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The subjective logatom articulation index of speech signals enhanceddnysof various
digital signal processing methods has been measured. To improve ibtktjigthe convo-
lutive blind source separation (BSS) algorithm byRRA and S’ENCE[1] has been used in
combination with classical denoising algorithms. The efficiency of theswitigns has been
investigated for speech material recorded in two spatial configuratidras been shown that
the BSS algorithm can highly improve speech recognition. Moreoverpaic@ation of the
BSS with single-microphone denoising methods can additionally increasegditem articu-
lation index.
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1. Introduction

The acoustic signal reaching our ears comprises sound waves fromlensdtipces
as well as their reflections from surfaces in the environment. One of thereroark-
able achievements of human perception is the ability to resolve a chosee $mnc
a mixture of different signals. However, for people with impaired hearirgyahility is
reduced. Hearing aids that merely amplify the signal do not give satisjaetsults for
people with sensorineural hearing loss. This is because the signal-ti@iatee ratio
(SIR) is not improved with the use of such devices. The way to help pedgteim-
paired hearing is to apply speech enhancement algorithms in hearing hats. Have
been many studies in the area of speech enhancement algorithms usedng aets
and cochlear implants, e.g. [2-10], however combining BSS and denailgjogthms
is a quite new idea.
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The vast family of speech enhancement algorithms may be classified intoda br
categories: single- and multiple-microphone methods. The advantage (& sirgyo-
phone methods is low cost and small size, while multiple microphone methodsinesult
much higher performance. The principle of operation of single micropspeech en-
hancement algorithms is estimation of noise or speech signal. The multiple mioepho
algorithms exploit spatial diversity.

The perception of a speech signal is usually measured in terms of its quality (n
uralness and ease of listening) and intelligibility (percentage of wordsrssrgehat
can be correctly identified by listeners) or articulation index (percentbgerals with-
out meaning that can be correctly identified by listeners). Most of spe@téincement
techniques improve speech quality; although some of them even reductelligibil-
ity. This is because speech enhancement algorithms can distort the pegeh signal.
While the signal-to-noise ratio (SNR) is usually accepted as an objectiveunseals
efficiency [1, 11]; it must be emphasized that it does not reflect intelligibitignce,
speech intelligibility measurements or articulation index are still the best methods to
test the efficiency of speech enhancement methods [12, 13].

No speech enhancement algorithms can reject noise completely. In ordédito
tionally inhibit noise, a combination of single and multiple microphone methods can be
used. This is, to date, still an unexplored issue. In this work, the logatboulation
index is measured for degraded speech processed by BSS andpessad by well
known single-microphone speech denoising algorithms.

The main purpose of this work is to investigate the effects of combining single an
multiple microphone methods on improving the speech articulation index. The-expe
iments were carried out in an anechoic chamber. Only an additive noige doint
sources was considered. Thus, the goal is to test if the gain in signaktfeirence
ratio, i.e. SIR enhancement is greater than the loss in speech signal distortio

1.1. Blind source separation (BSS)

Recently, much attention has been paid to the development of BSS algorithens. Th
main goal of convolutive BSS is to filter the signals from a microphone arraxtract
the original sources, while reducing interfering signals. Given indég@etsources (e.g.
target speech and maskers)(t), m = 1,2,..., M, wheret denotes time, the real
mixing process (including delays) can be described as:

M K
Tn(t) =D D St — k)anm(k), (1)
m=1k=0
where) is the number of the independent souregsanda,,,, are the length mixing
filters, describing the delays and acoustical environment. In such atcasecovery of
the independent signais(t) can be described as:

N K
wilt) = 323 @t — k)han (k). @

n=1 k=0
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whereh;, are unmixing filters to be estimated. As can be seen, Egs. (1) and (2)tconsis
of a convolution of signals. Thus, the estimation of separating filters is a tirseioong
process. To solve this problem, it is possible to apply an appropriate Ftarisform to

Eqg. (2). As a result, the time series are converted into polynomials and thielecton

is transformed to element-wise multiplications [1, 14-16]:

M
Un(f) =D Xon(f)Hum(f), 3)
m=1

whereU,, (f) is the f-th spectral coefficient of the-th signal estimateX,, (f) de-
notes the spectrum of the signal recorded byfxh microphone whileH,,,,, (f) is
the frequency response of the filter corresponding to:ttie signal estimate anch-th
sensor.

