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This paper presents the main issues related to music information retfié\) omain.
MIR is a multi-discipline area. Within this domain, there exists a variety of egugdres to mu-
sical instrument recognition, musical phrase classification, melodgifitagion (e.g. query-
by-humming systems), rhythm retrieval, high-level-based music ratrgich as looking for
emotions in music or differences in expressiveness, music seasel ba listeners’ prefer-
ences, etc. The key-issue lies, however, in the parameterization oki@ahavent. In this
paper some aspects related to MIR are shortly reviewed in the conteassibfe and current
applications to this domain.
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1. Introduction

The aim of this study is to present key issues of Music Information Retr{®iiat)
systems [5, 12], now so very rapidly developing, that they may be réoedjas a sep-
arate branch of music informatics [16]. Traditional databases store téxtoamation
about music. The searched information may be returned in the form ofrtest @ file
containing music, and the database may be queried about performers aftitlesical
compositions. As additional services, such databases offer listeninghie purchase
of the composition.

Digital music databases storing musical signals in a digital form can be easily
searched through. Such databases are vast Internet reposifoniessio information
(e.g. MDL — Music Digital Libraries, Music Business Directories MBD, ortdizited
Multimedia Databases). They store multimedia content (e.g. about music iregz)rd
and can be queried using non-textual criteria (e.g. through presentiegeof record-
ing). A simplistic, intuitive approach to multimedia content search could be atdirec
comparison of e.g. WAV files with recordings stored in databases. Thdwdistage
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of such solution is, however, a huge size of a database which inflictéepnebn data
searching (as binary comparison of files must be performed), dilemmasRwithHts,
and generally has a very low efficiency. Thus, this approach is nasieatiée one. The
solution is parameterization, which can be shortly described as a prdcasalyzing
the recording in order to remove unnecessary information [11, 14]pideess intends
to retrieve only the information (parameters) that uniquely identifies a geeord-
ing. In such case, a database can store only parameters (not rgsrdine recordings
must also be parameterized, so that searching can be done throughidieigithe set
of parameters that best match the search criteria. The MBD databasesrdiometa-
data which are: textual information (e.g. titles, albums, year of productiosicgenre,
etc.), parameters that describe recordings, some additional info suBhrigéts, and
the reference to the recording to enable replaying or buying it. Soumddiegs are
often stored on a separate sever, outside the searched MBD database.

The diversity of musical trends and genres, uncommon instruments assaak a
variety of performers and their compositions implies the multiplicity of music recog-
nition systems [7, 17, 27]. Nowadays systems can recognize soundsyaegl and
instruments, distinguish musical phrases or audio files, and classify mgsioeds.
The most common search tool for an Internet user is a “query-by-hunivtirgling”
or “query-by-example” mechanism. However, nowadays databafsot only these
traditional methods. A more and more popular network versions of MIR s\stese
the technology based on so-called fingerprinting. Such databasesrareilingly im-
plemented by commercial companies eShazamSuch services can accept an on-line
stream of data that is then used to find a matching piece of music (multimedia ob-
ject).

The diversity of MIR systems target applications spawns numerous medlfipds
rameterization and classification. A common methodology in sound recognitioexs to
amine pitch and timbre (accomplished through the detection of fundamentag¢freg),
for this purpose multimedia databases are built up [23]. Musical phrasgmion is
very often performed based on melodic and rhythmic representations bfibiemu-
sical material, or using metadata. In the second case Optical Mark Recod@titR)
is now more widely and frequently used. Another popular technigue is Dyn@ime
Warping (DTW) which allows comparison of two music sounds independertiw f
their rhythmic pattern and length. A separate, and very complex domain ofahirsic
formation search is automatic recognition of melodic line in polyphonic audio,hwhic
addresses the problem of separation of musical sources/instrumertsethabustically
or synthetically mixed [12]. Other research studies involve searchingytimmical pat-
terns in a melody line [25], try to recognize composer/epoch of the giveicraxserpt
or fingerprinting of a music performer [2] or simply to recognize a classnahatru-
ment [15].

The process of parameterization involves low-level spectral, time or wigvate-
meters as well as high-level parameters of the MPEG 7 standard [4, i8prbblem
of parameterization is not limited to selection of the most significant featurgsIfiL2
searching huge databases, a key issue is to optimize the representatioparfaimeter
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set in order to minimize the complexity of algorithmic computations. A very significant
factor is also the type of the classifier used.

