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Bożena KOSTEK, Łukasz KANIA
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This paper presents the main issues related to music information retrieval (MIR) domain.
MIR is a multi-discipline area. Within this domain, there exists a variety of approaches to mu-
sical instrument recognition, musical phrase classification, melody classification (e.g. query-
by-humming systems), rhythm retrieval, high-level-based music retrieval such as looking for
emotions in music or differences in expressiveness, music search based on listeners’ prefer-
ences, etc. The key-issue lies, however, in the parameterization of a musical event. In this
paper some aspects related to MIR are shortly reviewed in the context of possible and current
applications to this domain.

Keywords: music, music information retrieval, music exploration systems, multimedia data-
bases.

1. Introduction

The aim of this study is to present key issues of Music Information Retrieval(MIR)
systems [5, 12], now so very rapidly developing, that they may be recognized as a sep-
arate branch of music informatics [16]. Traditional databases store textual information
about music. The searched information may be returned in the form of text or as a file
containing music, and the database may be queried about performers or titlesof musical
compositions. As additional services, such databases offer listening to orthe purchase
of the composition.

Digital music databases storing musical signals in a digital form can be easily
searched through. Such databases are vast Internet repositories of music information
(e.g. MDL – Music Digital Libraries, Music Business Directories MBD, or distributed
Multimedia Databases). They store multimedia content (e.g. about music recordings)
and can be queried using non-textual criteria (e.g. through presenting apiece of record-
ing). A simplistic, intuitive approach to multimedia content search could be a direct
comparison of e.g. WAV files with recordings stored in databases. The disadvantage
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of such solution is, however, a huge size of a database which inflicts problems in data
searching (as binary comparison of files must be performed), dilemmas with IP rights,
and generally has a very low efficiency. Thus, this approach is not a desirable one. The
solution is parameterization, which can be shortly described as a process of analyzing
the recording in order to remove unnecessary information [11, 14]. Theprocess intends
to retrieve only the information (parameters) that uniquely identifies a given record-
ing. In such case, a database can store only parameters (not recordings). The recordings
must also be parameterized, so that searching can be done through determining the set
of parameters that best match the search criteria. The MBD databases store only meta-
data which are: textual information (e.g. titles, albums, year of production, music genre,
etc.), parameters that describe recordings, some additional info such asIP rights, and
the reference to the recording to enable replaying or buying it. Sound recordings are
often stored on a separate sever, outside the searched MBD database.

The diversity of musical trends and genres, uncommon instruments as well as the
variety of performers and their compositions implies the multiplicity of music recog-
nition systems [7, 17, 27]. Nowadays systems can recognize sounds, e.g., vocal and
instruments, distinguish musical phrases or audio files, and classify musicalgenres.
The most common search tool for an Internet user is a “query-by-humming/whistling”
or “query-by-example” mechanism. However, nowadays databases offer not only these
traditional methods. A more and more popular network versions of MIR systems use
the technology based on so-called fingerprinting. Such databases are very willingly im-
plemented by commercial companies e.g.,Shazam. Such services can accept an on-line
stream of data that is then used to find a matching piece of music (multimedia ob-
ject).

The diversity of MIR systems target applications spawns numerous methodsof pa-
rameterization and classification. A common methodology in sound recognition is toex-
amine pitch and timbre (accomplished through the detection of fundamental frequency),
for this purpose multimedia databases are built up [23]. Musical phrase recognition is
very often performed based on melodic and rhythmic representations of theMIDI mu-
sical material, or using metadata. In the second case Optical Mark Recognition (OMR)
is now more widely and frequently used. Another popular technique is Dynamic Time
Warping (DTW) which allows comparison of two music sounds independently from
their rhythmic pattern and length. A separate, and very complex domain of musical in-
formation search is automatic recognition of melodic line in polyphonic audio, which
addresses the problem of separation of musical sources/instruments thatare acoustically
or synthetically mixed [12]. Other research studies involve searching forrhythmical pat-
terns in a melody line [25], try to recognize composer/epoch of the given music excerpt
or fingerprinting of a music performer [2] or simply to recognize a class of an instru-
ment [15].

The process of parameterization involves low-level spectral, time or wavelet para-
meters as well as high-level parameters of the MPEG 7 standard [4, 18]. The problem
of parameterization is not limited to selection of the most significant features [12]. In
searching huge databases, a key issue is to optimize the representation of the parameter
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set in order to minimize the complexity of algorithmic computations. A very significant
factor is also the type of the classifier used.