Four fundamental approaches have been developed to solve this ada#tid 8].

In the first group there are algorithms that use a statistical measure okeimidience,
namely nongaussianity or sparseness. Higher order statistics is essesbale this
problem. Another approach is based on the spectro-temporal feafusgmals. This
approach leads to the concept of time frequency component analyz@AJT19].

The third approach exploits the temporal structures of sound soutcassumes
that each source has a non-vanishing temporal correlation. In sase dess restrictive
conditions than statistical independence can be used such as decorretdtimed by
second-order statistics (SOS) analysis. Several approachessae dra this assump-
tion [20—-24]. The last fundamental approach is based on the non-statyoproperties
and second order statistics (SOS). The non-stationarity was first talceadoount by
MATSUOKA et al. [25]. More general solutions based on this approach were proposed
by PARRA and SPENCE[1] and PHAM et al. [26].

As mentioned above, in the frequency domain this problem becomes much easie
and can be solved using statistical methods. The main goal of the BSS method is to
invert the mixing process and find an unmixing matrix, that give estimates ofeou
signal with accuracy to scale and permutation. Although the frequencyidd&5
can be solved quickly, there is a price to be paid for such a solution. Thedji@igo-
nalization provides matriceld(f) only up to a scale and permutation. There are sev-
eral ways to cope with this problem. The first is to constrain the separatiRdiltdrs
length in the time domain. This solution is motivated by the fact that permutations in-
duce filters’ impulse responses with very long tails [1]. It may not be easatalle,
as for long responses the inverse filter is usually even longer. Theasar algorithms
exploiting the assumption that the signals coming from one source are tempanally
related in the adjacent frequency [26]. Another idea is based onedaralization
and subsequent grouping filters which attenuate the same jammers. Thealbmaliz
approach is robust since a misalignment at one frequency does edttatfier frequen-
cies. Unlike localization, the correlation approach is not robust since nmsadigt at
one frequency affects the results of other frequencies and may cansecutive mis-
alignments [27].
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Moreover, the localization approach is not precise for some frequeniés hap-
pens mainly for low frequencies, where the phase difference caysbe sensor spac-
ing is very small. In contrast, the correlation approach is precise as losigraas are
well separated by independent component analysis (ICA), since theuneeaent is
based on the separated signals [27].

In the present study, the non-on-line algorithm introducedAsHA and SPENCE[1]
and implemented by BRMELING [28] is used. Previous research using this algorithm
showed very promising results [29, 30].

It must be emphasized, that there also exist also some algorithms of thdutivevo
BSS that are able to separate out the signals on-line, e.g. [31, 32].

1.2. Single-microphone denoising algorithms

After the BSS separation, single microphone speech enhancement medmolois
used. Since their efficiency depends on SIR, it is better to use them &terIB this
work logatom articulation index processed by four denoising algorithms3@3sep-
arately was measured. These algorithms take into account additive noigenéral,
a recorded noisy signal model can be expressed as follows:

y(t) = (t)+d(t), (4)

wherey(t) is a noisy speech signal, composed of the speech sigheand noisei(t).
Single microphone speech enhancement is a statistical estimation problensjoéé&oé
signal, [z(¢)], from the noisy speech signaly(ft)]. The algorithms used in this study
work in the frequency domain, whet¥,(f;) andY;(fx) are the Fourier coefficients
of the speech signal and noisy speech, respectively, at time frame frequencyfy.
These conventional speech enhancement methods are based on fiftersignal with
a gain function [36]:

Ay (fk:)‘

|Gt (fk:)’ = ma (5)

Where‘flt (fx)| is an estimate of the speech amplitude &¥d fi)| is the observed

amplitude in a given frameat frequencyfy. R

In the spectral subtraction algorithm byoBL [33], the A, (f;) estimator is ob-
tained by subtracting an estimate of the noise spectrum from the noisy speech
trum. Spectral information required to describe the noise spectrum is othtaore
the signal measured during nonspeech activity. The estimation errorrisctaat in
Boll's algorithm by means of several techniques. The first is a magnituelaging;
this method exploits a symmetric distribution of noise distortion, however, it brings
the risk of temporal smearing. The second step of minimizing noise errortifaac
tion. When the spectral magnitude of the noisy signal is less than the avevage
spectral magnitude then the output is set to zero. The advantage is thdlooise-
duction. However, there is a risk of speech and noise frames to bedlobneis the
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logatom articulation index may decrease in this technique. After these stapsighe
still residual noise which has a magnitude between zero and the maximum vade me
sured during nonspeech activity. The audible effects of the resichisé rtan be re-
duced by taking advantage of its frame-to-frame randomness, thus iecamppressed

by replacing its current value with its minimum value chosen from the adjacmmniek
analysed.

