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The paper analyzes the estimation of the fundamental frequency from the real speech signal which is
obtained by recording the speaker in the real acoustic environment modeled by the MP3 method. The
estimation was performed by the Picking-Peaks algorithm with implemented parametric cubic convolution
(PCC) interpolation. The efficiency of PCC was tested for Catmull-Rom, Greville, and Greville two-
parametric kernel. Depending on MSE, a window that gives optimal results was chosen.
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Notations

αopt – optimal kernel parameter,
α – kernel parameter,
x – audio or speech signal,
X – spectrum,
w – window function,
r – interpolation kernel,
p – interpolation function,
n – time lag, 0 ≤ n ≤ N−1,
N – window length,
M – number of points between two samples in spectrum,
L – kernel length, 4 ≤ L ≤ 8,
k – spectrum lag, 0 ≤ k ≤ N−1,
K – number of harmonics,
fs – sampling frequency,

fmax – maximum of the interpolated frequency,
fe – estimated fundamental frequency,
f – frequency,

βopt – optimal kernel parameter,
β – kernel parameter,
s – MP3 coded audio or speech signal.

1. Introduction

The rising trend of multimedia communications
has imposed the need for archiving and transfer-
ring the audiovisual information. The amount of
data which is archived or transferred, is very large
(Brandenburg et al., 1992; ISO/IEC, 1992; ISO/IEC

13818-3, 1994). For instance, audio record rate in
stereo technique at the sampling frequency fs =
44.1 kHz is 10.584 MB/min. Transferring that number
of bits is a very slow process even in very fast com-
munication media. Hence, the development of com-
pressing techniques is mandatory. A number of al-
gorithms for audio signal compressing has been ap-
peared. Most of them used MP3 algorithm with a com-
pression degree of 1:12. Such compression ratio en-
ables archiving a digitalized audio signal as well as
transferring it by multimedia systems. Accordingly,
MP3 became especially popular in internet applica-
tions (Hacker, 2000; McCandless, 1999). MP3 is a
shortened name for coding algorithm derived from the
standard MPEG-1, Layer III, developed by the Ger-
man Technology Group. It was standardized by In-
ternational Standards Organization (ISO) (ISO/IEC,
1992). MP3 does the compression tasks eliminating
redundancy. It is similar to zip algorithm in accor-
dance with a psycho-acoustic model that describes
mechanisms of the human sound perception. Tech-
nically, MPEG-1 Layer III and MPEG-2 Layer III
are declared as MP3 standard. MPEG-1 Layer III is
used for 32 kHz, 44.1 kHz, and 48 kHz of sampling fre-
quency, while MPEG-2 Layer III is used for 16 kHz,
22.05 kHz, and 24 kHz of sampling frequency. The
standard broadening with a sign MPEG 2.5 is used
for 8 kHz and 11 kHz (Hacker, 2000). MP3 compres-
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sion algorithm is based on the combination of several
techniques the function of which is to maximize the re-
lation between the perceived quality and the necessary
file size. Spectrum of an audio signal is divided into
32 equally spaced frequency sub-bands. After that, a
Modified Discrete Cosine Transformation (MDCT) is
applied (Britanak, 2011). Precision of MDCT coef-
ficient is reduced by the process of quantization. Fur-
ther, the signal is processed according to the psycho-
acoustic model. This model emulates the human per-
ception, i.e. the masking effects, which represent au-
ditory and temporal masking (Hacker, 2000). After
the signal processing according to the psychoacoustic
model, Huffman’s coding is performed. This coding ad-
ditionally performs reduction of file size for 20%. In the
name of copyright, the algorithms for inserting audio
watermarks have been developed (Yeo, Kim, 2003;
Wang, Hong, 2006; Dhar, Echizen, 2011). Latest
advances in MP3 incorporate DFT-based MP3 multi-
channel audio system (Moon, 2012). The parametric
multi-channel audio coding concept enables the legacy
system to reproduce stereo audio as well as the ad-
vanced system to reproduce multi-channel audio.
A number of the old music and speech records are

digitalized and compressed by MP3 algorithm. How-
ever, there was a need for re-recording the signifi-
cant historical and musical materials previously made
by analog medium (magnetic tapes, vinyl records 78
rpm, LP, ...). The main deficiency of the analog sound
recording is a high level of noise. In vinyl recordings,
degradation effects come from imperfections and sub-
sequent mechanical damage to the recording medium,
and manifest themselves as clicks, sputtering, and
noise from scratches. There is a need for this kind of
processing as well as for restoration of the audio signals
(Avila, Biscainho, 2012).
In many multimedia applications, it is necessary to

