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The subjective logatom articulation index of speech signals enhanced by means of various
digital signal processing methods has been measured. To improve intelligibility, the convo-
lutive blind source separation (BSS) algorithm by PARRA and SPENCE [1] has been used in
combination with classical denoising algorithms. The efficiency of these algorithms has been
investigated for speech material recorded in two spatial configurations.It has been shown that
the BSS algorithm can highly improve speech recognition. Moreover, a combination of the
BSS with single-microphone denoising methods can additionally increase thelogatom articu-
lation index.
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1. Introduction

The acoustic signal reaching our ears comprises sound waves from multiple sources
as well as their reflections from surfaces in the environment. One of the most remark-
able achievements of human perception is the ability to resolve a chosen source from
a mixture of different signals. However, for people with impaired hearing this ability is
reduced. Hearing aids that merely amplify the signal do not give satisfactory results for
people with sensorineural hearing loss. This is because the signal-to-interference ratio
(SIR) is not improved with the use of such devices. The way to help people with im-
paired hearing is to apply speech enhancement algorithms in hearing aids. There have
been many studies in the area of speech enhancement algorithms used in hearing aids
and cochlear implants, e.g. [2–10], however combining BSS and denoisingalgorithms
is a quite new idea.
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The vast family of speech enhancement algorithms may be classified into two broad
categories: single- and multiple-microphone methods. The advantage of single micro-
phone methods is low cost and small size, while multiple microphone methods resultin
much higher performance. The principle of operation of single microphonespeech en-
hancement algorithms is estimation of noise or speech signal. The multiple microphone
algorithms exploit spatial diversity.

The perception of a speech signal is usually measured in terms of its quality (nat-
uralness and ease of listening) and intelligibility (percentage of words/sentences that
can be correctly identified by listeners) or articulation index (percentage of words with-
out meaning that can be correctly identified by listeners). Most of speechenhancement
techniques improve speech quality; although some of them even reduce the intelligibil-
ity. This is because speech enhancement algorithms can distort the target speech signal.
While the signal-to-noise ratio (SNR) is usually accepted as an objective measure of
efficiency [1, 11]; it must be emphasized that it does not reflect intelligibility. Hence,
speech intelligibility measurements or articulation index are still the best methods to
test the efficiency of speech enhancement methods [12, 13].

No speech enhancement algorithms can reject noise completely. In order toaddi-
tionally inhibit noise, a combination of single and multiple microphone methods can be
used. This is, to date, still an unexplored issue. In this work, the logatom articulation
index is measured for degraded speech processed by BSS and postprocessed by well
known single-microphone speech denoising algorithms.

The main purpose of this work is to investigate the effects of combining single and
multiple microphone methods on improving the speech articulation index. The exper-
iments were carried out in an anechoic chamber. Only an additive noise from point
sources was considered. Thus, the goal is to test if the gain in signal-to-interference
ratio, i.e. SIR enhancement is greater than the loss in speech signal distortion.

1.1. Blind source separation (BSS)

Recently, much attention has been paid to the development of BSS algorithms. The
main goal of convolutive BSS is to filter the signals from a microphone array toextract
the original sources, while reducing interfering signals. Given independent sources (e.g.
target speech and maskers)sm(t), m = 1, 2, ..., M , wheret denotes time, the real
mixing process (including delays) can be described as:

xn(t) =
M∑

m=1

K∑

k=0

sm(t− k)anm(k), (1)

whereM is the number of the independent sourcessm andanm are the lengthK mixing
filters, describing the delays and acoustical environment. In such a case, the recovery of
the independent signalsui(t) can be described as:

ui(t) =

N∑

n=1

K∑

k=0

xn(t− k)hin(k), (2)
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wherehin are unmixing filters to be estimated. As can be seen, Eqs. (1) and (2) consist
of a convolution of signals. Thus, the estimation of separating filters is a time consuming
process. To solve this problem, it is possible to apply an appropriate Fourier transform to
Eq. (2). As a result, the time series are converted into polynomials and the convolution
is transformed to element-wise multiplications [1, 14–16]:

Un(f) =
M∑

m=1

Xm(f)Hnm(f), (3)

whereUn (f) is thef -th spectral coefficient of then-th signal estimate,Xm (f) de-
notes the spectrum of the signal recorded by them-th microphone whileHnm (f) is
the frequency response of the filter corresponding to then-th signal estimate andm-th
sensor.