This study introduces some selected systems of musical information retrieval a
presents an example of such experiments realized in Multimedia Systems Degartme

2. Parametrization

The aim of music parameterization is to find a set of features that descriean
or a musical object [11, 13]. The process of parameterization is showiginl. In
order to make the feature extraction possible, it is necessary to properyrgcess
the analyzed signal, which often means its conversion to the digital form, €.6-ba
PCM mono file (5-44.1 kHz sampling rate). Then, the signal is segmented amhe $r
of equal length and undergoes the operation of windowing. This prcigeigast frame
discontinuities and window leakage. Additionally, the overlapping of time frammg
be applied. Signals prepared in such a way are ready for target ¢adoslépitch ex-
traction) that extract specified features of a musical event. The figaltref parame-
terization should be a vector of uncorrelated features that representsigical signal.
Features strongly correlated should be mapped to a single parameter tcooletaattor
of features orthogonal to the musical event. Thus, after feature ggtrasome post-
processing is hecessary to minimize the feature vector (FV) size. Pastgsiog results
in the arrangement of provided information and in the reduction of compughitom-
plexity. To this end statistical methods are used, e.g., Fisher’s statistics ordaatho
features correlation assessment [11].

Input signal Uncorrelated FV

—» Pre-processing Feature extraction Post-processing —»

Fig. 1. Parameterization process.

The parameterization of musical soundgelates to two basic features of a sound,
which are pitch and timbre. Pitch is determined through the fundamental fregjuehe
methods of fundamental frequency detection have a long history of geweltt and nu-
merous methodological solutions have already been implemented in this field £3,]2

There are three basic approaches to fundamental frequency detédtiey are
based on time methods, spectral methods, or hybrid methods, i.e., spectral-time me
ods [3]. Detection proceeds accordingly to the concept illustrated in Fighd input
signal (system input) is a fragment of a musical instrument recording, Wigleutput
signal of this pre-processing block is a vector of the estimated fundanfezgakency,
on the basis of which a feature extraction is performed. Another elemde&tyre of
a sound is its timbre. Timbre is a subjective feature that enables to disceroiwdss
of the same pitch, loudness and duration (within the same acoustic condifionbkje
has such perceptual characteristics as brightness, richness,rpnests Before low-
level audio TimbralSpectral and TimbralTemporal descriptors of MPEQ gt§hdard
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were formally defined and introduced, the detection of timbre was realizedilwan var-
ious frequency domain parameters. However, to make it really competappaopriate
composition of time and time-frequency parameters should have been ugizitiora

A parameterization vector that best identifies a given musical instrumenbesan
formed by different combinations of parameters describing the featunesaned ear-
lier. The process of musical sound parameterization is a well-known pegt0¢13, 14],
thus this study focuses on the parameters that are used to describe sigsiaks.

The parameterization of audio signalddiffers in analytical approach from the pa-
rameterization of musical instruments. This fact results from a much more comple
nature of audio signals. In the case of musical signal analysis, it issegde examine
several musical lines, a vocal part and very often the accompanimeitchligplexity
causes that the adaptation of such techniques as fundamental fredeésation or pe-
riodicity assessment used in simple sounds examination becomes uselesstele
niques can only be helpful when testing short audio fragments, e.qg., irtieeton
of a solo fragment or of a single instrument. The MPEG 7 standard, or to be pne-
cise the ISO/IEC 15938 “Multimedia Content Description Interface”, is ammat@nal
standard of multimedia data description developed from December 1996 triNov
ber 2001 [4]. The standard aims at normalizing the descriptors of multimeghatsb
(MM objects. It contains a set of solutions that enable to characterize a multimedia ob-
ject of any form (graphics, sound, video clip, film). It defines, amothgoissues, the
ways of data distribution, indexing, querying, and classification. Theeusal nature
of MPEG 7 comes from the fact that the standard comprises a set of sketkserip-
tors that represent an MM characteristib®scription ScheméDS), theDescription
Definition LanguagéDDL) that defines descriptors and descriptor schemes, and some
binary methods for descriptor codingBinary format forMPEG-7 datgBiM) [10].
The DDL language is an XML Schema extension, what assures its compatikility w
other standards. The functionality of ISO/IEC 15938 can be divided iredfahow-
ing 10 groups: Systems, Description Definition Language, Visual, AudidtiMedia
Description Schemes, Reference Software, Conformance, Extrantiarse of descrip-
tors, Profiles, Schema Definition.