process audio records in order to improve the quality,
intelligibility of speech, verification of the speaker, etc.
A typical example is the quality improvement of the
speech signal by reducing dissonant frequencies (Joen
et al., 2003; Kang, 2004; Kang, Kim, 2006). Besides
analyzing the trajectories of fundamental frequency,
it is possible to classify the emotional state of a man
(sadness, anger, joy, ...) (Ayadi et al., 2011), evaluate
health status, and the conditions of hypoxia, which is
manifested as a decrease in the concentration of oxygen
in the blood (due to incidents during a flight, work-
ing in the mines, tunnels, etc.) (Milivojevic et al.,
2012). In processing of music and speech signal, it is
necessary to determine the fundamental frequencies.
Music signals are characterized by a fundamental fre-
quency and the series of harmonic components that are
integer multiples of fundamental frequency, i.e. par-
tials.
In musical strings instruments, harmonic shifts oc-

currence leads to inharmonocity of an instrument. It

is defined through the inharmonicity coefficient. De-
termining the inharmonicity coefficient requires an
accurate estimation of the fundamental frequency
(Barbancho et al., 2012). Digital processing of the
music signal is possible for string instruments (e.g. gui-
tar). Accordingly, it plays an estimate note, in which
the string is played (E, H, G, D, A, E) as a fret. The
more complex algorithms can detect the chords and
form the score music (Fragoulis et al., 2006).
The authors of this paper asked themselves: “What

is the degradation of the fundamental frequency for
MP3 encoding and decoding speech signals?”
In order to answer this question, the authors have

conducted a number of experiments by applying the al-
gorithms to estimate the fundamental frequency (F0)
in the frequency domain. After the calculation of DFT,
the Picking-Picks is made. The highest peak represents
the fundamental frequency. Particular attention is de-
voted to the application of parametric cubic convo-
lution (PCC) algorithm in order to increase the pre-
cision of fundamental frequency estimation, when it
is located between the spectral components on which
DFT is calculated. The experiments were based on the
time-domain (application of the window functions) and
the frequency-domain processing, which implemented
the cubic convolution kernels (Catmull-Rom, Greville,
and Greville two-parametric kernel). Retrieval of the
maximum position in the continuous convolution in-
terpolation function is a mathematically complex and
time-consuming process. Analytical expressions for the
calculation of F0 according to Keys kernel is proposed
in (Pang et al., 2000), while for the calculation of F0

for Greville and Greville two-parametric (G2P) kernel
is given in (Milivojevic, Brodic, 2011).
In this paper, the authors present the results of the

fundamental frequency assessment for:

a) mathematically generated sine signal proposed in
(Pang et al., 2000) and

b) real speech signals recorded in a real environment
proposed in (Milivojevic, Brodic, 2011).
The results will be analyzed by the mean square

error (MSE) method. Finally, comparative analysis of
the estimation accuracy F0 by MP3 algorithm SYM-
PES (Yarman et al., 2006;Milivojevic, Mirkovic,
2009) and G.3.721 (Milivojevic, Brodic, 2011) will
be made.
This paper is organized as follows: Sec. 2 presents

the previous works in the field. Section 3 describes the
PCC algorithm. Subsection 3.1 defines the interpola-
tion kernels. Subsection 3.2 presents the algorithm for
determination of the optimal kernel parameters. Sub-
section 3.3 defines the test signals. Section 4 presents
MSE results for the fundamental frequency estimation
of the real speech signal modeled by the MP3 method.
Section 5 shows the comparative analysis as well as
the optimal kernel and window function selection. Sec-
tion 6 gives the conclusion.
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2. Previous works

