differential form. It takes the form:

dε

dt
= −ε− εeq(T )

τ(ρ, T )
+ I. (1)

The equilibrium value for the vibrational energy at
the given temperature T is denoted by εeq(T ), and
τ(ρ, T ) is the vibrational relaxation time. The mass,
momentum, and energy conservation equations gov-
erning thermoviscous flow in a vibrationally relaxing
gas read (Osipov, Uvarov, 1992):

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

[
∂v

∂t
+ (v ·∇)v

]
=−∇p,

ρ

[
∂(e+ε)

∂t
+(v ·∇)(e+ε)

]
+p (∇ · v)=ρ(I−Q),

(2)

where v denotes the velocity of fluid, ρ, p are the den-
sity and pressure, e marks the internal energy per unit
mass of translation motion of molecules, xi (i = 1, 2, 3)
are space coordinates. The system (2) may be com-
plemented by the terms which account for viscosity
and thermal conductivity but they are insignificant
in the studies of nonlinear distortions of the sound.
We will consider only effects relating to the oscilla-
tory relaxation. Two thermodynamic functions e(p, ρ),
T (p, ρ) complete the system (2). Thermodynamics of
ideal gases provides the equalities:

e(p, ρ) =
R

µ(γ − 1)
, T (p, ρ) =

p

(γ − 1)ρ
, (3)

where γ = CP,∞/CV,∞ is the isentropic exponent with-
out account for vibrational degrees of freedom (CP,∞

and CV,∞ denote “frozen” heat capacities correspon-
dent to very quick processes), R is the universal gas
constant, and µ is the molar mass of a gas.

2. Fundamentals of modes’ designation

and derivation of dynamic equations

Let start by considering a motion of a gas with
an infinitely small magnitude in the case I = Q.
Every quantity q is represented as a sum of unper-
turbed value q0 (in absence of the background flows,
v0 = 0) and its variation q′. The flow is supposed to
be one-dimensional along axis Ox. Following Molevich
and Makaryan (Molevich, 2003; 2004; Makaryan,
Molevich, 2007), we consider weak transversal pump-
ing which may alter the background quantities in the
transversal direction of axis Ox. It is assumed that the

background stationary quantities are constant along
axis Ox.
The system of conservation equations including the

quadratic nonlinear terms, which are of major impor-
tance in the nonlinear acoustics, with the account of
Eqs. (3), takes the form (Perelomova, 2012):

∂v′

∂t
+

1

ρ0

∂p′

∂x
= −v′

∂v′

∂x
+

ρ′

ρ20

∂p′

∂x
,

∂p′

∂t
+ γp0

∂v′

∂x
− (γ − 1)ρ0

ε′

τ

+ (γ − 1)ρ0T0Φ1

(
p′

p0
− ρ′

ρ0

)
= −v′

∂p′

∂x

− γp′
∂v′

∂x
+ (γ − 1)ρ′

(
ε′

τ
− T0Φ1

(
p′

p0
− ρ′

ρ0

))

− (γ − 1)ρ0

(
T0

(
1

τ2
dτ

dT

)

0

ε′
(
p′

p0
− ρ′

ρ0

)

+T0Φ1

(
ρ′2

ρ20
− p′ρ′

p0ρ0

)
+ T0Φ2

(
p′

p0
− ρ′

ρ0

)2
)
,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= −v′

∂ρ′

∂x
− ρ′

∂v′

∂x
,

∂ε′

∂t
+

ε′

τ
− T0Φ1

(
p′

p0
− ρ′

ρ0

)

= T0

(
1

τ2
dτ

dT

)

0

ε′
(
p′

p0
− ρ′

ρ0

)

+ T0Φ1

(
ρ′2

ρ20
− p′ρ′

p0ρ0

)

+ T0Φ2

(
p′

p0
− ρ′

ρ0

)2

− v′
∂ε′

∂x
,

(4)

where

Φ1 =

(
CV,eq

τ
+

ε− εeq
τ2

dτ

dT

)

0

,

CV,eq =

(
dεeq
dT

)

0

,

Φ2 = T0

(
− 1

τ2
CV,eq

dτ

dT
− (ε0 − εeq)

τ3

(
dτ

dT

)2

+
1

2τ

dCV,eq

dT
+

(ε0 − εeq)

2τ2
d2τ

dT 2

)

0

.