Four fundamental approaches have been developed to solve this equation [17, 18].
In the first group there are algorithms that use a statistical measure of independence,
namely nongaussianity or sparseness. Higher order statistics is essentialto solve this
problem. Another approach is based on the spectro-temporal features of signals. This
approach leads to the concept of time frequency component analyzer (TFCA) [19].

The third approach exploits the temporal structures of sound sources. It assumes
that each source has a non-vanishing temporal correlation. In such a case less restrictive
conditions than statistical independence can be used such as decorrelation obtained by
second-order statistics (SOS) analysis. Several approaches are based on this assump-
tion [20–24]. The last fundamental approach is based on the non-stationarity properties
and second order statistics (SOS). The non-stationarity was first taken into account by
MATSUOKA et al. [25]. More general solutions based on this approach were proposed
by PARRA and SPENCE[1] and PHAM et al. [26].

As mentioned above, in the frequency domain this problem becomes much easier
and can be solved using statistical methods. The main goal of the BSS method is to
invert the mixing process and find an unmixing matrix, that give estimates of source
signal with accuracy to scale and permutation. Although the frequency domain BSS
can be solved quickly, there is a price to be paid for such a solution. The joint diago-
nalization provides matricesH(f ) only up to a scale and permutation. There are sev-
eral ways to cope with this problem. The first is to constrain the separating FIR filters
length in the time domain. This solution is motivated by the fact that permutations in-
duce filters’ impulse responses with very long tails [1]. It may not be easy tohandle,
as for long responses the inverse filter is usually even longer. There are also algorithms
exploiting the assumption that the signals coming from one source are temporallycor-
related in the adjacent frequency [26]. Another idea is based on source localization
and subsequent grouping filters which attenuate the same jammers. The localization
approach is robust since a misalignment at one frequency does not affect other frequen-
cies. Unlike localization, the correlation approach is not robust since misalignment at
one frequency affects the results of other frequencies and may causeconsecutive mis-
alignments [27].



458 S. DRGAS, J. KOCÍNSKI, A.P. SĘK

Moreover, the localization approach is not precise for some frequencies. This hap-
pens mainly for low frequencies, where the phase difference caused by the sensor spac-
ing is very small. In contrast, the correlation approach is precise as long assignals are
well separated by independent component analysis (ICA), since the measurement is
based on the separated signals [27].

In the present study, the non-on-line algorithm introduced by PARRA and SPENCE[1]
and implemented by HARMELING [28] is used. Previous research using this algorithm
showed very promising results [29, 30].

It must be emphasized, that there also exist also some algorithms of the convolutive
BSS that are able to separate out the signals on-line, e.g. [31, 32].

1.2. Single-microphone denoising algorithms

After the BSS separation, single microphone speech enhancement methodscan be
used. Since their efficiency depends on SIR, it is better to use them after BSS. In this
work logatom articulation index processed by four denoising algorithms [33–36] sep-
arately was measured. These algorithms take into account additive noise. In general,
a recorded noisy signal model can be expressed as follows:

y (t) = x (t) + d (t) , (4)

wherey(t) is a noisy speech signal, composed of the speech signalx(t) and noised(t).
Single microphone speech enhancement is a statistical estimation problem of thespeech
signal, [x(t)], from the noisy speech signal, [y(t)]. The algorithms used in this study
work in the frequency domain, whereXt(fk) andYt(fk) are the Fourier coefficients
of the speech signal and noisy speech, respectively, at time framet and frequencyfk.
These conventional speech enhancement methods are based on filteringthe signal with
a gain function [36]:

|Gt (fk)| =

∣∣∣Ât (fk)
∣∣∣

|Yt (fk)|
, (5)

where
∣∣∣Ât (fk)

∣∣∣ is an estimate of the speech amplitude and|Yt(fk)| is the observed

amplitude in a given framet at frequencyfk.
In the spectral subtraction algorithm by BOLL [33], the Ât (fk) estimator is ob-

tained by subtracting an estimate of the noise spectrum from the noisy speechspec-
trum. Spectral information required to describe the noise spectrum is obtained from
the signal measured during nonspeech activity. The estimation error is corrected in
Boll’s algorithm by means of several techniques. The first is a magnitude averaging;
this method exploits a symmetric distribution of noise distortion, however, it brings
the risk of temporal smearing. The second step of minimizing noise error is rectifica-
tion. When the spectral magnitude of the noisy signal is less than the averagenoise
spectral magnitude then the output is set to zero. The advantage is the noisefloor re-
duction. However, there is a risk of speech and noise frames to be floored. Thus the
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logatom articulation index may decrease in this technique. After these steps there is
still residual noise which has a magnitude between zero and the maximum value mea-
sured during nonspeech activity. The audible effects of the residual noise can be re-
duced by taking advantage of its frame-to-frame randomness, thus it can be suppressed
by replacing its current value with its minimum value chosen from the adjacent frames
analysed.