This study introduces some selected systems of musical information retrieval and
presents an example of such experiments realized in Multimedia Systems Department.

2. Parametrization

The aim of music parameterization is to find a set of features that describe anevent
or a musical object [11, 13]. The process of parameterization is shown inFig. 1. In
order to make the feature extraction possible, it is necessary to properly pre-process
the analyzed signal, which often means its conversion to the digital form, e.g., a16-bit
PCM mono file (5–44.1 kHz sampling rate). Then, the signal is segmented into frames
of equal length and undergoes the operation of windowing. This protectsagainst frame
discontinuities and window leakage. Additionally, the overlapping of time framesmay
be applied. Signals prepared in such a way are ready for target calculations (pitch ex-
traction) that extract specified features of a musical event. The final result of parame-
terization should be a vector of uncorrelated features that represents the musical signal.
Features strongly correlated should be mapped to a single parameter to obtainone vector
of features orthogonal to the musical event. Thus, after feature extraction, some post-
processing is necessary to minimize the feature vector (FV) size. Post-processing results
in the arrangement of provided information and in the reduction of computational com-
plexity. To this end statistical methods are used, e.g., Fisher’s statistics or methods of
features correlation assessment [11].

Fig. 1. Parameterization process.

The parameterization of musical soundsrelates to two basic features of a sound,
which are pitch and timbre. Pitch is determined through the fundamental frequency. The
methods of fundamental frequency detection have a long history of development and nu-
merous methodological solutions have already been implemented in this field [3, 20, 21].

There are three basic approaches to fundamental frequency detection. They are
based on time methods, spectral methods, or hybrid methods, i.e., spectral-time meth-
ods [3]. Detection proceeds accordingly to the concept illustrated in Fig. 1. The input
signal (system input) is a fragment of a musical instrument recording, whilethe output
signal of this pre-processing block is a vector of the estimated fundamentalfrequency,
on the basis of which a feature extraction is performed. Another elementaryfeature of
a sound is its timbre. Timbre is a subjective feature that enables to discern two sounds
of the same pitch, loudness and duration (within the same acoustic conditions).Timbre
has such perceptual characteristics as brightness, richness, or sharpness. Before low-
level audio TimbralSpectral and TimbralTemporal descriptors of MPEG 7 [4] standard
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were formally defined and introduced, the detection of timbre was realized based on var-
ious frequency domain parameters. However, to make it really competent anappropriate
composition of time and time-frequency parameters should have been used in addition.

A parameterization vector that best identifies a given musical instrument canbe
formed by different combinations of parameters describing the features mentioned ear-
lier. The process of musical sound parameterization is a well-known practice [10, 13, 14],
thus this study focuses on the parameters that are used to describe musicalsignals.

The parameterization of audio signalsdiffers in analytical approach from the pa-
rameterization of musical instruments. This fact results from a much more complex
nature of audio signals. In the case of musical signal analysis, it is necessary to examine
several musical lines, a vocal part and very often the accompaniment. High complexity
causes that the adaptation of such techniques as fundamental frequency detection or pe-
riodicity assessment used in simple sounds examination becomes useless. These tech-
niques can only be helpful when testing short audio fragments, e.g., in the extraction
of a solo fragment or of a single instrument. The MPEG 7 standard, or to be more pre-
cise the ISO/IEC 15938 “Multimedia Content Description Interface”, is an international
standard of multimedia data description developed from December 1996 to Novem-
ber 2001 [4]. The standard aims at normalizing the descriptors of multimedia objects
(MM objects). It contains a set of solutions that enable to characterize a multimedia ob-
ject of any form (graphics, sound, video clip, film). It defines, among other issues, the
ways of data distribution, indexing, querying, and classification. The universal nature
of MPEG 7 comes from the fact that the standard comprises a set of selected descrip-
tors that represent an MM characteristics,Description Scheme(DS), theDescription
Definition Language(DDL) that defines descriptors and descriptor schemes, and some
binary methods for descriptor coding –Binary format forMPEG-7 data(BiM) [10].
The DDL language is an XML Schema extension, what assures its compatibility with
other standards. The functionality of ISO/IEC 15938 can be divided into the follow-
ing 10 groups: Systems, Description Definition Language, Visual, Audio, Multimedia
Description Schemes, Reference Software, Conformance, Extraction and use of descrip-
tors, Profiles, Schema Definition.