The estimation of the fundamental frequency has
received immense interest from different speech re-
search areas, such as speech segregation, speech syn-
thesis, speech coding, speech and speaker recogni-
tion, and speech articulation training for the deaf
(Griffin, Lim, 1988; Atal, 1972; Kawahara et
al., 1999). A number of algorithms for determin-
ing the fundamental frequency has been devel-
oped. Theirs processing is performed in the time-
domain (TD) and frequency-domain (FD) methods
(Kawahara, 2002; Sekhar, Sreenivas, 2004; Hus-
sain, Boashash, 2002; Kacha, Benmahammed,
2005; Veprek, Scordilis, 2002; Klapuri, 2003). In
TD methods, one or more speech features (the fun-
damental harmonic, a quasi-periodic time structure,
an alternation of high and low amplitudes, and points
of discontinuities in the speech waveform) are identi-
fied first, and then the pitch markers or epochs are
obtained in a pitch synchronous manner. In FD meth-
ods, a short-time frame or block of speech samples is
transformed into spectral or frequency-domain in or-
der to enhance the periodicity information contained
in the speech. These methods determine an average
pitch from several contiguous periods in the analysis
frame. The performance of TD methods compared to
FD methods depends more on the shape of the time
waveform of speech (Resch et al., 2007). The autocor-
relation function (ACF) (Rabiner, 1977) and the av-
erage magnitude difference function (AMDF) (Ross et
al., 1974) have been commonly employed for pitch es-
timation. In (Kawahara, 2002), an estimator named
YIN has been proposed, where a series of modifications
(a difference function formulation, normalization, and
parabolic interpolation) has been introduced to de-
crease the error rates in pitch estimation from a clean
speech (Shahnaz et al., 2012).
The widespread method for determination of the

fundamental frequency is based on Picking Peaks of
the amplitude characteristic in the specific frequency
range. This method is used for analyzing the signal val-
ues in the spectrum at frequencies on which the Dis-
crete Fourier Transform (DFT) was calculated. Usu-
ally, the real value of the fundamental frequency is not
there at the frequencies where DFT is calculated. In
contrast, it lies between the two spectrum samples.
That causes the frequency estimation error that lies
in the interval [−(fs/(2N) Hz, (fs/(2N) Hz], where fs
is the sampling frequency and N is the DFT window
size. One way of reducing the error is determination of
the interpolation function and estimation of the spec-
trum characteristics in the interval between two sam-
ples. This procedure gives the reconstruction of the
spectrum on the base of DFT. The spectrum parame-
ters are then determined by analytic procedures (dif-
ferentiation, integration, extreme values, etc).
The calculation of the interpolation function by

using PCC was represented in (Keys, 1981; Park,

Schowengerdt, 1983). The special case of PCC in-
terpolation applied in computer graphics has been
called the Catmull-Rom interpolation (Meijering,
Unser, 2003). Pang et al. (2000) give detailed analy-
sis of the fundamental frequency estimation and show
the advantage of PCC interpolation. The application
of PCC interpolation for determining the fundamen-
tal frequency in specific conditions is presented in
(Milivojevic et al., 2004). The efficiency of the algo-
rithm for the evaluation of the fundamental frequency
is determined by the simulation. As a quality measure
of the algorithm, the mean square error (MSE) has
been used. The best results were shown by the algo-
rithm with the implemented Blackman window. The
analysis of the algorithm efficiency where the signal-
to-noise relation (SNR) is changeable according to the
presence of the important harmonics in the funda-
mental function, is shown in (Mirkovic et al., 2004).
It confirmed the efficiency of the algorithm with the
Blackman window. In (Mirkovic et al., 2006), an
analysis of PCC interpolation algorithm efficiency is
made for the case where Greville two-parametric cubic
convolution kernel (G2P) was implemented. The win-
dow was determined and the kernel parameters (α, β)
were calculated where the minimum MSE was gen-
erated (in relation to Caltmull-Rom kernel the error
was smaller by 58.1%). The new method of speech sig-
nal modeling called “A Novel Systematic Procedure
to Model Speech Signals via Predefined Envelope and
Signature Sequences” (SYMPES) is presented in the
paper (Yarman et al., 2006). The results of the funda-
mental frequency estimation of the speech signal mod-
eled by SYMPES method are shown in (Milivojevic,
Mirkovic, 2009). Furthermore, the results of the fun-
damental frequency estimation for the speech signal
coded by G.3.721 method are shown in (Milivojevic,
Brodic, 2011).

3. Proposed algorithms

Algorithm for the estimation of the fundamental
frequency, based on the algorithm from (Pang et al.,
2000), is presented in Fig. 1.