It should be noted that the short-time power spectrum of white noise still gispla
peaks and valleys. Frequency locations of these peaks and vallaghdoem and they
vary in frequency and amplitude from frame to frame. When the smoothed &stima
is subtracted from the noise, all spectral peaks are shifted down whigyvare set
to zero. Thus after such a subtraction the noise components still remagmprébese
components are narrower and perceived as time varying tones aralladtice musical
noise. BEROUTI[34] proposed a modified version of spectral subtraction. He devélope
a spectral flooring technique to reduce musical noise, which can belEsby the
following equation [34]:

D (fi) = Vs (fe)* = A (fu)I?

{D(fk) it D(fi)> BN ©)

A(fr)? =
U"=1 5 A(fo)?  otherwise.

D(fx) is the difference between the noise and the noisy sighalf:)|? and |A(fx)[?

are the noisy speech and noise power spectra, respectively. Afseresiimate subtrac-
tion, the filling with the noise spectrum is made. The spectral componeris$ ff) are
prevented from descending below the lower bgnd /). With the use of this technique

the valleys between peaks are not as deep as for thgdcase This procedure reduces
spectral excursions.

In the third speech enhancement algorithm (MMSE STSA — minimum mean square
error short time spectral amplitude [35]), the normal distribution probabififyoarier
expansion coefficients of speech signal is assumed. With this assumptispettieal
amplitude estimators can be derived from noisy speech. The filtering farEtia can
be obtained from the relationship:

G = 2 @
where A, denotes the spectral amplitude estimator &pds the spectral amplitude of
the noisy speech.

Therefore, the functior -~ is defined by the equation:

SNRy;i 1 [et
EM _ ro -

Uk
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The parameters SN&priori (SNRyrio) and SNRa posteriori(SNRyesy) are defined
as:

2
SNRyrio = ’th’“)‘ €)

and )
SNRpost: W)\J})‘ (10)

In practical implementations of speech enhancement systems, these pesarete
unknown in advance as the noisy speech alone is available. It has dyamted that
the a priori SNR acts is a key parameter in the reduction of speech distortions and
musical noise. In the MMSE STSA method these unknown parameters daeaep
with estimates of the noise power spectral density. The estimate afaiori SNR is
given by:

SNRyrio = aG? (SNRyrio (1 — 1) , SNRyost (2 — 1)) SNRyost(n — 1)
+ (1 — ) P [SNRyost— 1], (11)

where P[] denotes half-wave rectification. The parametezontrols the trade-off be-
tween the noise reduction and the transient distortion introduced into thd. Sitnia

is adecision-directeaestimator since it is updated on the basis of a previous amplitude
estimate.

SCALART and FLHO [36] investigated experimentally the estimate and true values
of these parameters for sinusoidal tone with additive noise. They shinatthea pos-
teriori SNR estimate exhibits large standard deviation. They proposed to include the
priori concept in the classical speech enhancement schemes (like Wieeretjakpub-
traction or maximum likelihood. This can be done by considedi{@®NRyost( f1)} =
14 SNRyrio( fx)- The fourth algorithm used in the current study is the Wiener filter with
thea priori SNR derived from the decision directed method concept.

Single microphone denoising methods applied in this study differ in the statistical
models of speech and enhanced speech distortion measure. Evaluatioesecalgo-
rithms by logatom articulation index measurements can show how denoisinglaigor
used after BSS could be useful in future application in hearing aids.

2. Aim

The main purpose of this work was to assess the logatom articulation index im-
provement after using the convolutive BSS procedure combined with smigle-
phone denoising algorithms applied to the signal after BSS. Speech sigralswtially
recorded in different noisy conditions after which BSS was applied\Né&kt, the signal
after BSS characterised by a higher SNR was additionally transformeddbya# the
above described denoising algorithms [33—36] separately. Theréfierefficiency of
BSS only and BSS with each of the single microphone denoising algorithmsssqat
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by means of logatom articulation index was estimated and compared. It shoald-b
phasized that only additive sources were considered. The refleftionsurfaces and
background noise were neglible as recordings were carried out ineaiaic chamber.
The efficiency of the combined algorithms (i.e. BSS and BSS with denoising algo
rithms) was assessed using two different spatial configurations. Tipegaiof using
different spatial configurations was to show the efficiency of the digrere of the
speech enhancement method on the spatial localization of the target sauod and
disturbing sound sources.