It should be noted that the short-time power spectrum of white noise still displays
peaks and valleys. Frequency locations of these peaks and valleys arerandom and they
vary in frequency and amplitude from frame to frame. When the smoothed estimate
is subtracted from the noise, all spectral peaks are shifted down while valleys are set
to zero. Thus after such a subtraction the noise components still remain present. These
components are narrower and perceived as time varying tones and are called the musical
noise. BEROUTI [34] proposed a modified version of spectral subtraction. He developed
a spectral flooring technique to reduce musical noise, which can be described by the
following equation [34]:

D (fk) = |Yt (fk)|2 − |λ (fk)|2

Â (fk)
2 =

{
D (fk) if D (fk) > β |λ (fk)|2,

β |λ (fk)|2 otherwise.

(6)

D(fk) is the difference between the noise and the noisy signal;|Yt(fk)|2 and|λ(fk)|2
are the noisy speech and noise power spectra, respectively. After noise estimate subtrac-
tion, the filling with the noise spectrum is made. The spectral components ofÂ (fk) are
prevented from descending below the lower bandβλ(f). With the use of this technique
the valleys between peaks are not as deep as for the caseβ = 0. This procedure reduces
spectral excursions.

In the third speech enhancement algorithm (MMSE STSA – minimum mean square
error short time spectral amplitude [35]), the normal distribution probability of Fourier
expansion coefficients of speech signal is assumed. With this assumption thespectral
amplitude estimators can be derived from noisy speech. The filtering function G<> can
be obtained from the relationship:

G<> =
Âk

Rk
, (7)

whereAk denotes the spectral amplitude estimator andRk is the spectral amplitude of
the noisy speech.

Therefore, the functionG<> is defined by the equation:

GEM
<> =

SNRprio

1 + SNRprio
exp





1

2

∞∫

vk

e−t

t
dt



 . (8)
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The parameters SNRa priori (SNRprio) and SNRa posteriori(SNRpost) are defined
as:

SNRprio =
|Xt (fk)|2

λ2
(9)

and

SNRpost =
|Yt (fk)|2

λ2
. (10)

In practical implementations of speech enhancement systems, these parameters are
unknown in advance as the noisy speech alone is available. It has been reported that
the a priori SNR acts is a key parameter in the reduction of speech distortions and
musical noise. In the MMSE STSA method these unknown parameters are replaced
with estimates of the noise power spectral density. The estimate of ana priori SNR is
given by:

SNRprio = αG2
(
SNRprio (n− 1) , SNRpost(n− 1)

)
SNRpost(n− 1)

+ (1− α) P
[
SNRpost− 1

]
, (11)

whereP [ ] denotes half-wave rectification. The parameterα controls the trade-off be-
tween the noise reduction and the transient distortion introduced into the signal. This
is adecision-directedestimator since it is updated on the basis of a previous amplitude
estimate.

SCALART and FILHO [36] investigated experimentally the estimate and true values
of these parameters for sinusoidal tone with additive noise. They showedthat thea pos-
teriori SNR estimate exhibits large standard deviation. They proposed to include thea
priori concept in the classical speech enhancement schemes (like Wiener), spectral sub-
traction or maximum likelihood. This can be done by consideringE{SNRpost(fk)} =
1+SNRprio(fk). The fourth algorithm used in the current study is the Wiener filter with
thea priori SNR derived from the decision directed method concept.

Single microphone denoising methods applied in this study differ in the statistical
models of speech and enhanced speech distortion measure. Evaluations of these algo-
rithms by logatom articulation index measurements can show how denoising algorithms
used after BSS could be useful in future application in hearing aids.