The elements of the MPEG 7 are shortly presented, below. They are descriptors of
melody, timbre and audio signal rhythm. Apart from metadata, which are most useful
to archive music, two other types of descriptors [18, 22] are used to describe an au-
dio signal; they arelow-levelandhigh-level descriptors. It is worth notifying that the
ISO/IEC 15938 standard gives only definitions of parameters that could describe the
content of a musical signal without specifying algorithms used to calculate their values.
Low-level parameters are the basis for high-level parameters whose form is dependant
on the application and on the musical feature described.

The MPEG-7 standard comprises 17 low-level parameters separated into 6groups.
An additional, however a very useful one, is the parameter that definessilence. The
MPEG-7 standard defines high-level descriptors of audio signals as well. High-level
descriptors specify the way low-level parameters are used in specific applications. The
description schemes are divided into five groups [4]:
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1. Audio Signature Description Scheme– a group of low-level descriptors that
uniquely describe an audio signal. Parameters of this group are used in systems based
on so-calledfingerprints.

2. Musical Instrument Timbre Description Tools – descriptors from this group
describe perceptual features of musical instrument sounds, and they relate to timbre. The
MPEG 7 standard represents low-level descriptors for four classes of musical sounds:
harmonic, coherent, sustained sounds, and non-sustained, percussive sounds, and they
are specifically recommended for two classes such as: sustained harmonicsounds and
non-sustained percussion sounds. Notions such as “attack”, “brightness” or “richness”
of a sound belong to this group.

3. Melody Description Tools– descriptors from this group aim at the recognition
of melodic information in monophonic recordings. They can be successfullyapplied
in Query-by-Hummingsystems to search for compositions that match a given melodic
line.
• MelodyContour Description Scheme – a scheme that defines melody contour as

a 5-step contour in which a pitch of a given note is represented with regardto
the previous note (representing the interval difference between adjacent notes).
Additionally, information about rhythm is stored as the number of the nearest
whole beat of each note.
• MelodySequence Description Scheme – a set of descriptors used to retrieve more

precise information about a melody than the MelodyContour DS can provide.To
achieve this, a precise difference between pitches of a current and a previous note
is written down (e.g., in cents). It is stored along with the information on the
rhythm obtained through coding the logarithm of the ratio between the start times
of adjacent notes. Optionally, depending on the application, a series of support
descriptors such as lyrics, key, meter, and starting note, may be used.

4. General Sound Recognition and Indexing Description Tools– a group of de-
scriptors that serve to automatically index, segment, categorize, and recognize sounds:
• SoundModel Description Scheme – a model that uses low-level Spectral Basis

group descriptors. A series of states that comprise a statistical model is worked out
based on low-level parameters, most commonly hidden Markov or Gauss mixture
model is used to achieve that.
• SoundClassificationModel Description Scheme – a scheme that uses the setof

SoundModelmodels to create a multi-classifier that categorizes segments of au-
dio signals according to conditions defined by the classification scheme. This
results in recognition of sounds classes, such as speech and music, even narrower
categories such as male, female, or particular instrument class. Other possible
applications include genre classification and voice recognition.
• SoundModelStatePath – a descriptor that collects series of indexes indicating

states of a SoundModel model for a given sound. The descriptor is a concise
description of a sound segment, and along with other models, it may be used for
fast comparison of other models.
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• SoundModelStateHistogram – a descriptor containing a normalized histogramof
SoundModelstates for a given segment of a sound. State histograms are used to
compare audio signal segments.

5. Spoken Content Description Tools– a group formed from parameters related to
speech recognition, and defined by two classes:
• SpokenContentLattice Description Scheme – a class containing indexes of nodes

connected by words or phonemes, in which each connection indicates a word or
phoneme defined in the vocabulary of the automatic speech recognition system.
The nodes are defined by their location on the time axis (timeOffset) with regard
to the lattice structure. This structure allows defining the character of pronunci-
ation through the use of various phonetic elements combinations between words
and phonemes.
• Spoken Content Header – a class that holds the number of components used by

SpokenContentLattice DS. It contains two basic descriptors:WordLexiconand
PhoneLexicon. The first descriptor is an indexed list of characters describing the
set of words of a recognizer. The second, contains the lattice list that is the re-
source of phonetic components of the automatic speech recognition system. Op-
tionally, ConfusionInfoandSpeakerInfodescriptors are used. They define the lin-
guistic error matrix for each position ofPhoneLexiconand such biometric char-
acteristics of the speaker as his/her vocabulary, language, speaking habits and
personal data.