3. Stimuli

3.1. Recordings

The Polish nonsense word list (logatoms) [37—39] was used as spe&aiiainahe
logatoms were initially recorded in an anechoic chamber in the presence kingnas
disturbing sound sources. The background noise and reverbenaiemneglible. Two
spatial configurations shown in Fig. 1 and Fig. 2 were used. The tgogeth source
was always placed in front of the microphone array of four unidireali®dKG 1000S
microphones. The distance between the microphones was 8 cm.

In the first spatial configuration there were two masking sources: theuo@mt
speech (azimuth angle45° clockwise) and music (azimuth anglé®). The speech that
was used as a masker signal was uttered while reading a popular bogkdfessional
male lector. This signal was processed in order to remove pauses. Emtbnfiowas
mixed with different parts of concurrent speech. In the second soghare was a third
masking source generating white noise (azimuth angig5°). The level of concurrent
speech was 68 dB SPL, music — 65 dB SPL and white noise 65 dB SPL. Tt tar
signal level (TSL) was changed between 59 and 70 dB SPL.

concurrent
speech
logatoms

68 dB SPL
¥ 3
4.5m
3m
IR music
distance between
microphones: 0.08 m TTUT T T

. 3m .
b 65 dB SPL

Fig. 1. Spatial configuration of sources with two maskers.
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concurrent
@ speech logatoms
68 dB SPL &

A
4.5m
3m
v music
distance between
microphones: 0.08 m TOUTUT
65 dB SPL

3m

white &
noise 65 dB SPL

Fig. 2. Spatial configuration of sources with three maskers.

Target speech and masking signals were played using CD playerd éxceghite
noise that was generated by a PC. The sounds were amplified using two ens (#io-
neer A-505R) while the target speech was amplified using a Sony STR®dMplifier.
Then, the signals were delivered to three-way loudspeakers TonsiliZ@ne for each
signal) placed in the anechoic chamber.

All signals were recorded through the array of four microphones AKRGOS and
preamplified using a Soundcraft M8 console. Next, the signals were fégb tdigital
recorder (Fostex D824) and stored on the hard drive at a samplingfré4d.00 Hz.

3.2. Signal transformations

The signals recorded were processed by ¢bavbssalgorithm by RRRA and
SPENCE[1] implemented in MATLAB by HARMELING [28]. The length of the FFT was
set to 512 samples. The length of the filter in the time domain was 128 samples. Five
matrices were diagonalized to calculate the separation filters. The maximummeimbe
algorithmic iterations was set to 1000 and the learning rate was 1.0. Theseqiars
were chosen on the basis of the results obtained by the authors of thighalgand re-
sults of an earlier study by &CINskI [29]. Thus they seem to be optimal as they cover
the delays between consecutive microphones. In terms of beamforminggftagéons
in both methods, i.e. beamforming and BSS are the same, but the way oftsspara
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is different) small values of the filter length might be insufficient to createpimal
(sharp) spatial filter thus the separation is poor. In contrast very High length in-
creases computational time and does not lead to better separation.

Next, the denoising algorithms were used to additionally enhance the beat sign
selected after BSS in the separation stage. It must be emphasized, tleabatpht of
the BSS procedure four signals were obtained as four microphonesusted. Each of
these signals was the best estimate of the signals produced by separeds.sbe best
target signal selected for the denoising procedure was determined thaseibjective
impression of the experimenter. It is worth mentioning that BSS markedly isedgae
SIR, thus, it was easier for the denoising algorithm to subtract the nase diferent
denosing algorithms were applied to the best target signal after BSSatdpaThe
time window in each algorithm was chosen as suggested by the author of theniemple
tations to 25 ms with 40% overlapping.

3.3. Logatom articulation index evaluation

The enhanced speech was presented in a double-walled, acoustidatlydszham-
ber to normally hearing subjects. The signals stored on the hard driefeeto the
TDT-RP2 (Tucker-Davis Technologies, System 3) processor amdaimplified in the
headphone buffer, TDT-HB7, to the overall level of 75 dB SPL at timepgnic mem-
brane. Next, the signals were delivered to the Sennheiser HDA58(pheaes and
presented diotically to the subjects. All the recordings and presentatiaescagied
out using MatLab 6.5 computing language (MathWorks Inc.).