The elements of the MPEG 7 are shortly presented, below. They arepdessof
melody, timbre and audio signal rhythm. Apart from metadata, which are rsefiilu
to archive music, two other types of descriptors [18, 22] are used wridesan au-
dio signal; they ardow-levelandhigh-level descriptorslt is worth notifying that the
ISO/IEC 15938 standard gives only definitions of parameters that caddrithe the
content of a musical signal without specifying algorithms used to calculatevtiaes.
Low-level parameters are the basis for high-level parameters whosddalependant
on the application and on the musical feature described.

The MPEG-7 standard comprises 17 low-level parameters separatedgriaygs.
An additional, however a very useful one, is the parameter that dediteege The
MPEG-7 standard defines high-level descriptors of audio signals ksHigh-level
descriptors specify the way low-level parameters are used in spedgificamons. The
description schemes are divided into five groups [4]:
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1. Audio Signature Description Scheme- a group of low-level descriptors that
uniquely describe an audio signal. Parameters of this group are usestémsybased
on so-calledingerprints

2. Musical Instrument Timbre Description Tools — descriptors from this group
describe perceptual features of musical instrument sounds, anatayto timbre. The
MPEG 7 standard represents low-level descriptors for four clagsesigical sounds:
harmonic, coherent, sustained sounds, and non-sustained, pgr@mmds, and they
are specifically recommended for two classes such as: sustained hasoonis and
non-sustained percussion sounds. Notions such as “attack”, “beggitor “richness”
of a sound belong to this group.

3. Melody Description Tools— descriptors from this group aim at the recognition
of melodic information in monophonic recordings. They can be successpfblied
in Query-by-Hummingystems to search for compositions that match a given melodic
line.

e MelodyContour Description Scheme — a scheme that defines melody costour a
a 5-step contour in which a pitch of a given note is represented with reégard
the previous note (representing the interval difference between atljactes).
Additionally, information about rhythm is stored as the number of the nearest
whole beat of each note.

e MelodySequence Description Scheme — a set of descriptors used toa etioee
precise information about a melody than the MelodyContour DS can prokade.
achieve this, a precise difference between pitches of a current aegliays note
is written down (e.g., in cents). It is stored along with the information on the
rhythm obtained through coding the logarithm of the ratio between the start times
of adjacent notes. Optionally, depending on the application, a serieppbgu
descriptors such as lyrics, key, meter, and starting note, may be used.

4. General Sound Recognition and Indexing Description Tools a group of de-

scriptors that serve to automatically index, segment, categorize, anchieesgunds:

e SoundModel Description Scheme — a model that uses low-level Specisid B
group descriptors. A series of states that comprise a statistical modekisdhaut
based on low-level parameters, most commonly hidden Markov or Gausgenixtu
model is used to achieve that.

e SoundClassificationModel Description Scheme — a scheme that uses tife set
SoundModemodels to create a multi-classifier that categorizes segments of au-
dio signals according to conditions defined by the classification scheme. This
results in recognition of sounds classes, such as speech and musinaen@ver
categories such as male, female, or particular instrument class. Othévl@oss
applications include genre classification and voice recognition.

e SoundModelStatePath — a descriptor that collects series of indexes inglicatin
states of a SoundModel model for a given sound. The descriptor in@seo
description of a sound segment, and along with other models, it may be used fo
fast comparison of other models.
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e SoundModelStateHistogram — a descriptor containing a normalized histagram

SoundModestates for a given segment of a sound. State histograms are used to
compare audio signal segments.

5. Spoken Content Description Tools- a group formed from parameters related to
speech recognition, and defined by two classes:
e SpokenContentLattice Description Scheme — a class containing indexedesf no

connected by words or phonemes, in which each connection indicateiawo
phoneme defined in the vocabulary of the automatic speech recognitiomsyste
The nodes are defined by their location on the time axis (timeOffset) with regard
to the lattice structure. This structure allows defining the character of pobnu
ation through the use of various phonetic elements combinations betwees word
and phonemes.