Fig. 1. Algorithm for the estimation of the fundamental
frequency.
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This algorithm is realized as follows:
Step 1: Audio or speech signal s(n) is coded by MP3
coder.
Step 2: Coded signal is decoded by MP3 decoder and
formed as signal x(n).
Step 3:Window w(n), length of which is N , is applied
to decoded signal x(n).
Step 4: Spectrum X(k) is calculated by using DFT:

X(k) = DFT(x(n)). (1)

The spectrum is calculated in discrete points k =
0, ..., N−1, where N is the length of DFT. The real
spectrum of signals x(n) is continuous, whereas DFT
defines the values of the spectrum at some discrete
points.
Step 5: The maximum of the real spectrum that is be-
tween k-th and (k+1)-th samples is determined by us-
ing the Picking-Peak algorithm. The values X(k) and
X(k+1) are the highest in the specified domain.
Step 6: The maximum of the spectrum is calculated
by PCC interpolation. The reconstructed function is:

Xr(f) =

k+L/2∑

i=k−L/2+1

pi · r(f−i), k ≤ f ≤ k+1, (2)

where pi = Xr(i), r(f) is the kernel of interpolation,
and L is the number of samples that participate in the
interpolation.
Step 7: By differentiation Xr(f) and zero adjustment,
the position of the maximum is determined. It repre-
sents the estimated fundamental frequency fe.
The quality of the algorithm for the fundamental

frequency estimation can be also expressed by MSE:

MSE = (f − fe)
2
, (3)

where f is true fundamental frequency and fe is esti-
mated fundamental frequency.

3.1. Interpolation kernel

The definitions of the interpolation kernels, which
are tested in this paper, are:

a) Keys interpolation kernel (Keys, 1981; Park,
Schowengerdt, 1983):

r(f)=





(α+2) |f |3 − (α+3) |f |2 +1,

|f | ≤ 1,

α |f |3 −5α |f |2 +8α |f |−4α,

1 < |f | ≤ 2,

0, otherwise.

(4)

For L = 4, from Eq. (2), the position of maximum is
determined:

fmax =





k − c

2b
, a = 0,

k +
−b−+

√
b2 − ac

a
, a 6= 0,

(5)

where

a = 2 (αpk−1 + (α+ 2)pk

− (α+ 2)pk+1 − αpk+2) ,

b =− 2αpk−1 − (α+ 3)pk + (2α+ 3)pk+1

+ αpk+2,

c =− αpk−1 − αpk+1,

(6)

b) Greville interpolation kernel (Meijering, Unser,
2003):

r(f) =





(
α+

3

2

)
|f |3 −

(
α+

5

2

)
|f |2 + 1;

if 0 ≤ |f | ≤ 1,

1

2
(α− 1) |f |3 −

(
3α− 5

2

)
|f |2

+

(
11

2
α− 4

)
|f | − (3α− 2) ;

if 1 ≤ |f | ≤ 2,

−1

2
α |f |3 + 4α |f |2 − 21

2
α |f |+ 9α;

if 2 ≤ |f | ≤ 3,

0; if 3 ≤ |f | .

(7)

For L = 6, from Eqs. (2) and (7), the position of max-
imum is determined according to Eq. (5), where

a =− 3

2
αpk−2 +

3

2
(α− 1) pk−1

+ 3

(
α+

3

2

)
pk − 3

(
α+

3

2

)
pk+1

− 3

2
(α− 1) pk+2 +

3

2
αpk+3,

b =− 2αpk−2 + (−3α+ 2) pk−1 − (2α+ 5) pk

+ 4 (α+ 1) pk+1 − pk+2 − αpk+3,

c =− 1

2
αpk−2 +

(
α− 1

2

)
pk−1

−
(
α− 1

2

)
pk+1 +

1

2
αpk+2,

(8)
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c) Greville two-parametric cubic convolution kernel
(G2P) (Meijering, Unser, 2003):

r(f) =





(
α− 5

2
β +

3

2

)
· |f |3

−
(
α− 5

2
β +

5

2

)
· |f |2 + 1;

0 ≤ |f | ≤ 1,

1

2
(α− β − 1) · |f |3

−
(
3α− 9

2
β − 5

2

)
· |f |2

+

(
11

2
α− 10β − 4

)
· |f |

− (3α− 6β − 2) ;
1 ≤ |f | ≤ 2,

−1

2
(α− 3β) · |f |3

+

(
4α− 25

2
β

)
· |f |2

−
(
21

2
α− 34β

)
· |f |

+(9α− 30β) ;
2 ≤ |f | ≤ 3,

−1

2
β · |f |3 + 11

2
β · |f |2

−20β · |f |+ 24β;
4 ≤ |f | .