2. Aim

The main purpose of this work was to assess the logatom articulation index im-
provement after using the convolutive BSS procedure combined with singlemicro-
phone denoising algorithms applied to the signal after BSS. Speech signals were initially
recorded in different noisy conditions after which BSS was applied [1].Next, the signal
after BSS characterised by a higher SNR was additionally transformed by each of the
above described denoising algorithms [33–36] separately. Therefore, the efficiency of
BSS only and BSS with each of the single microphone denoising algorithms expressed
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by means of logatom articulation index was estimated and compared. It should be em-
phasized that only additive sources were considered. The reflectionsfrom surfaces and
background noise were neglible as recordings were carried out in an anechoic chamber.

The efficiency of the combined algorithms (i.e. BSS and BSS with denoising algo-
rithms) was assessed using two different spatial configurations. The purpose of using
different spatial configurations was to show the efficiency of the dependence of the
speech enhancement method on the spatial localization of the target sound source and
disturbing sound sources.

3. Stimuli

3.1. Recordings

The Polish nonsense word list (logatoms) [37–39] was used as speech material. The
logatoms were initially recorded in an anechoic chamber in the presence of masking
disturbing sound sources. The background noise and reverberationwere neglible. Two
spatial configurations shown in Fig. 1 and Fig. 2 were used. The target speech source
was always placed in front of the microphone array of four unidirectional AKG 1000S
microphones. The distance between the microphones was 8 cm.

In the first spatial configuration there were two masking sources: the concurrent
speech (azimuth angle−45◦ clockwise) and music (azimuth angle90◦). The speech that
was used as a masker signal was uttered while reading a popular book by aprofessional
male lector. This signal was processed in order to remove pauses. Each logatom was
mixed with different parts of concurrent speech. In the second scenario there was a third
masking source generating white noise (azimuth angle−135◦). The level of concurrent
speech was 68 dB SPL, music – 65 dB SPL and white noise 65 dB SPL. The target
signal level (TSL) was changed between 59 and 70 dB SPL.

Fig. 1. Spatial configuration of sources with two maskers.
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Fig. 2. Spatial configuration of sources with three maskers.

Target speech and masking signals were played using CD players except for white
noise that was generated by a PC. The sounds were amplified using two amplifiers (Pio-
neer A-505R) while the target speech was amplified using a Sony STR-DE475 amplifier.
Then, the signals were delivered to three-way loudspeakers Tonsil ZG-60 (one for each
signal) placed in the anechoic chamber.

All signals were recorded through the array of four microphones AKG 1000S and
preamplified using a Soundcraft M8 console. Next, the signals were fed tothe digital
recorder (Fostex D824) and stored on the hard drive at a sampling rateof 44100 Hz.

3.2. Signal transformations

The signals recorded were processed by theconvbssalgorithm by PARRA and
SPENCE[1] implemented in MATLAB by HARMELING [28]. The length of the FFT was
set to 512 samples. The length of the filter in the time domain was 128 samples. Five
matrices were diagonalized to calculate the separation filters. The maximum number of
algorithmic iterations was set to 1000 and the learning rate was 1.0. These parameters
were chosen on the basis of the results obtained by the authors of the algorithm and re-
sults of an earlier study by KOCIŃSKI [29]. Thus they seem to be optimal as they cover
the delays between consecutive microphones. In terms of beamforming (theequations
in both methods, i.e. beamforming and BSS are the same, but the way of separation



LOGATOM ARTICULATION INDEX EVALUATION OF SPEECH ENHANCED BY . . . 463

is different) small values of the filter length might be insufficient to create an optimal
(sharp) spatial filter thus the separation is poor. In contrast very high filter length in-
creases computational time and does not lead to better separation.

Next, the denoising algorithms were used to additionally enhance the best signal
selected after BSS in the separation stage. It must be emphasized, that at the output of
the BSS procedure four signals were obtained as four microphones were used. Each of
these signals was the best estimate of the signals produced by separate sources. The best
target signal selected for the denoising procedure was determined based on subjective
impression of the experimenter. It is worth mentioning that BSS markedly increased the
SIR, thus, it was easier for the denoising algorithm to subtract the noise. Four different
denosing algorithms were applied to the best target signal after BSS, separately. The
time window in each algorithm was chosen as suggested by the author of the implemen-
tations to 25 ms with 40% overlapping.