Spoken Content Header — a class that holds the number of componetsyuse
SpokenContentLattice D& contains two basic descriptorgordLexiconand
PhonelLexiconThe first descriptor is an indexed list of characters describing the
set of words of a recognizer. The second, contains the lattice list thag i®th
source of phonetic components of the automatic speech recognition sygtem. O
tionally, ConfusioninfaandSpeakerinfalescriptors are used. They define the lin-
guistic error matrix for each position #fhoneLexicorand such biometric char-
acteristics of the speaker as his/her vocabulary, language, speabitg and
personal data.

Concise comparison of audio features extraction tools is presented inITTEbig
As stated by Lartillot, this table shows existing classification frameworks rezalgle
in the Internet.

Table 1. Comparison of feature extraction tools [17].

System | Features | Interface Output Batch L Dependency D|str|buFed Memory
process control computing | management
Marsyas dozen scripting export es manual es real time
Y low + beats language P y y
. . ~ 20 low
jAudio + beats GUI export yes auto yes yes
CLAM |~ 12 spectr|  visual pre-visual. yes manual " real time
+ tonal program.| & export
ChucK dozen program. | -\ merical yes manual yes real time
low-level | language
MoK dozen | D2Kvisuall graphic s manual s s
2 low-level | program.| & export y y y
~ 30 low graphic
Psysounc & high GUI & export yes
IPEM 17 low Matlab graphic
toolbox & high functions | & numerical
MA Matlab numerical
8 .
toolbox functions values
MIRtool-| ~ 40 low adaptive graphic s manual Future using s
box & high syntax & export Y DCtb y
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3. Selected algorithms and tools for music classification

Automatic musical sound classification, similarly as many other categorizations, is
based on specifying several groups described by characteristiGpiess (objective or
subjective ones). However, classification has special meaning in autoewdignition
of music. Recognized objects may be: instruments, genres, particular sitiops or
sounds. The classification criteria may, depending on the type of reeaboiiects, be
timbre of the instrument, rhythm, pace, or spectral content characteyzagoopriate
parameters. The course of classification, however, does not dapendriteria or clas-
sified objects, and it is in most cases identical for a given algorithm. Hawingated
an uncorrelated vector of features in the process of parameterizatierpassible to
classify sounds using any algorithm. The most simple are such classifimigiasum-
distance methods based on various metrics, discriminant analysis or Bagsifiers.
Advanced methods of classification are neural networks, decision tyemstic algo-
rithms [8], SVM — Support Vector Machine [1] (and a special case of it4empntation,
called: Sequential Minimal Optimization (SMO) [6], Hidden Markov Model augh
Sets [19]. Support Vector Machine is a supervised learning algorithvelajged over
the past decade byA¥NIK [26] and later by others. The SVM algorithm performes
by mapping the given training set into a possibly high-dimensional feataeespnd
attempting to locate in that space a plane that separates the positive frongétieee
examples. Having found such a plane, the SVM can then predict the daseffi of
an unlabeled example by mapping it into the feature space and asking on sidéch
of the separating plane the example lies [9]. SMO algorithm is Platt’s sequenitial
mal optimization algorithm for training a support vector classifier. This implententa
globally replaces all missing values and transforms nominal attributes into/lnas.
The Rough Set-based methods do not require a vector of uncorredsttads. Due
to the fact that most of these methods are frequently used to solve diffaxaiems
in acoustics, they have only been mentioned here [16]. However, eeResy found
implementation of such algorithms in WEKA classification system [7].

4. Experiments

One of the problems being solved in Multimedia Systems Department of the
Gdansk University of Technology is the classification of music genres. Tlamex
ple of such classification was illustrated with selected algorithms from WEKA sys
tem [7]. For this purpose a database of complete pieces of music (in mp3tfovasm
created. The files were collected from two Internet portals that ofésr fnusic, i.e.,
http://mwww.mp3.wp.pl/strefa and http://download.music.com. The collection comprises
15 styles of musiblues, britpop, classical orchestral, countdance, folk, grunge, hip-
hop, jazz, metal, new age, punk, R&B (rhythm-and-bluests reggae, techndzach
style is represented by 16 pieces. The database holds 240 pieces ofmto&it They
belong to various artists and occupy 1.2 GB of disk storage.
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The experiments began with feature extraction tasks, i.e. the feature wexstate-
fined and examined to specify which of the features are adequate to lasssic
styles. As the MPEG 7 parameters are now broadly used in research ssificéa
tion of musical objects, their definitions will not be mentioned here. Table 2epts
the list of parameters contained in the feature vector and their interpret@tiemext
step was to verify the feature vector with Fisher’s statistic¥ [(L1]. The concept of

Table 2. Content of the feature vector.