(5)

The relaxation time in the most important cases may
be thought as a function of temperature accordingly to
Landau and Teller, τ(T ) = A exp(BT−1/3), where A
and B are some positive constants. That gives negative
values of dτ/ dT (Zeldovich, Raizer, 1966;Gordi-
ets et al., 1973; Osipov, Uvarov, 1992) which may
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correspond to a negative value of Φ1. The dispersion
equation follows from the linear version of Eqs. (4):

ω
(
iΦ1(γ − 1)T0τ(c

2
∞k2 − γω2)

+ c2∞(c2∞k2 − ω2)(i− ωτ)
)
= 0, (6)

where

c∞ =

√
γRT0

µ
=

√
γ
p0
ρ0

is the “frozen”, infinitely small-signal sound speed in
the ideal uniform gas.
The approximate roots of dispersion equation for

both acoustic branches, progressive in the positive and
negative directions of axis Ox, are well known un-
der the simplifying condition ωτ ≫ 1, which restricts
consideration by the high-frequency sound (Osipov,
Uvarov, 1992; Molevich, 2003)

ω1,∞ = c∞k +
i

2

(γ − 1)2T0

c2∞
Φ1,

ω2,∞ = −c∞k +
i

2

(γ − 1)2T0

c2∞
Φ1.

(7)

The last term in both dispersion relations manifests
amplification of the sound in the non-equilibrium
regime (if Φ1 < 0) which does not depend on the
wave number k. The approximate roots of dispersion
equation for both acoustic branches, progressive in the
positive or negative directions of axis Ox in the low-
frequency domain ωτ ≪ 1, are as follows (see also
(Molevich, 2003; 2004)):

ω1,0 = c0k, ω2,0 = −c0k, (8)

where

c0 = c∞ − (γ − 1)2T0τ

2c∞
Φ1.

The two last roots of the dispersive equation, estimated
without the limitation ωτ ≫ 1 or, ωτ ≪ 1, sound:

ω3 = i

(
1

τ
+

(γ − 1)(γ + c2∞k2τ2)T0

c2∞(1 + c2∞k2τ2)
Φ1

)
,

ω4 = 0.

(9)

These last two roots manifest slow varying and sta-
tionary, non-wave motions of a gas. Accordingly, per-
turbation in the velocity, pressure or energy of every
dynamic variable may be expressed in terms of specific
excess densities. The overall excess velocity, pressure,
density, and internal energy are sums of specific parts:

v′(x, t) =

4∑

n=1

v′n(x, t), p′(x, t) =

4∑

n=1

p′n(x, t),

ρ′(x, t) =

4∑

n=1

ρ′n(x, t), ε′(x, t) =

4∑

n=1

ε′n(x, t).

(10)

Relations of acoustic rightwards propagating wave in
the high-frequency regime (ω1k ≫ 1 or, alternatively,
c∞kτ ≫ 1) follow from the dispersion relation ω1(k)
(Perelomova, 2012):

v′1,h(x, t) =
c∞
ρ0

(
1−B

∫
dx

)
ρ′1,h(x, t),

p′1,h(x, t) = c2∞

(
1− 2B

∫
dx

)
ρ′1,h(x, t),

ε′1,h(x, t) =
2Bc2∞

(γ − 1)ρ0

∫
dxρ′1,h(x, t),

(11)

where

B = − (γ − 1)2T0

2c3∞
Φ1. (12)

The sound is imposed to be a wave process, so that
it attenuates (or amplifies, in dependence on the sign
of B) weakly over the wavelength, |B|k−1 ≪ 1. In the
low-frequency regime, the relations take the leading-
order form (Perelomova, 2010a):

v′1,l(x, t) =
c0
ρ0

ρ′1,l(x, t),

p′1,l(x, t) = c20ρ
′
1,l(x, t),

ε′1,l(x, t) =
2Bc20

(γ − 1)ρ0

∫
dxρ′1,l(x, t).