To find out the advantages of using BSS combined with the denoising algottiems
logatom articulation index of unprocessed speech, speech prodes8siS only and
that of the speech processed by a combination of BSS and one of follagadgthms:
spectral subtraction [33, 34], and statistical methods [35, 36] was meshsu

4. Subjects

Three subjects aged 23-25 with audiologically normal hearing were &skisten
to the speech signals and write down all the understood logatoms on a $peuialn
all figures presented below the subjects are depicted as JK (the alwtSaahd AK.
All subjects were instructed and took part in a short training sessiomu{@bmours) to
be familiarized with the task.

5. Results

The data gathered in this experiment, i.e. the logatom articulation index as-a func
tion of the Target Source Level (TSL) of the target signal (or altevabtisignal-to-
interference ratio, SIR of the recorded signal), for all subjects aatisdgonfiguration
with two masking sources are depicted in Fig. 3. Analogous results for gesveith
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Fig. 3. Results for spatial configuration with two masking sources.

63

66 69 60 63

130

Target Speech Level, dB SPL

—w— before BSS

- & -BSS only

-0 BSS + MMSE STSA
-~ BSS + Berouti
--4--BSS + Boll

-k BSS + Wiener-Scalart

Fig. 4. Results for spatial configuration with three masking sources.
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three masking sources are shown in Fig. 4. The filled triangles show thksrésr
the signals before the BSS was applied while the filled squares show this fter
BSS . The empty circles depict the results after BSS and denoising algosihonthe
minimum mean-square error log-spectral amplitude estimator algorftiviSE STSA
[35, 40]. The filled asterisks show the results after BSS and a denoigioigthm based
on the Wiener-Scalart idea [36, 41]. Filled diamonds and empty trianglesatedilce
results after BSS and the® L’ s [33] or BEROUTI' S et al.[34] spectral subtraction al-
gorithms respectively. For better visual clarity the symbols for each SNR sgligihtly
shifted in the figures.

5.1. Spatial configuration with two masking sources

For the spatial configuration with two masking sources the use of BSS ssttea
the logatom articulation index by about 40 percentage points for the lov&stand
by about 20 percentage points for the highest TSL. Therefore, ogesmathat the
efficiency of BSS is inversely related to SIR.

The use of a single microphone denoising algorithm, in general, additionally in-
creased the logatom articulation index. The best performance was abfainte
Wiener-Scalart algorithm. Similarly to the BSS procedure, the highest iseiager-
formance can be noticed for the lowest TSLs used in the experiment. fitierafy of
this algorithm however, was much poorer at higher TSL. For TSL = 60 @Betlvas
no difference in logatom articulation index for signal after BSS and afe® Bom-
bined with the Wiener-Scalart algorithm. Good performance can be als@ddticthe
MMSE STSA algorithm (10 percentage points increase in the logatom articulatio
dex). It is worth adding that the above mentioned algorithms are similar in &,sans
they are based on the assumption that the signals’ frequency compoaeaSdussian
distributions.

The data gathered in this experiment were analysed using a within-sub@ygsia
of variance (ANOVA) and are collected in Table 1. All factors used in tkygeement
(target speech level, speech enhancement method) were provedaddieaslly signif-
icant, F'(3, 48) = 66.63, (p < 0.05) for the target speech level a3, 48) = 127.6,
(p < 0.05) for the method respectively. The denotes Fisher’s distribution critical
value while values in semicolons correspond to degrees of freedoradimr fand error
respectively. This analysis of variance fully confirmed the above ptedeconclusion
as the BSS procedure markedly enhanced logatom articulation index. fEnaction

Table 1. Results of the analyses of variance for logatom articulation indexes otithafere and after
the BSS for the spatial configuration 1 (whdredenotes Fisher'g'-distribution).

Factor Before BSS BSS
Target speech level F(3, 48) = 66.63, (p < 0.05) | F(4, 40) = 29.36, (p < 0.001)
Speech enhancement methodF'(3, 48) = 127.6, (p < 0.05) | F(3, 40) = 7.95, (p < 0.001)
Interaction F(15, 48) = 6.78, (p < 0.05) | F(12, 40) = 2.22, (p < 0.03)
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between these two factors was also significBit5, 48) = 6.78, (p < 0.05) and it
proves that the efficiency of BSS strongly depends on SIR (or alteehathe TSL).