No.

Parameter

Meaning

AudioPower mean (Apm)

average loudness of fragment

AudioPower std dev.
(Apstdev)

describes the temporally-smoothed instantane
power, dynamics, parameter does not depend
tempo changes

3-36

AudioSpectrumEnvelope
(ASE)

describes the short-term power spectrum of an au
signal and timbre, analysis in 1/3 octave bands

37-60

AudioSpectrumFlatness (ASF

ous
on

dio

describes the flatness properties of the spectrum of

an audio signal for each of a number of frequern
bands. When this vector indicates a high deviat
from a flat spectral shape for a given band, it m
signal the presence of tonal components, analysi
1/3 octave bands for timbre differentiating

61

AudioSpectrumCentroid (ASC

an analogue to the SpectralCentroid, but defined
a logarithmic frequency scale, helps distinguishi

cy
on
ay
sin

on
ng

between pure-tone and noise-like sounds, differgn-

tiating vocal and instrumental pieces

62

AudioSpectrumSpread (ASS)

indicates whether the power spectrum is centfed

near the spectral centroid, or spread out over
spectrum variety of instruments and vocals, use
for differentiating variety of instruments and voca|

63

Spectral Centroid (SC)

the
ful
Is

timbre of spectrum correlated with sound sharpness

64

SpectralFlux (SF)

a measure of short-time changes of the spectrum;

separation of speech from music

65

TemporalCentroid (TC)

represents gravity center of time envelope, char

ac-

terizes the signal envelope, representing where in

time the energy of a signal is focused. It may dist
guish between a decaying piano note and a sustal

n_
ned

instrument note, when the lengths and the attacks of

the two notes are identical.

66

ZeroCrossingRate (ZCR)

represents the rate at which zero crossings oc
a simple measure of the frequency content of a ¢
nal, also allows for estimating noisiness of piece

67, 68

RollOff85 (Roll85), RollOff95

measure of spectral shape; frequency for which
energy of spectrum reaches 85%/95% in total

cur;
5ig-

the
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I statistics is to examine in pairs each representative of a class with evemesara
ter. The higher the absolute val(ié| of the statistics is, the easier becomes separation
of the two classes using the tested paraméfestatistics is defined by the following
formula [11]:

X-Y
V= : 1)
\/SE/n+ 53 /m
where
X, Y are mean parameter values:
R 1 «—
X=rood X V=) Vi )
=1 i=1
S2, 52 are variance estimators of respective random variables:
1 < 1
2 _ V)2 2 _ = . - V)2
Sl—n_l-zl(xz X2 8= ;m Y) ()
1= 1=

andn, m are cardinality of population&” andY” accordingly.

The analysis off' statistics enabled to determine the best and the worst pairs of
genres in terms of their recognitioR. statistics also indicated the most discriminatory
parameters of the vector. The example of the analysis results (the paestaasbe
recognized with respect to maximum Fisher values) for samples of 3 seaomdhown
in Table 3.

Table 3. Best discernible pairs (in terms of maximufvalues for 3 s samples).

Genre pairs |Fvalue Par. |F valug Par. |Fvalug Par. |F valug Par. |F value Par.
Classical — punk| 28.04 |ASF16 24.75 |ASF15 23.42 |ASF14 22.80 |ASF19 21.80 |ASF20
classical — hip-hop 26.32 |Roll95| 23.19 |Roll85| 21.25| SC | 18.79 |ASF16 18.71 |ASF20
classical — reggag 24.51 |Roll95| 24.00 |Roll85| 20.76| SC | 16.15 |ASF20 14.81 |ASF16
classical — grunge 24.51 |Roll95| 23.03 |RolI85| 20.16| SC | 18.78 |ASF16| 17.73 |ASF15
classical — dance 22.04 |Roll95| 18.44 |Roll85| 16.83 |ASE33 16.56 |ASF16| 16.51 |ASF14
classical — metal 23.90 |[ASF16| 23.08 |ASF15 21.55|ASF14 20.30 |Roll85| 20.06 |[ASF20
classical R&B | 23.14 |Roll95| 21.71 |Roll85| 18.54| SC | 16.96 |ASE33 16.45 |ASF20
classical —techno 22.52 |[ASF16 22.44 |ASF20 21.21 |ASF15/ 21.21 |ASF19| 20.05 |ASE34|
country —punk | 21.64 |ASF14 21.34 |ASF16 21.07 |ASF12 20.10 |ASF11] 20.05 |ASF18