3.3. Logatom articulation index evaluation

The enhanced speech was presented in a double-walled, acoustically isolated cham-
ber to normally hearing subjects. The signals stored on the hard drive were fed to the
TDT-RP2 (Tucker-Davis Technologies, System 3) processor and then amplified in the
headphone buffer, TDT-HB7, to the overall level of 75 dB SPL at the tympanic mem-
brane. Next, the signals were delivered to the Sennheiser HDA580 headphones and
presented diotically to the subjects. All the recordings and presentations were carried
out using MatLab 6.5 computing language (MathWorks Inc.).

To find out the advantages of using BSS combined with the denoising algorithmsthe
logatom articulation index of unprocessed speech, speech processedby BSS only and
that of the speech processed by a combination of BSS and one of followingalgorithms:
spectral subtraction [33, 34], and statistical methods [35, 36] was measured.

4. Subjects

Three subjects aged 23–25 with audiologically normal hearing were askedto listen
to the speech signals and write down all the understood logatoms on a specialform. In
all figures presented below the subjects are depicted as JK (the author),LS and AK.
All subjects were instructed and took part in a short training session (about 2 hours) to
be familiarized with the task.

5. Results

The data gathered in this experiment, i.e. the logatom articulation index as a func-
tion of the Target Source Level (TSL) of the target signal (or alternatively signal-to-
interference ratio, SIR of the recorded signal), for all subjects and spatial configuration
with two masking sources are depicted in Fig. 3. Analogous results for the case with
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Fig. 3. Results for spatial configuration with two masking sources.

Fig. 4. Results for spatial configuration with three masking sources.
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three masking sources are shown in Fig. 4. The filled triangles show the results for
the signals before the BSS was applied while the filled squares show the results after
BSS . The empty circles depict the results after BSS and denoising algorithm using the
minimum mean-square error log-spectral amplitude estimator algorithm (MMSE STSA)
[35, 40]. The filled asterisks show the results after BSS and a denoising algorithm based
on the Wiener-Scalart idea [36, 41]. Filled diamonds and empty triangles indicate the
results after BSS and the BOLL’ S [33] or BEROUTI’ S et al. [34] spectral subtraction al-
gorithms respectively. For better visual clarity the symbols for each SNR were slightly
shifted in the figures.

5.1. Spatial configuration with two masking sources

For the spatial configuration with two masking sources the use of BSS increased
the logatom articulation index by about 40 percentage points for the lowest TSL and
by about 20 percentage points for the highest TSL. Therefore, one may say that the
efficiency of BSS is inversely related to SIR.

The use of a single microphone denoising algorithm, in general, additionally in-
creased the logatom articulation index. The best performance was obtained for the
Wiener-Scalart algorithm. Similarly to the BSS procedure, the highest increase in per-
formance can be noticed for the lowest TSLs used in the experiment. The efficiency of
this algorithm however, was much poorer at higher TSL. For TSL = 60 dB there was
no difference in logatom articulation index for signal after BSS and after BSS com-
bined with the Wiener-Scalart algorithm. Good performance can be also noticed for the
MMSE STSA algorithm (10 percentage points increase in the logatom articulation in-
dex). It is worth adding that the above mentioned algorithms are similar in a sense, as
they are based on the assumption that the signals’ frequency components have Gaussian
distributions.

The data gathered in this experiment were analysed using a within-subject analysis
of variance (ANOVA) and are collected in Table 1. All factors used in the experiment
(target speech level, speech enhancement method) were proved to be statistically signif-
icant,F (3, 48) = 66.63, (p < 0.05) for the target speech level andF (3, 48) = 127.6,
(p < 0.05) for the method respectively. TheF denotes Fisher’s distribution critical
value while values in semicolons correspond to degrees of freedom for factor and error
respectively. This analysis of variance fully confirmed the above presented conclusion
as the BSS procedure markedly enhanced logatom articulation index. The interaction

Table 1. Results of the analyses of variance for logatom articulation indexes obtained before and after
the BSS for the spatial configuration 1 (whereF denotes Fisher’sF -distribution).

Factor Before BSS BSS

Target speech level F (3, 48) = 66.63, (p < 0.05) F (4, 40) = 29.36, (p < 0.001)

Speech enhancement methodF (3, 48) = 127.6, (p < 0.05) F (3, 40) = 7.95, (p < 0.001)

Interaction F (15, 48) = 6.78, (p < 0.05) F (12, 40) = 2.22, (p < 0.03)
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between these two factors was also significantF (15, 48) = 6.78, (p < 0.05) and it
proves that the efficiency of BSS strongly depends on SIR (or alternatively the TSL).