As can be seen from Fig. 3 denoising algorithms, on average, improvéshéitem
articulation index. However, on the basis of this figure it is difficult to asheseffi-
ciency of these algorithms as well as differences between them. Therafeeparate
analysis of variance was conducted for the data on the logatom articulatiex after
the above mentioned algorithms were used. The logatom articulation index ltata o
tained after BSS had been applied were also included in this analysis. Astedpthe
effect of the TSL was statistically significaht(4, 40) = 29.36, p < 0.001. Also the
influence of denoising algorithm was highly significant3, 40) = 7.95 (p < 0.001),
which proves that the efficiency of these algorithms is quite different. Tiedigibili-
ties obtained for the lowest TSL was the highest (76%) for the Wiendaf$adgorithm
and the lowest (52%) for Boll's algorithm which was very close to the logadiaula-
tion index after BSS only. The interaction between the algorithm and the TSlailsa
statistically significanf’(12, 40) = 2.22, (p < 0.03). This confirms that the efficiency
of these algorithms strongly depends on SIR (or TSL) of the input sighalsg the
highest for the lowest TSL. As can be seen from Fig. 3. the use of addlititenoising
algorithm brought about an increase in the logatom articulation indexethdfeone can
ignore the logatom articulation index data obtained for the raw recordedlsifhefore
any speech enhancement method was applied) the worst performartzematiced for
BSS.

This happens especially for the lowest TSLs. For the highest TSLs tlegatites
between data collected for different algorithms (including BSS) are quit# anthit is
difficult to asses the strict relation between them.

The data presented in Fig. 3 suggests that the use of additional dendigirithens
may be quite useful especially in highly noisy conditions. However, the tilieese
algorithms is SIR dependent.

The analyses of variance applied to each of the denoising algorithms and to th
logatom articulation index after the BSS, were performed to assess thecsigoéiof
the efficiency obtained for of each of the considered denoising algorithihesresults
of these analyses are shown in Table 2. Fhealues were calculated for one factor, i.e.
additional denoising method. The statistically significant improvement was eltain
for the MMSE STSA and Wiener-Scalart algorithms. In the case of spactbéraction
algorithms by Boll and Berouti, statistically significant changes were notraata

Table 2. Results of the analyses of variance that tested logatom articulation indesviempent after use
of single-microphone denoising methods for the spatial configuration 1.

Algorithm Fisher's F-distribution
Ephraim F(1, 16) = 11.27, (p < 0.05)
Berouti F(1, 16) = 1.77, (p = 0.2)
Boll F(1, 16) = 0.71, (p = 0.41)
Scalart F(1, 16) = 29.7, (p < 0.05)
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5.2. Spatial configuration with three masking sources

In the second spatial configuration (see Fig. 2) there was an additiorskinga
source generating a white noise. Therefore, one can say that the atatsignal was
added to the masking mixture. The logatom articulation index data gathered in this
case for three subjects (including averages across subjects) aentee in Fig. 4.
As can be seen from this figure the use of the BSS algorithm, in generaghirabout
a logatom articulation index improvement. The smallest improvement was 2Inperce
age points (for the lowest and the highest TSL) and the highest onebwas 28 per-
centage points (for medium TSL). The logatom articulation index improvememid$
smaller then that observed in the case of the first spatial configuratierSge 5.1).

It is also less dependent on TSL in comparison to the two masking soursesTdee
increase in logatom articulation index in most of the observed cases is a mmnoto
function of the TSL, like in the first spatial configuration. However, theatog ar-
ticulation index improvement after BSS is much smaller then in the previous case.
The use of an additional denoising algorithm after BSS brought aboutenergl,
further increase in the logatom articulation index. However, the efficieidpe al-
gorithms applied was different. The best logatom articulation index improviewss
observed for the MMSE STSA algorithm (by about 20 percentage panthé low-
est TSL). The worst performance was observed for the Wiendes$@dgorithm, for
which the logatom articulation index was decreased in comparison with BSShynly
about 10 percentage points for TSL of 65 dB). However, the logatdicubation in-
dex improvement caused by the use of any of the denoising algorithms dittpend

on TSL.

Some deterioration in speech enhancement efficiency can be also notidéer{
outi’s et al. algorithm but only for the lowest TSL while for higher TSLs the use of this
algorithm is beneficial (increase in the logatom articulation index by aboeitcéptage
points). The use of Boll's spectral subtraction method did not give a radtieechange
in logatom articulation index.