punk —reggae | 21.36 |ASF16 19.75 |ASF18 19.06 |ASF17| 17.14 |ASF19 16.81 | Apm

punk -R&B 20.87 | Apm | 17.46 |ASF18 16.45|ASE25 16.41 |ASF16 15.21 |ASF19
blues —punk | 20.39 |ASF16 16.17 |ASF11] 15.91|ASF18 15.29 |ASF15/ 15.23 |ASF14

Definitely, the best discriminators of music styles are the AudioSpectrumFatnes
(ASF), SpectralCentroid (SC), and the RollOff descriptors. The pasmthat turned



492 B. KOSTEK, £. KANIA

to be of no value for classification of musical genres in this study are Spédtrx
(SF) and TemporalCentroid (TC). AudioSpectrumCentroid (ASC) anddSmkctrum-
Spread (ASS) also showed little significance. The easiest to tell apaet clessic
and punk music. It was rather difficult to differentiate betwé&%B, blues jazzand
reggae

Classification of genres was carried out on 2400 three-second sa(iplésag-
ments of each piece making 160 pieces of the same genre in total). Thra@eckss
from WEKA were used: NN Nearest Neighbgr £-NN (k-Nearest Neighbgr and
SMO PUK (Sequential Minimal Optimization, PUKerne). For supporting vectors
(SVM) algorithms, the most important optimization decision is to properly choase th
kernel function. From several kernel functions implemented in the WEyStesn, the
best results were obtained for the PUK kernel, the so-called Pearsfum¢tion-based
universal kernel [6].

The classification was performed within the 10-fold cross-validation sch&he
set of data was partitioned into 10 subsamples. Of these 10 subsamplesbsample
was retained as the validation data, and the remaining 9 subsamples weegs tiseio-
ing data. The set of 2400 samples, each having duration time of 3 seewntla,non-
reduced vector of the following features: [Apm, Apstdev, ASEL,...EB& ASF1,...,
ASF24, ASC, ASS, SC, SF, TC, ZCR, RollOff85, RollOff95] was emptbyre clas-
sification tests. Test results are presented in Tables 4-6. In the case iehdarest

Table 4. Classification efficiency [%] for the NN algorithm based on various metrics

Music genre| Euclidean metric [%]| Manhattan metric [%]| Chebyshev metric [%]
Blues 78.1 83.8 68.1
Britpop 77.5 80.6 55.6
Classical 67.5 71.9 53.1
Country 74.4 77.5 60
Dance 73.8 75 58.1
Folk 91.3 87.5 76.9
Grunge 86.9 88.1 62.5
Hip-hop 88.1 88.1 76.9
Jazz 65.6 70.6 46.9
Metal 88.8 91.3 75
New age 78.1 79.4 57.5
Punk 95 96.3 85.6
Reggae 70.6 73.8 58.1
R&B 71.9 75.6 51.3
Techno 85 84.4 69.4
Overall 79.5 81.58 63.67
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Table 5. Classification efficiency [%)] for thé-NN algorithm based on metrics and the type of distance
weighting fork = 3.

Weighting Euclidean metric [%]| Manhattan metric [%] Chebyshev metric [%]
NO weighting 73.917 76.542 56.208
1/dist. 78.708 80.708 62.542
1-dist. 78.417 80.693 62.25

Table 6. Classification results [%)] for SMO PUK algorithm.