Concise comparison of audio features extraction tools is presented in Table1 [17].
As stated by Lartillot, this table shows existing classification frameworks recognizable
in the Internet.

Table 1. Comparison of feature extraction tools [17].

System Features Interface Output
Batch

process
Dependency

control
Distributed
computing

Memory
management

Marsyas
dozen

low + beats
scripting
language

export yes manual yes real time

jAudio
∼ 20 low
+ beats

GUI export yes auto yes yes

CLAM
∼ 12 spectr.

+ tonal
visual

program.
pre-visual.
& export

yes manual ? real time

ChucK
dozen

low-level
program.
language

numerical yes manual yes real time

M2K
dozen

low-level
D2K visual
program.

graphic
& export

yes manual yes yes

Psysound
∼ 30 low
& high

GUI
graphic

& export
yes

IPEM
toolbox

17 low
& high

Matlab
functions

graphic
& numerical

MA
toolbox

8
Matlab

functions
numerical

values
MIRtool-

box
∼ 40 low
& high

adaptive
syntax

graphic
& export

yes manual
Future using

DC tb
yes
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3. Selected algorithms and tools for music classification

Automatic musical sound classification, similarly as many other categorizations, is
based on specifying several groups described by characteristic descriptors (objective or
subjective ones). However, classification has special meaning in automaticrecognition
of music. Recognized objects may be: instruments, genres, particular compositions, or
sounds. The classification criteria may, depending on the type of recognized objects, be
timbre of the instrument, rhythm, pace, or spectral content characterized by appropriate
parameters. The course of classification, however, does not dependupon criteria or clas-
sified objects, and it is in most cases identical for a given algorithm. Having extracted
an uncorrelated vector of features in the process of parameterization, itis possible to
classify sounds using any algorithm. The most simple are such classifiers asminimum-
distance methods based on various metrics, discriminant analysis or Bayes classifiers.
Advanced methods of classification are neural networks, decision trees, genetic algo-
rithms [8], SVM – Support Vector Machine [1] (and a special case of its implementation,
called: Sequential Minimal Optimization (SMO) [6], Hidden Markov Model or Rough
Sets [19]. Support Vector Machine is a supervised learning algorithm developed over
the past decade by VAPNIK [26] and later by others. The SVM algorithm performes
by mapping the given training set into a possibly high-dimensional feature space and
attempting to locate in that space a plane that separates the positive from the negative
examples. Having found such a plane, the SVM can then predict the classification of
an unlabeled example by mapping it into the feature space and asking on whichside
of the separating plane the example lies [9]. SMO algorithm is Platt’s sequentialmini-
mal optimization algorithm for training a support vector classifier. This implementation
globally replaces all missing values and transforms nominal attributes into binary ones.
The Rough Set-based methods do not require a vector of uncorrelated features. Due
to the fact that most of these methods are frequently used to solve different problems
in acoustics, they have only been mentioned here [16]. However, a Reader may found
implementation of such algorithms in WEKA classification system [7].

4. Experiments

One of the problems being solved in Multimedia Systems Department of the
Gdánsk University of Technology is the classification of music genres. The exam-
ple of such classification was illustrated with selected algorithms from WEKA sys-
tem [7]. For this purpose a database of complete pieces of music (in mp3 format) was
created. The files were collected from two Internet portals that offer free music, i.e.,
http://www.mp3.wp.pl/strefa and http://download.music.com. The collection comprises
15 styles of musicblues, britpop, classical orchestral, country, dance, folk, grunge, hip-
hop, jazz, metal, new age, punk, R&B (rhythm-and-blues), roots reggae, techno. Each
style is represented by 16 pieces. The database holds 240 pieces of musicin total. They
belong to various artists and occupy 1.2 GB of disk storage.
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The experiments began with feature extraction tasks, i.e. the feature vectorwas de-
fined and examined to specify which of the features are adequate to classify music
styles. As the MPEG 7 parameters are now broadly used in research on classifica-
tion of musical objects, their definitions will not be mentioned here. Table 2 presents
the list of parameters contained in the feature vector and their interpretation.The next
step was to verify the feature vector with Fisher’s statistics (F ) [11]. The concept of

Table 2. Content of the feature vector.