As can be seen from Fig. 3 denoising algorithms, on average, improved thelogatom
articulation index. However, on the basis of this figure it is difficult to assesthe effi-
ciency of these algorithms as well as differences between them. Therefore, a separate
analysis of variance was conducted for the data on the logatom articulation index after
the above mentioned algorithms were used. The logatom articulation index data ob-
tained after BSS had been applied were also included in this analysis. As expected, the
effect of the TSL was statistically significantF (4, 40) = 29.36, p < 0.001. Also the
influence of denoising algorithm was highly significantF (3, 40) = 7.95 (p < 0.001),
which proves that the efficiency of these algorithms is quite different. The intelligibili-
ties obtained for the lowest TSL was the highest (76%) for the Wiener-Scalart algorithm
and the lowest (52%) for Boll’s algorithm which was very close to the logatomarticula-
tion index after BSS only. The interaction between the algorithm and the TSL was also
statistically significantF (12, 40) = 2.22, (p < 0.03). This confirms that the efficiency
of these algorithms strongly depends on SIR (or TSL) of the input signals,being the
highest for the lowest TSL. As can be seen from Fig. 3. the use of additional denoising
algorithm brought about an increase in the logatom articulation index. Indeed, if one can
ignore the logatom articulation index data obtained for the raw recorded signals (before
any speech enhancement method was applied) the worst performance can be noticed for
BSS.

This happens especially for the lowest TSLs. For the highest TSLs the differences
between data collected for different algorithms (including BSS) are quite small and it is
difficult to asses the strict relation between them.

The data presented in Fig. 3 suggests that the use of additional denoising algorithms
may be quite useful especially in highly noisy conditions. However, the use of these
algorithms is SIR dependent.

The analyses of variance applied to each of the denoising algorithms and to the
logatom articulation index after the BSS, were performed to assess the significance of
the efficiency obtained for of each of the considered denoising algorithms. The results
of these analyses are shown in Table 2. TheF -values were calculated for one factor, i.e.
additional denoising method. The statistically significant improvement was obtained
for the MMSE STSA and Wiener-Scalart algorithms. In the case of spectral subtraction
algorithms by Boll and Berouti, statistically significant changes were not obtained.

Table 2. Results of the analyses of variance that tested logatom articulation index improvement after use
of single-microphone denoising methods for the spatial configuration 1.

Algorithm Fisher’sF -distribution

Ephraim F (1, 16) = 11.27, (p < 0.05)

Berouti F (1, 16) = 1.77, (p = 0.2)

Boll F (1, 16) = 0.71, (p = 0.41)

Scalart F (1, 16) = 29.7, (p < 0.05)
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5.2. Spatial configuration with three masking sources

In the second spatial configuration (see Fig. 2) there was an additional masking
source generating a white noise. Therefore, one can say that the stationary signal was
added to the masking mixture. The logatom articulation index data gathered in this
case for three subjects (including averages across subjects) are presented in Fig. 4.
As can be seen from this figure the use of the BSS algorithm, in general, brought about
a logatom articulation index improvement. The smallest improvement was 21 percent-
age points (for the lowest and the highest TSL) and the highest one was about 28 per-
centage points (for medium TSL). The logatom articulation index improvement ismuch
smaller then that observed in the case of the first spatial configuration (see Sec. 5.1).
It is also less dependent on TSL in comparison to the two masking sources case. The
increase in logatom articulation index in most of the observed cases is a monotonic
function of the TSL, like in the first spatial configuration. However, the logatom ar-
ticulation index improvement after BSS is much smaller then in the previous case.
The use of an additional denoising algorithm after BSS brought about, in general,
further increase in the logatom articulation index. However, the efficiencyof the al-
gorithms applied was different. The best logatom articulation index improvement was
observed for the MMSE STSA algorithm (by about 20 percentage points for the low-
est TSL). The worst performance was observed for the Wiener-Scalart algorithm, for
which the logatom articulation index was decreased in comparison with BSS only(by
about 10 percentage points for TSL of 65 dB). However, the logatom articulation in-
dex improvement caused by the use of any of the denoising algorithms did notdepend
on TSL.