(9)

For L = 8, from Eqs. (2) and (9), the position of max-
imum is determined according to Eq. (5), where

a =− 3

2
βpk−3 −

3

2
(α− 3β) pk−2

+
3

2
(α−β−1) pk−1 + 3

(
α− 5

2
β +

3

2

)
pk

− 3

(
α− 5

2
β +

3

2

)
pk+1 −

3

2
(α−β−1) pk+2

+−3

2
(α− 3β) pk+3 +

3

2
βpk+4;

b =− 2βpk−3 − (2α− 7β) pk−2

+ (−3α+ 6β + 2) pk−1−
(
2α−5β+

5

2

)
pk

+ (4α− 10β + 1) pk+1 + (3β − 1) pk+2

+ (−α+ 2β)αpk+3 − βpk+4;

c =− 1

2
βpk−3 +

(
−1

2
α+ 2β

)
pk−2

+

(
α−5

2
β−1

2

)
pk−1 −

(
α+

5

2
β+

1

2

)
pk+1

+

(
1

2
α− 2β

)
pk+2 +

1

2
βpk−3.

(10)

In Eqs. (4)–(10), there are α and β parameters. The
optimal values of these parameters will be determined
by the minimum value of MSE, for Keys, Greville, and
G2P kernel. For the first two of them

αopt = argmin
α

(MSE), (11)

and for the G2P kernel,

(αopt, βopt) = argmin
α,β

(MSE). (12)

The detailed analysis in (Pang et al., 2000;Milivoje-
vic et al., 2004; 2006;Mirkovic et al., 2004;Yarman
et al., 2006; Milivojevic, Mirkovic, 2009; Milivo-
jevic, Brodic, 2011) showed that the minimum value
of MSE depends on the application of window by which
signal processing x(n) is carried out in time domain.
MSE will be defined for: (a) Hamming, (b) Hanning,
(c) Blackman, (d) Rectangular, (e) Kaiser, and (f) Tri-
angular window.

3.2. Interpolation kernel parameters

The algorithm for determination of interpolation
kernel parameters α and β is realized as follows:
Step 1: Signal x(n), which was previously coded and
decoded by MP3 algorithm, is modified by the window
function w(n), length of which is N .
Step 2: Spectrum X(k) is determined by application
of DFT.
Step 3: Reconstruction of the continual function that
represents spectrum X(f) is performed by application
of PCC interpolation.
Step 4:MSE is calculated for various values of param-
eters α and β depending on the implemented window.
Step 5: αopt and βopt are determined for which the
minimum value of MSE is obtained.

3.3. Test signals

PCC algorithm of the fundamental frequency esti-
mation will be applied to:

a) simulation sine test signal and

b) real speech test signal.

Simulation sine signal for testing of PCC algorithm
is defined in (Pang et al., 2000):

s(t) =

K∑

i=1

M∑

g=0

ai sin

(
2πi

(
fo + g

fs
NM

)
t+ θi

)
, (13)

where f0 is fundamental frequency, θi and ai are phase
and amplitude of the i-th harmonic, respectively, K
is the number of harmonics, and M is the number
of points between the two samples in spectrum where
PCC interpolation is being made. The real speech test
signal is obtained by recording of a speaker in the real
acoustic environment.
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PCC algorithm will be applied to:

a) uncoded real speech test signals and

b) real speech test signals coded and decoded by MP3
algorithm.

The results will be summarized and comparative anal-
ysis will be established in accordance to MP3 algo-
rithm applied to the sine test signal.

4. Experimental results and discussion

4.1. Testing parameters

In the simulation process, f0 and θi are random
variables with uniform distribution in the range [G2
(97.99 Hz), G5 (783.99 Hz)] and [0, 2π] with sine and
real speech test signals. Signal frequency of sampling
is fs = 8 kHz, and the length of window is N = 256,
which assures the analysis of subsequences that last
32 ms. Furthermore, the results will relate to f0 =
125–140.625 Hz (frequencies between the 8-th and 9-th
DFT components). Number of frequencies in the spec-
ified range, for which the estimation is done, is M =
100. The sine test signal is with K = 10 harmonics. All
further analyses will relate to: (a) Hamming, (b) Han-
ning, (c) Blackman, (d) Rectangular, (e) Kaiser, and
(f) Triangular window.