(13)

Relations (11), (13), along with the linear property of
superposition, Eqs. (10), point out a way of combina-
tion of four equations from (4) in order to get dynamic
equations describing perturbation of only one specific
mode. Formally, that may be done by means of the
complete set of orthogonal projectors. The remarkable
property of projectors is to decompose the dynamic
equations governing the correspondent mode by im-
mediate appliance on the linear system. The details
of establishing of the projectors in the low- and high-
frequency regimes may be found in the papers by one
of the authors (Perelomova, 2003; 2006; 2008). Ap-
plication of the matrix operator on the vector of over-
all perturbations (v′ p′ ρ′ ε′) actually decomposes
the correspondent specific mode:

Pn




v′(x, t)

p′(x, t)

ρ′(x, t)

ε′(x, t)




=




v′n(x, t)

p′n(x, t)

ρ′n(x, t)

ε′n(x, t)



, n = 1, . . . , 4. (14)

Within the accuracy up to the terms of the first order
in (c∞kτ)−1, |B|k−1, the third row of projector P1,h,
which projects the overall vector of perturbations into
an excess density belonging to the first high-frequency
acoustic mode, takes the following form:
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(
ρ0
2c∞

+
Bρ0
c∞

∫
dx

1

2c2∞
+

B(γ − 3)

2(γ − 1)c2∞

∫
dx

B

(γ − 1)

∫
dx

(γ − 1)ρ0
2c3∞τ

∫
dx

)
. (15)

The row which projects the overall vector of perturba-
tions into the first branch of the low-frequency sound,
calculated with the accuracy up to the terms of the
first order in (c0kτ)

1, |B|k−1, is

(
ρ0
2c0

− Bρ0
c0

∫
dx

1

2c20
+

Bτ

(γ − 1)c0

− Bc0τ

(γ − 1)

(γ − 1)ρ0
2c20

− B(γ − 2)ρ0τ

c0

)
. (16)

Both rows include operators. Employment of the first
row on the linearized system (4), i.e., application of
the first operator on the first equation from this set,
the second operator on the second one, and so on, and
calculation of the sum of all four equalities, result in
the dynamic equation for an excess density of the first
acoustic high-frequency mode:

∂ρ1,h
∂t

+ c∞
∂ρ1,h
∂x

− c∞Bρ1,h = 0, (17)

where ρ1,h is the excess acoustic density, ρ
′
1, in the case

of the high-frequency sound. Application of the second
row on the system (4) yields the dynamic equation for
the first low-frequency acoustic mode:

∂ρ1,l
∂t

+ c0
∂ρ1,l
∂x

= 0, (18)

where ρ1,l is the excess acoustic density in the case
of the low-frequency sound. Equations (17), (18) obvi-
ously coincide with the roots of the dispersion relation
ω1,0 and ω1,∞ from Eqs. (7), (8). It may be readily
established that terms relating to all other modes be-
come reduced. That follows from the properties of pro-
jectors.
Applying projectors on the nonlinear vector of sys-

tem (4) yields quadratic nonlinear corrections in the fi-
nal dynamic equations originating from the right-hand
side of Eqs. (4). We will keep among all of them only
those belonging to the progressive in the positive di-
rection of axis Ox sound. That is valid over spatial and
temporal domains, where magnitude of this branch of
sound is much larger than that of other modes.

3. Nonlinear features of sound propagation

3.1. The high-frequency sound

Application of the row (15) at the column of non-
linear equations (4) and account for the links (11) re-
sults, after some ordering, in the equation governing
the first sound branch. The term proportional to B0

in the right-hand side of the equation takes the form:

−c∞(γ + 1)

2ρ0
ρ1,h

∂ρ1,h
∂x

. (19)

The term associated with the corrections of order B1

in the operators, is:

−Bc∞(γ−1)

2ρ0

∫
ρ1,h

∂ρ1,h
∂x
dx=−Bc∞(γ−1)

4ρ0
ρ21,h, (20)

and the terms originated from the links between acous-
tic perturbations (15), are:

Bc∞(γ + 1)

2ρ0

(
ρ21,h + 2

∂ρ1,h
∂x

∫
ρ1,h dx

)

− T0Φ2(γ − 1)3

ρ0
ρ21,h. (21)

The overall weakly nonlinear equation governing
sound contains the sum of all nonlinear terms:

∂ρ1,h
∂t

+ c∞
∂ρ1,h
∂x

+
c∞(γ+1)

2ρ0
ρ1,h

∂ρ1,h
∂x

− c∞Bρ1,h

=
Bc∞
2ρ0

(
γ+3

2
ρ21,h + 2(γ+1)

∂ρ1,h
∂x

∫
ρ1,h dx

)