Some deterioration in speech enhancement efficiency can be also noticed for Ber-
outi’s et al.algorithm but only for the lowest TSL while for higher TSLs the use of this
algorithm is beneficial (increase in the logatom articulation index by about 7 percentage
points). The use of Boll’s spectral subtraction method did not give a noticeable change
in logatom articulation index.

The data collected in this part of the experiment was subjected to several separate
analyses of variance. In the first part of this analysis TSL and the denoising method
were tested. This analysis showed that the TSL was a statistically significant factor
F (2, 36) = 163.28, (p < 0.001). For speech enhancement method factor ANOVA
showed also statistical significanceF (5, 36) = 24.71, (p < 0.001). However, an in-
teraction between the speech enhancement method and TSL was not statistically sig-
nificant F (10, 36) = 1.67, (p = 0.13), contrary to the earlier considered case with
two masking sources. The results of this analysis fully confirmed that TSL and the de-
noising method markedly increased the logatom articulation index. These results also
confirmed that the logatom articulation index improvement was nearly independent of
TSL as well.

It can be seen from the data presented in Fig. 4 that the majority of the denoising
algorithms brought about a logatom articulation index improvement. However,on the
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basis of the data presented, it is very difficult to asses the efficiency of the algorithms
applied. Therefore, several analyses of variance were performedon the logatom artic-
ulation index results obtained after BSS and after BSS postprocessed by with each of
the single-microphone denoising algorithms with the factors being TSL and the denois-
ing method. The results of ANOVA test of significance of the denoising methodfactor
(excluding interactions and significance of TSL factor) are presented inTable 3. As can
be seen in the case of one denoising method (namely MMSE STSA) the logatom ar-
ticulation index was significantly different relative to that obtained after applying BSS
only.

Table 3. Results of the analyses of variance that tested logatom articulation index improvement after use
of single-microphone denoising methods for the spatial configuration 2.

Algorithm Fisher’sF -distribution

Ephraim F (1, 12) = 4.5, (p < 0.05)

Berouti F (1, 12) = 0.88, (p = 0.36)

Boll F (1, 12) = 0.24, (p = 0.63)

Scalart F (1, 12) = 4.51, (p < 0.06)

The data collected in this part of the study (three disturbing sources) showed much
less improvement in the logatom articulation index than in the first spatial configuration
(2 interfering noises). The data showed that although BSS can separateout the number
of sources equal to the number of microphones, it is more effective whenthe number of
separated sources is lower then the number of sensors.

5.3. Discusion

The results of the experiments have shown that the BSS algorithm is highly effective
in subjective logatom articulation index improvement. The improvement reacheseven
about fifty percentage points in the logatom articulation index. However, theBSS effi-
ciency strongly depends on several parameters. First of all, as suggested in this paper,
when the number of sensors (microphones) exceeds the number of sources the effi-
ciency is much higher. In the case when four sensors were used the efficiency of BSS
was higher for three sound sources than for four sound sources. The difference in the
logatom articulation index between two disturbing sources and three disturbing sources
could be caused by different numbers of separation filter coefficients.In the scenario
with two masking sources there are 16 filters to estimate while in the case of three inter-
ferers there are 12 filters only. Moreover, the permutation problem is easier to solve for
a smaller number of sources. The results reveal also one very important feature of the
BSS procedure. Namely, when four sensors were used with three sound sources a statis-
tically significant improvement in the effectiveness of BSS was observed for the lowest
TSLs. However, when four sound sources were used the effectiveness did not seem to
depend on TSL.
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It is also worth adding that in the case of three sound sources the two disturbances
were concurrent speech signals. The third disturbing signal (4 sources case) was white
noise. Significantly smaller effectiveness of BSS in the latter case is probably connected
not only with the next disturbing sound source but also with the nature of white noise.
White noise is a stationary signal while concurrent speech signals are nonstationary
ones. Speech signals are characterized by marked changes in their amplitude envelope
whose spectral maximum coincides with 4 Hz. The spectrum of the amplitude envelope
of white noise is quite flat and does not show a prominent maximum. As the rate ofthe
amplitude fluctuation of speech signal is much smaller and the fluctuations are much
greater one can expect that the subjects’ performance can be markedlyinfluenced by
the so-called deep-listening mechanism. When white noise is added to the disturbing
sounds the deep listening does not occur nearly at all yielding a much smallerlogatom
articulation index improvement (see Fig. 5).