No. Parameter Meaning

1 AudioPower mean (Apm) average loudness of fragment

2 AudioPower std dev.
(Apstdev)

describes the temporally-smoothed instantaneous
power, dynamics, parameter does not depend on
tempo changes

3–36 AudioSpectrumEnvelope
(ASE)

describes the short-term power spectrum of an audio
signal and timbre, analysis in 1/3 octave bands

37–60 AudioSpectrumFlatness (ASF) describes the flatness properties of the spectrum of
an audio signal for each of a number of frequency
bands. When this vector indicates a high deviation
from a flat spectral shape for a given band, it may
signal the presence of tonal components, analysis in
1/3 octave bands for timbre differentiating

61 AudioSpectrumCentroid (ASC) an analogue to the SpectralCentroid, but defined on
a logarithmic frequency scale, helps distinguishing
between pure-tone and noise-like sounds, differen-
tiating vocal and instrumental pieces

62 AudioSpectrumSpread (ASS) indicates whether the power spectrum is centred
near the spectral centroid, or spread out over the
spectrum variety of instruments and vocals, useful
for differentiating variety of instruments and vocals

63 Spectral Centroid (SC) timbre of spectrum correlated with sound sharpness

64 SpectralFlux (SF) a measure of short-time changes of the spectrum;
separation of speech from music

65 TemporalCentroid (TC) represents gravity center of time envelope, charac-
terizes the signal envelope, representing where in
time the energy of a signal is focused. It may distin-
guish between a decaying piano note and a sustained
instrument note, when the lengths and the attacks of
the two notes are identical.

66 ZeroCrossingRate (ZCR) represents the rate at which zero crossings occur;
a simple measure of the frequency content of a sig-
nal, also allows for estimating noisiness of piece

67, 68 RollOff85 (Roll85), RollOff95 measure of spectral shape; frequency for which the
energy of spectrum reaches 85%/95% in total



MUSIC INFORMATION ANALYSIS AND RETRIEVAL TECHNIQUES 491

F statistics is to examine in pairs each representative of a class with every parame-
ter. The higher the absolute value|V | of the statistics is, the easier becomes separation
of the two classes using the tested parameter.F statistics is defined by the following
formula [11]:

V =
X − Y√

S2
1

/
n + S2

2

/
m

, (1)

where

X, Y are mean parameter values:

X =
1

n
·

n∑

i=1

Xi, Y =
1

m
·

m∑

i=1

Yi; (2)

S2
1 , S2

2 are variance estimators of respective random variables:

S2
1 =

1

n− 1
·

n∑

i=1

(Xi−X)2, S2
2 =

1

m− 1
·

m∑

i=1

(Yi−Y )2 (3)

andn, m are cardinality of populationsX andY accordingly.
The analysis ofF statistics enabled to determine the best and the worst pairs of

genres in terms of their recognition.F statistics also indicated the most discriminatory
parameters of the vector. The example of the analysis results (the pairs easiest to be
recognized with respect to maximum Fisher values) for samples of 3 seconds are shown
in Table 3.

Table 3. Best discernible pairs (in terms of maximumF values for 3 s samples).

Genre pairs F value Par. F value Par. Fvalue Par. F value Par. F value Par.