The data collected in this part of the experiment was subjected to sevpeahte
analyses of variance. In the first part of this analysis TSL and theislaganethod
were tested. This analysis showed that the TSL was a statistically signifecctot f
F(2, 36) = 163.28, (p < 0.001). For speech enhancement method factor ANOVA
showed also statistical significanég5, 36) = 24.71, (p < 0.001). However, an in-
teraction between the speech enhancement method and TSL was not digtitea
nificant £'(10, 36) = 1.67, (p = 0.13), contrary to the earlier considered case with
two masking sources. The results of this analysis fully confirmed that T8lthende-
noising method markedly increased the logatom articulation index. Thedésralso
confirmed that the logatom articulation index improvement was nearly indepenél
TSL as well.

It can be seen from the data presented in Fig. 4 that the majority of the ohenois
algorithms brought about a logatom articulation index improvement. Howewehe
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basis of the data presented, it is very difficult to asses the efficiencyedlgforithms
applied. Therefore, several analyses of variance were perfooméide logatom artic-
ulation index results obtained after BSS and after BSS postprocesseihbgach of

the single-microphone denoising algorithms with the factors being TSL ancttimsd

ing method. The results of ANOVA test of significance of the denoising mefidactdr
(excluding interactions and significance of TSL factor) are present&alile 3. As can

be seen in the case of one denoising method (namely MMSE STSA) the logatom a
ticulation index was significantly different relative to that obtained aftefyépgp BSS

only.

Table 3. Results of the analyses of variance that tested logatom articulation indesviempent after use
of single-microphone denoising methods for the spatial configuration 2.

Algorithm Fisher's F-distribution
Ephraim F(1, 12) = 4.5, (p < 0.05)
Berouti F(1, 12) = 0.88, (p = 0.36)
Boll F(1, 12) = 0.24, (p = 0.63)
Scalart F(1, 12) = 4.51, (p < 0.06)

The data collected in this part of the study (three disturbing sources)eshowch
less improvement in the logatom articulation index than in the first spatial coafign
(2 interfering noises). The data showed that although BSS can sepatdke number
of sources equal to the number of microphones, it is more effective thleemumber of
separated sources is lower then the number of sensors.

5.3. Discusion

The results of the experiments have shown that the BSS algorithm is higbtyiedf
in subjective logatom articulation index improvement. The improvement reasiess
about fifty percentage points in the logatom articulation index. HoweveB 8 effi-
ciency strongly depends on several parameters. First of all, asstedga this paper,
when the number of sensors (microphones) exceeds the number oésdhbe effi-
ciency is much higher. In the case when four sensors were used ttiereffi of BSS
was higher for three sound sources than for four sound sourbesdifference in the
logatom articulation index between two disturbing sources and three disiginmces
could be caused by different numbers of separation filter coefficiamtbe scenario
with two masking sources there are 16 filters to estimate while in the case of tteee in
ferers there are 12 filters only. Moreover, the permutation problem isréassolve for
a smaller number of sources. The results reveal also one very impatdatd of the
BSS procedure. Namely, when four sensors were used with thred sources a statis-
tically significant improvement in the effectiveness of BSS was obsenoreti¢ lowest
TSLs. However, when four sound sources were used the effaeggedid not seem to
depend on TSL.
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It is also worth adding that in the case of three sound sources the twaobdistas
were concurrent speech signals. The third disturbing signal (4 s®case) was white
noise. Significantly smaller effectiveness of BSS in the latter case is dyodminected
not only with the next disturbing sound source but also with the nature wéwbise.
White noise is a stationary signal while concurrent speech signals astationary
ones. Speech signals are characterized by marked changes in their denplitielope
whose spectral maximum coincides with 4 Hz. The spectrum of the amplituétoprv
of white noise is quite flat and does not show a prominent maximum. As the rtite of
amplitude fluctuation of speech signal is much smaller and the fluctuations afe muc
greater one can expect that the subjects’ performance can be mairkiaiyced by
the so-called deep-listening mechanism. When white noise is added to theidgpturb
sounds the deep listening does not occur nearly at all yielding a much siogtgéom
articulation index improvement (see Fig. 5).

o
(]

Amplitude

0.1

Amplitude

Time, s

Fig. 5. Comparison of the time envelopes of the signals after BSS for thest@®NR and for two (upper
panel) and three (lower panel) interferences.