Fig. 5. Comparison of the time envelopes of the signals after BSS for the lowest SNR and for two (upper
panel) and three (lower panel) interferences.

When logatoms are presented in silence, the highest logatom articulation indexdoes
not reach 100%, and it is usually close to 95% [37]. In our experiment thelogatoms
were presented against a background of disturbing sounds and the highest logatom ar-
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ticulation index for the lowest TSL reached about 75%. Thus, one can say that the BSS
algorithm failed to fully restore the speech signal. However, it is necessary to keep in
mind, that BSS is a statistical procedure that gives estimates of signals insteadof original
source signals. The fifty percentage points in logatom articulation index improvement
observed is probably the highest one that can be obtained for speech signals presented
against background disturbances. This efficiency seems to be very promising for future
development of hearing aids.

The results have shown that the use of the single microphone denoising methods
after BSS was applied can additionally increase the logatom articulation index.How-
ever, this additional increment was much smaller than that obtained by means ofBSS
only. Moreover, the increment strongly depended on the type of denoising algorithm
and on TSL. Similarly to the BSS procedure, the highest efficiency of the single sensor
denoising algorithm was observed for the lowest TSLs. The best resultswere obtained
for the MMSE STSA algorithm for both three and four sound sources. The high effi-
ciency of this algorithm can be connected with ana priori SNR estimation or Gaussian
distribution of speech model and log-MMSE criterion.

The smallest logatom articulation index improvement (sometimes even logatom
articulation index deterioration) was observed for classical spectral subtraction algo-
rithms. In real speech, fricatives are usually low energy and broadband sounds. There-
fore, spectral subtraction methods may treat these sounds as noise and,in consequence,
subtract them. Missing fricatives can cause logatom articulation index degradation.
Even though some single-sensor denoising procedures did not give thelogatom ar-
ticulation index improvement, it is worth including one of the single denoising me-
thods in the final speech enhancement stage (after the multimicrophone denoising me-
thods).

As follows from the results, BSS can give a significant logatom articulation index in-
crement. In the spatial configuration with two masking sources this increment depends
on SIR (or TSL). In the case with 2 masking sources BSS was the most efficient for
the lowest TSL. However, in the spatial configuration with three masking sources the
benefits of using BSS were TSL independent. The difference in the logatom articula-
tion index between the results obtained for two disturbing sources and threedisturbing
sources could be attributed to different numbers of separation filters coefficients: 16 fil-
ters in two disturbing sources and 12 in the case of three interferers. Moreover, the
permutation problem is easier to solve for a smaller number of sources.

There were some cases in which denoising algorithms decreased logatom artic-
ulation index. Figure 6 illustrates the influence of the Wiener-Scalart algorithm on
speech signal. The spectrograms are obtained from speech recordedin spatial config-
uration with three masking sources. In the upper spectrogram, the case where signal
was processed only by the BSS algorithm is presented. The lower spectrogram depicts
speech after BSS and the use of the Wiener-Scalart algorithm. It can be noted that the
denoising algorithm distorts the signal (see circles in the Fig. 6). These distortions (in-
hibition of consonants) can cause logatom articulation index decrement.
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Fig. 6. Spectrograms comparison: upper spectrogram is derived from speech recorded in spatial configu-
ration with three masking sources and processed with BSS algorithm. Lower spectrogram depicts speech
after BSS and the use of the Wiener-Scalart algorithm. Degraded (by thedenoising algorithm) part of the

signal is marked by white circles.

6. Conclusions

The above discussed results of our experiments lead to the following conclusions:
• The use of the BSS procedure gives a marked improvement in the subjective

logatom articulation index, reaching 50 percentage points.
• The efficiency of BSS seems to be much higher when the number of sound

sources is lower than the number of sensors.
• BSS is more effective for lower TSLs or alternatively for lower SIRs.
• Some of the single sensor denoising algorithms applied at the postprocessing

stage (i. e. after BSS) give an additional improvement in the logatom articula-
tion index which is much smaller than that obtained with the use of BSS only.
• Denoising algorithms based on the spectral subtraction did not improve the logatom

articulation index, even though the optimal parameters were used.
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• Although the BSS is a relatively new idea, many different approaches to solve
the problem of separating mixed signals have been introduced. Moreover, the
problem of hearing loss becomes more and more commonplace. Thus, research
in this area should be continued using new algorithms and solutions before they
will be used in hearing aids.
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