Classical – punk 28.04 ASF16 24.75 ASF15 23.42 ASF14 22.80 ASF19 21.80 ASF20

classical – hip-hop 26.32 Roll95 23.19 Roll85 21.25 SC 18.79 ASF16 18.71 ASF20

classical – reggae 24.51 Roll95 24.00 Roll85 20.76 SC 16.15 ASF20 14.81 ASF16

classical – grunge 24.51 Roll95 23.03 Roll85 20.16 SC 18.78 ASF16 17.73 ASF15

classical – dance 22.04 Roll95 18.44 Roll85 16.83 ASE33 16.56 ASF16 16.51 ASF14

classical – metal 23.90 ASF16 23.08 ASF15 21.55 ASF14 20.30 Roll85 20.06 ASF20

classical –R&B 23.14 Roll95 21.71 Roll85 18.54 SC 16.96 ASE33 16.45 ASF20

classical – techno 22.52 ASF16 22.44 ASF20 21.21 ASF15 21.21 ASF19 20.05 ASE34

country – punk 21.64 ASF14 21.34 ASF16 21.07 ASF12 20.10 ASF11 20.05 ASF18

punk – reggae 21.36 ASF16 19.75 ASF18 19.06 ASF17 17.14 ASF19 16.81 Apm

punk –R&B 20.87 Apm 17.46 ASF18 16.45 ASE25 16.41 ASF16 15.21 ASF19

blues – punk 20.39 ASF16 16.17 ASF11 15.91 ASF18 15.29 ASF15 15.23 ASF14

Definitely, the best discriminators of music styles are the AudioSpectrumFlatness
(ASF), SpectralCentroid (SC), and the RollOff descriptors. The parameters that turned
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to be of no value for classification of musical genres in this study are Spectral Flux
(SF) and TemporalCentroid (TC). AudioSpectrumCentroid (ASC) and AudioSpectrum-
Spread (ASS) also showed little significance. The easiest to tell apart were classic
and punk music. It was rather difficult to differentiate betweenR&B, blues, jazzand
reggae.

Classification of genres was carried out on 2400 three-second samples(10 frag-
ments of each piece making 160 pieces of the same genre in total). Three classifiers
from WEKA were used: NN (Nearest Neighbor), k-NN (k-Nearest Neighbor), and
SMO PUK (Sequential Minimal Optimization, PUKkernel). For supporting vectors
(SVM) algorithms, the most important optimization decision is to properly choose the
kernel function. From several kernel functions implemented in the WEKA system, the
best results were obtained for the PUK kernel, the so-called Pearson VII function-based
universal kernel [6].

The classification was performed within the 10-fold cross-validation scheme. The
set of data was partitioned into 10 subsamples. Of these 10 subsamples, onesubsample
was retained as the validation data, and the remaining 9 subsamples were usedas train-
ing data. The set of 2400 samples, each having duration time of 3 seconds,and a non-
reduced vector of the following features: [Apm, Apstdev, ASE1,. . . , ASE34, ASF1,. . . ,
ASF24, ASC, ASS, SC, SF, TC, ZCR, RollOff85, RollOff95] was employed in clas-
sification tests. Test results are presented in Tables 4–6. In the case of the k-nearest

Table 4. Classification efficiency [%] for the NN algorithm based on various metrics.

Music genre Euclidean metric [%] Manhattan metric [%] Chebyshev metric [%]

Blues 78.1 83.8 68.1

Britpop 77.5 80.6 55.6

Classical 67.5 71.9 53.1

Country 74.4 77.5 60

Dance 73.8 75 58.1

Folk 91.3 87.5 76.9

Grunge 86.9 88.1 62.5

Hip-hop 88.1 88.1 76.9

Jazz 65.6 70.6 46.9

Metal 88.8 91.3 75

New age 78.1 79.4 57.5

Punk 95 96.3 85.6

Reggae 70.6 73.8 58.1

R&B 71.9 75.6 51.3

Techno 85 84.4 69.4

Overall 79.5 81.58 63.67
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Table 5. Classification efficiency [%] for thek-NN algorithm based on metrics and the type of distance
weighting fork = 3.

Weighting Euclidean metric [%] Manhattan metric [%] Chebyshev metric [%]

NO weighting 73.917 76.542 56.208

1/dist. 78.708 80.708 62.542

1-dist. 78.417 80.693 62.25

Table 6. Classification results [%] for SMO PUK algorithm.

Music genre a b c d e f g h i j k l m n o
Classif.
Eff. [%]