When logatoms are presented in silence, the highest logatom articulatiordioelex
not reach 100%, and it is usually close to 95% [37]. In our experimenlotgegoms
were presented against a background of disturbing sounds and ttestiggatom ar-
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ticulation index for the lowest TSL reached about 75%. Thus, one gathhaathe BSS
algorithm failed to fully restore the speech signal. However, it is necgssdeep in
mind, that BSS is a statistical procedure that gives estimates of signals insteayinal
source signals. The fifty percentage points in logatom articulation index vaprent
observed is probably the highest one that can be obtained for spgealspresented
against background disturbances. This efficiency seems to be \@nygimg for future
development of hearing aids.

The results have shown that the use of the single microphone denoisingdsietho
after BSS was applied can additionally increase the logatom articulation ikidex.
ever, this additional increment was much smaller than that obtained by me&&Sof
only. Moreover, the increment strongly depended on the type of degaggorithm
and on TSL. Similarly to the BSS procedure, the highest efficiency of tlggessensor
denoising algorithm was observed for the lowest TSLs. The best regetiesobtained
for the MMSE STSA algorithm for both three and four sound sources. high effi-
ciency of this algorithm can be connected withaapriori SNR estimation or Gaussian
distribution of speech model and log-MMSE criterion.

The smallest logatom articulation index improvement (sometimes even logatom
articulation index deterioration) was observed for classical spectbdfasiion algo-
rithms. In real speech, fricatives are usually low energy and breoabbaunds. There-
fore, spectral subtraction methods may treat these sounds as noige @rsequence,
subtract them. Missing fricatives can cause logatom articulation indexadaton.
Even though some single-sensor denoising procedures did not givegamm ar-
ticulation index improvement, it is worth including one of the single denoising me-
thods in the final speech enhancement stage (after the multimicrophonisidgmoe-
thods).

As follows from the results, BSS can give a significant logatom articulatidexm-
crement. In the spatial configuration with two masking sources this increrapetds
on SIR (or TSL). In the case with 2 masking sources BSS was the moseeffior
the lowest TSL. However, in the spatial configuration with three maskingcesuhe
benefits of using BSS were TSL independent. The difference in the imgattcula-
tion index between the results obtained for two disturbing sources anddistaebing
sources could be attributed to different numbers of separation filteffsooemts: 16 fil-
ters in two disturbing sources and 12 in the case of three interfererseavien, the
permutation problem is easier to solve for a smaller number of sources.

There were some cases in which denoising algorithms decreased logdiom ar
ulation index. Figure 6 illustrates the influence of the Wiener-Scalart algorgh
speech signal. The spectrograms are obtained from speech redaoisfeatial config-
uration with three masking sources. In the upper spectrogram, the case signal
was processed only by the BSS algorithm is presented. The lower gractraepicts
speech after BSS and the use of the Wiener-Scalart algorithm. It caotde that the
denoising algorithm distorts the signal (see circles in the Fig. 6). Thesetidiat(in-
hibition of consonants) can cause logatom articulation index decrement.
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Fig. 6. Spectrograms comparison: upper spectrogram is derioeddpeech recorded in spatial configu-

ration with three masking sources and processed with BSS algorithm rlspgetrogram depicts speech

after BSS and the use of the Wiener-Scalart algorithm. Degraded (letiwsing algorithm) part of the
signal is marked by white circles.

6. Conclusions

The above discussed results of our experiments lead to the following sorsu

e The use of the BSS procedure gives a marked improvement in the subjectiv
logatom articulation index, reaching 50 percentage points.

e The efficiency of BSS seems to be much higher when the number of sound
sources is lower than the number of sensors.

e BSS is more effective for lower TSLs or alternatively for lower SIRS.

e Some of the single sensor denoising algorithms applied at the postprocessing
stage (i. e. after BSS) give an additional improvement in the logatom articula-
tion index which is much smaller than that obtained with the use of BSS only.

e Denoising algorithms based on the spectral subtraction did not improve tteing
articulation index, even though the optimal parameters were used.
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e Although the BSS is a relatively new idea, many different approacheshe so
the problem of separating mixed signals have been introduced. Moydbeer
problem of hearing loss becomes more and more commonplace. Thuschesea
in this area should be continued using new algorithms and solutions befgre the
will be used in hearing aids.
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