Musicgenre a | b | c | d| e | f|g|h | i]] k|l |m|n|o gfa?;;
Blues @) 106| 13| 7 1/5|2(2|3|0j1|]0|1]2)|1 66.3
Britpop () | 7 [108| 1 3/2(10/0|9|4|0|3|2]|3]|2 67.5
Classical¢)| 5 | 2 |135 0| 2 0oj2|0(6|1|0|0|O0 84.4
Country@d) | 5| 1| 8 |114] 1 | 9 413|]0[3|0|3|7]0 71.3
Dance €) 41213 111 2 4, 2]0|3|]0|5|6]|11 69.4
Folk (f) 6| 3|4 1128/ 12| 4|0|0|0]|3|4]1 80
Grunge@) | 3 | 1| 1 1135/ 1|3 |5|1|0|0]|3]|1 84.4
Hip-hoph)| 4 | 1| 0| 2|2 | 0| 1|2137/1|0|0]0|3|8]|1 85.6
Jazz () 1/0|0|13|12|3|9|0|1971 0| 6| 0| 3]3|3 60.6
Metal () o|2|7|0]0]|0]1 1137/ 5|7 |0|0|O0 85.6
Newagek)| 1 | 0 |16 6 | 3 | 2 | O 51011510 | 4| 0| 7 71.9
Punk () 2/0(0|0|0O|21|4/0|0|10|{0|143 0|0]O 89.4
R&B (m) 11/ 00| 9| 2|0]0|17] 3 1] 0 (10510 2 65.6
Reggaerf) (11| 0 | 1|9 | 2| 2|1 4 0 16 |100| 5 62.5
Techno¢) | 0| 1| 4]0 (11|02 3 2 0| O |135] 84.4

neighbor algorithm, the best results were achieved for the Manhattan nietoan
also under the notion of taxicab metric. The optimum configuration ofkth& clas-
sifier is obtained when vectors are weighted with the coefficient inversefyoptional
to the distance to three neighbors (assuming the taxicab metric is used). Aneong th
three discussed classifiers chosen from the WEKA system, the distased-imethods
produce the best results in terms of efficiency and the time of calculations.

Diagonal of Table 6 (bold face numbers) shows the number of objectadiatpto
the given class, recognized correctly.

Undoubtedly, in order to best recognize music genres, the featurer gbctold be
supplemented with additional parameters. Having in mind that the objective is to in-
crease the efficiency of parameterization, several dozens of muaieahpters offered
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by theMIRToolboxof MATLAB system were explored. Fisher’s statistics — calculated
over a distinctive set of data comprising 240 musical fragments each lassegodd

— allowed initial selection of candidate features that would constitute an gt
supplement to the feature vector. Among others, these were statisticas edlcertain
mel-cepstral parameters and the distribution of sound pitches.

The examination of both Fisher’s statistics values and the results of classifica
show that, notwithstanding the size of the database, some styles are morgtddfic
recognize than others. A solution to this problem seemed to be mapping thiese sty
the same label. Thus, the experiments were repeated, with the classépay, blues
andgrungelabeledrock, the classes alanceandtechnolabeledelectronica Labels of
genres that caused greatest problems in recognitionjéizz, R&B, punk folk, reggae
andcountry) were eliminated. In the context of discussed experiments, the best results
were achieved for distance-based classifiers and support vestmtsaith polynomial
kernel functions.

5. Conclusions

The study reviews problems of the classification and search of musicalt®bje
Additionally, it presents a series of experiments with different methods sbitiea-
tion. The designed feature vector was tested in the WEKA system over thef se
2400 sound samples each 3 seconds long (1600 fragments of eveey.dgelected
classifiers — NNk-NN, support vectors method (SMO) — were optimized using pre-
sented closed set of samples. The results of the research indicatedrdmaeperd C
andSFshould be rejected. Classification carried out with the reduced vectdtagsn
80% efficiency of recognition for distance-based methods and in 70eteeitly forTC
andSFk

The process of automatic classification proved the complexity of recognitsis te
in real conditions. Efficiency of the classifiers (for tests operating diginctive frag-
ments) that oscillated around 60—-80% confirmed the implemented parameteiato be
propriate for recognition types such @aiery-by-ExampleGenre recognition, how-
ever, required class labels to be reorganized or supplemented with addgemame-
ters. Finally, an overall efficiency of 70% was achieved for musical sgdegnition
with the SMO algorithm forrock, classical, metal, new age, electroniaad hip-hop

types.
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