− T0Φ2(γ − 1)3

ρ0
ρ21,h. (22)

The limiting case of Eq. (22) when B = 0 and Φ2 = 0
is the famous Earnshaw equation for a simple wave
in non-viscous ideal gas (Rudenko, Soluyan, 1977).
The analysis of Eq. (22) may be readily proceeded by
means of the standard method of successive approx-
imations. In order to establish pure nonlinear distor-
tions, we put the linear term proportional to B in the
left-hand side of Eq. (22) equal to zero. If a transducer
placed at x = 0 transmits a harmonic wave,

ρ1,h(x = 0, t) = RA sin(ωt), (23)

the spectrum is enriched at some distances from the
transducer due to nonlinearity of the medium. Simple
evaluations yield the approximate solution:

ρ1,h(x, t) = RA sin(ωt− kx)

+
x(γ + 1)ωR2

A

4c∞ρ0
sin(2ωt− 2kx)

+
xR2

A(α+ β)

2c∞ρ0
cos(2ωt− 2kx)

+
xR2

A(−α+ β)

2c∞ρ0
, (24)

where

α = −Bc∞(γ + 3)

4
+ T0Φ2(γ − 1)3,

β = −Bc∞(γ + 1).

(25)

The second term in the right-hand side of Eq. (24) re-
flects the “standard” weakly nonlinear distortions. The
third one originates from the vibrational relaxation, it
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also varies with time. Assuming that the sign of B is
more important than that of Φ2, one may conclude
that the magnitude of nonlinear distortions relating to
this oscillating term decrease with x for the positive
B and increase otherwise. The last monotonic term,
analogously, decreases when B is positive. It causes
the non-zero mean value of perturbations in the peri-
odic sound wave. Thus, the conclusion is that the non-
equilibrium gases possess unusual nonlinearity which
gets smaller with the increase in the degree of disequi-
librium. Equilibrium media, vice versa, makes the non-
linearity larger. For any periodic in time acoustic wave,
the averaged over the sound period term in the right-
hand side of Eq. (22) takes the leading-order form:

−α+ β

ρ0
〈ρ21,h〉. (26)

It differs from the “standard” nonlinearity,
c∞(γ + 1)

2ρ0
ρ1,h

∂ρ1,h
∂x
, which is zero on average in

the leading order. As for the momentum of the
acoustic impulse, it is known that it is constant
independent on the distance from a transducer before
or after formation of a discontinuity in a simple
wave. Integrating Eq. (22) from x = −∞ till x = ∞
and assuming that excess acoustic density and all
its spatial derivatives tend to zero at infinities, we
finally arrive at the dynamic equation describing the
momentum,

∂P1,h

∂t
= c∞BP1,h +

(−α+ β)c∞
ρ0

∞∫

−∞

ρ21,h dx, (27)

where

P1,h = c∞

∞∫

−∞

ρ1,h dx (28)

is the density of the acoustic momentum. If we would
not consider nonlinearity associated with excitation of
vibrational degrees of a molecule freedom, the last term
in the right-hand side of Eq. (27) were zero and the
acoustic momentum would vary with time proportion-
ally to exp(c∞Bt). It would increase for a positive B,
in the non-equilibrium case, and decrease otherwise.
Dependence of the acoustic momentum on time is con-
nected with exchange of the momentum of internal and
external degrees of molecules of a relaxing gas. Account
for nonlinearity makes variations of P with time faster
in the equilibrium regime, in view of the fact that the
integral in the right-hand side of Eq. (27) is always
positive.
If the vibrational relaxation is equilibrium, the dis-

continuity in the sound wave may not form at all.
That happens for enough large |B|. Without ac-
count for nonlinearity connected with vibrational re-
laxation, for initially sinusoidal wave, the front forms
if (Perelomova, Wojda, 2011)

2ρ0c∞Bπ

RA(γ + 1)ω
< −1. (29)

One may expect that the threshold of the discontinuity
appearance is even lower in view of additional nonlin-
earity. Vice versa, in the non-equilibrium regime, for
the positive B, discontinuity always forms. Account
for the specific nonlinearity originating from relaxation
predicts larger distances from a transducer where that
happens.