Blues (a) 106 13 7 7 1 5 2 2 3 0 1 0 1 2 1 66.3

Britpop (b) 7 108 1 6 3 2 10 0 9 4 0 3 2 3 2 67.5

Classical (c) 5 2 135 7 0 2 0 0 2 0 6 1 0 0 0 84.4

Country (d) 5 1 8 114 1 9 2 4 3 0 3 0 3 7 0 71.3

Dance (e) 4 2 3 6 111 2 1 4 2 0 3 0 5 6 11 69.4

Folk (f) 6 3 4 3 1 128 1 2 4 0 0 0 3 4 1 80

Grunge (g) 3 1 1 4 1 1 135 1 3 5 1 0 0 3 1 84.4

Hip-hop (h) 4 1 0 2 2 0 1 137 1 0 0 0 3 8 1 85.6

Jazz (i) 1 0 0 13 12 3 9 0 197 0 6 0 3 3 3 60.6

Metal (j ) 0 2 7 0 0 0 1 0 1 137 5 7 0 0 0 85.6

New age (k) 1 0 16 6 3 2 0 1 5 0 115 0 4 0 7 71.9

Punk (l) 2 0 0 0 0 1 4 0 0 10 0 143 0 0 0 89.4

R&B (m) 11 0 0 9 2 0 0 17 3 0 1 0 105 10 2 65.6

Reggae (n) 11 0 1 9 2 2 1 9 4 0 0 0 16 100 5 62.5

Techno (o) 0 1 4 0 11 0 2 2 3 0 2 0 0 0 135 84.4

neighbor algorithm, the best results were achieved for the Manhattan metric,known
also under the notion of taxicab metric. The optimum configuration of thek-NN clas-
sifier is obtained when vectors are weighted with the coefficient inversely proportional
to the distance to three neighbors (assuming the taxicab metric is used). Among the
three discussed classifiers chosen from the WEKA system, the distance-based methods
produce the best results in terms of efficiency and the time of calculations.

Diagonal of Table 6 (bold face numbers) shows the number of objects belonging to
the given class, recognized correctly.

Undoubtedly, in order to best recognize music genres, the feature vector should be
supplemented with additional parameters. Having in mind that the objective is to in-
crease the efficiency of parameterization, several dozens of musical parameters offered
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by theMIRToolboxof MATLAB system were explored. Fisher’s statistics – calculated
over a distinctive set of data comprising 240 musical fragments each lasting 3second
– allowed initial selection of candidate features that would constitute an appropriate
supplement to the feature vector. Among others, these were statistical values of certain
mel-cepstral parameters and the distribution of sound pitches.

The examination of both Fisher’s statistics values and the results of classification
show that, notwithstanding the size of the database, some styles are more difficult to
recognize than others. A solution to this problem seemed to be mapping these styles to
the same label. Thus, the experiments were repeated, with the classes ofbritpop, blues
andgrungelabeledrock, the classes ofdanceandtechnolabeledelectronica. Labels of
genres that caused greatest problems in recognition (i.e.,jazz, R&B, punk, folk, reggae
andcountry) were eliminated. In the context of discussed experiments, the best results
were achieved for distance-based classifiers and support vectors used with polynomial
kernel functions.

5. Conclusions

The study reviews problems of the classification and search of musical objects.
Additionally, it presents a series of experiments with different methods of classifica-
tion. The designed feature vector was tested in the WEKA system over the set of
2400 sound samples each 3 seconds long (1600 fragments of every genre). Selected
classifiers – NN,k-NN, support vectors method (SMO) – were optimized using pre-
sented closed set of samples. The results of the research indicated that parametersTC
andSFshould be rejected. Classification carried out with the reduced vector resulted in
80% efficiency of recognition for distance-based methods and in 70% efficiency forTC
andSF.

The process of automatic classification proved the complexity of recognition tests
in real conditions. Efficiency of the classifiers (for tests operating overdistinctive frag-
ments) that oscillated around 60–80% confirmed the implemented parameters to beap-
propriate for recognition types such asQuery-by-Example. Genre recognition, how-
ever, required class labels to be reorganized or supplemented with additional parame-
ters. Finally, an overall efficiency of 70% was achieved for musical stylerecognition
with the SMO algorithm forrock, classical, metal, new age, electronicaandhip-hop
types.
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[13] KOSTEK B., CZYŻEWSKI A., Representing Musical Instrument Sounds for their Automatic Classi-
fication, J. Audio Eng. Soc.,49, 768–785 (2001).

[14] KOSTEK B., WIECZORKOWSKA A., Parametric representation of musical sounds, Archives of
Acoustics,22, 1, 3–26 (1997).

[15] KOSTEK B., KRÓLIKOWSKI R., Application of artificial neural networks to the recognition of mu-
sical sounds, Archives of Acoustics,22, 1, 27–50 (1997).

[16] KOSTEK B., Applying computational intelligence to musical acoustics, Archives of Acoustics,32,
3, 617–629 (2007).

[17] LARTILLOT O.,MIR toolbox 1.0 User Guide, University of Jyvaskyla, Finland 2007.

[18] L INDSAY A., HERREJ.,MPEG-7 and MPEG-7 Audio – An Overview, 49, 7–8, 589–594 (2001).

[19] PAWLAK Z., SKOWRON A., Rough sets and Boolean reasoning, Information Sciences,177, 1,
41–73 (2007).

[20] RABINER L., On the use of autocorrelation analysis for pitch detection, IEEE Trans. ASSP,25,
24–33 (1977).
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