3.2. The low-frequency sound

As for the low-frequency sound, taking into account
relations (13) along with the application of row (16) on
the nonlinear right-hand side of Eqs. (4) yields:

∂ρ1,l
∂t

+ c0
∂ρ1,l
∂x

+
c0(γ + 1)

2ρ0
ρ1,l

∂ρ1,l
∂x

=
B

ρ0τ
ρ1,l

∫
ρ1,l dx. (30)

For an excess acoustic density at a transducer being
a harmonic function of time, the approximate solution
at some distances from the transducer takes the form:

ρ1,l(x, t) = RA sin(ωt− kx)

+
x(γ + 1)ωR2

A

4c0ρ0
sin(2ωt− 2kx)

+
xBR2

A

2ωτρ0
sin(2ωt− 2kx). (31)

Also, in this case, there is a part oscillating at a double
frequency which associates with the standard nonlin-
earity and one which reflects the effects of relaxation.
In the non-equilibrium regime, if B > 0, the nonlinear-
ity enhances, and it decreases otherwise. Thus, conclu-
sions are opposite to those of the high-frequency sound.
Also, perturbations in the sound remain zero on aver-
age. For any periodic in time acoustic wave, the aver-
aged over the sound period term in the right-hand side
of Eq. (30) takes the leading-order form:

B

2ρ0τ

〈(∫
ρ1,l dx

)2
〉
, (32)

and the conclusion about enhancement of nonlinearity
in the non-equilibrium regime of excitation is valid.
This type of non-linearity differs both from that in
the simple wave and that in the high-frequency case
described by Eq. (26).
As for the acoustic momentum, it varies with time

in accordance to the following dynamic equation:

∂P1,l

∂t
=

Bc∞
2ρ0τ

(∫
ρ1,l dx

)2

. (33)

It enlarges in the non-equilibrium regime and decreases
otherwise.
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The unusual feature is that in contrast to the high-
frequency sound where the ratio of nonlinear terms as-
sociated with the vibrational relaxation and the stan-
dard one is of the order |B|k−1 is much less than unity,
the ratio of the similar terms in the low-frequency
regime in the evolution equation (30) is of the order
of the ratio of two small parameters, |B|k−1 and ωτ .
It is not rigorously small and may make the nonlinear
term originating from the vibrational relaxation larger
than the standard one.

4. Concluding remarks

In this study we consider the nonlinear distortions
of the sound associated with the equilibrium or non-
equilibrium type of relaxation. The linear effect of re-
laxation is in increase (or unusual decrease, if B > 0)
in the phase speed of a signal in equilibrium relax-
ation, while its frequency enlarges. Accordingly, sound
enhances in the non-equilibrium regime. As for non-
linear distortions, they depend also on the domain of
the sound frequency emitted by a transducer and on
the type of relaxation. In addition to standard non-
linearity, there appear terms which enlarge nonlinear-
ity or make it smaller. The main conclusion is that
nonlinear distortion of the high-frequency sound de-
creases and that of the low-frequency regime increases,
while sound propagates over a gas in vibrational non-
equilibrium. This may be of especial importance in the
low-frequency domain because the relative magnitude
of the term associated with relaxation is proportional
to the ratio of small parameters, |B|k−1 and ωτ . Since
the low-frequency sound almost does not attenuate lin-
early, this may lead to unusual short (if B > 0) or large
(if B < 0) distances from a transducer where the saw-
tooth wave forms. In the equilibrium gases, vise versa,
nonlinear distortion of the high-frequency sound en-
hances and nonlinear distortion of the low-frequency
sound declines.
Gases, where vibrational relaxation of the internal

degrees of molecules takes place, are just one example
among fluids with different thermodynamic relaxation
processes which may occur in an irreversible way. In
spite of that, flows over these relaxing fluids are de-
scribed quantatively by different parameters, the equa-
tions governing sound and relative nonlinear phenom-
ena, are quite similar (Molevich, 1986). The nonlin-
ear effects caused by the sound in a chemically react-
ing gas are discussed in the papers by one of the au-
thors (Perelomova, 2010b). Thus, the conclusions of
this study may be expanded over a wide class of fluids
with thermodynamical relaxation processes of differ-
ent kinds. Theoretical predictions hopefully will allow
to conclude about qualitative and quantitative relax-
ation processes in a gas remotely, basing on data on
nonlinear distortions of the sound and on variations in
its momentum during propagation over a gas.
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