4.2. Experimental results

4.2.1. Keys kernel

By applying the algorithm for determination of
Keys interpolation kernel parameters, some diagrams
MSE(α) are drawn (Fig. 2 and Fig. 3), the minimum
value MSEKmin is determined, and on the base of
it, the optimum value of Keys kernel αopt is deter-
mined for: (a) Hamming, (b) Hanning, (c) Blackman,
(d) Kaiser, and (e) Triangular window functions. Val-
ues MSEKmin and αopt are presented in Table 1 (un-
coded sine test signal MSEKmin, MP3 coded sine test

Fig. 2. MSE(α) for Keys kernel and uncompressed real
speech test signal.

Fig. 3. MSE(α) for Keys kernel and MP3 compressed real
speech test signal.

signal MSEK MP3min) and Table 2 (real speech test
signal MSEKSPmin, MP3 coded real sine test signal
MSEKSP MP3min).

Table 1. Minimum MSE and αopt for sine test signal
(Keys kernel).

Uncoded signal Signal coded
by MP3 algorithm

αopt MSEKmin αopt MSEK MP3min
Hamming −1.005 0.023 −1.0100 0.0320

Hanning −0.885 0.004 −0.8825 0.0031

Blackman −1.801 0.001 −0.8024 0.0028

Rectangular −2.61 0.515 −2.5500 0.4388

Kaiser −1.125 0.02 −1.1250 0.0203

Triangular −1.028 0.0028 −1.0280 0.0068

Table 2. Minimum MSE and αopt for real speech test
signal (Keys kernel).

Uncoded signal Signal coded
by MP3 algorithm

αopt MSEKSPmin αopt MSEKSP MP3min
Hamming −0.995 0.0310 −1 0.0943

Hanning −0.880 0.0349 −0.9000 0.0965

Blackman −0.800 0.0358 −0.8000 0.1067

Rectangular −2.400 0.4323 −2.3000 0.7011

Kaiser −1.080 0.0339 −1.1500 0.0880

Triangular −1.030 0.0277 −1.0500 0.0835

According to the results presented in Tables 1
and 2, it is obvious that:

a) At sine test signal, the greatest precision of fun-
damental frequency estimation is when Blackman
window (MSEKmin = 0.001) is applied. At MP3
coded sine test signal, the greatest precision of esti-
mation is in Blackman (MSEK MP3min = 0.0028)
window. When MP3 coding is applied, the pre-
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cision of the fundamental frequency estimation is
MSEK MP3min/MSEKGmin = 0.0028/0.001 = 2.8
times lower.

b) At real speech test signal, the greatest precision is in
triangular window (MSEKSPmin = 0.0277). At MP3
coded real speech signal, the greatest precision is
in triangular window (MSEKSP MP3min = 0.0835).
When coding is applied, the precision of the fun-
damental frequency estimation is MSEKSP MP3min/
MSEKSPmin = 0.0835/0.0277 = 3.0144 times lower.

c) At coded real speech signal in relation to coded
sine signal, the non-precision of the funda-
mental frequency estimation is MSEKSP MP3min/
MSEK MP3min = 0.0835/0.0028 = 29.821 times
higher.

4.2.2. Greville kernel

By applying the algorithm for determination of
Greville interpolation kernel parameters, some dia-
grams MSE(α) are drawn (Fig. 4 and Fig. 5), mini-
mum value MSEGmin is determined, and on the base

Fig. 4. MSE(α) for Greville kernel and uncompressed
real speech test signal.

Fig. 5. MSE(α) for Greville kernel and MP3 com-
pressed real speech test signal.

of it, the optimum value of Greville kernel parame-
ters αopt is determined for: (a) Hamming, (b) Han-
ning, (c) Blackman, (d) Kaiser, and (e) Triangular
window. Values MSEmin and αopt are presented in Ta-
ble 3 (uncoded sine test signal MSEGmin, coded sine
test signal MSEG MP3min) and Table 4 (real speech
test signal MSEGSPmin, coded real speech test signal
MSEGSP MP3min).

Table 3. Minimum MSE and αopt for sine test signal
(Greville kernel).

Uncoded signal Signal coded
by MP3 algorithm

αopt MSEGmin αopt MSEG MP3min
Hamming −0.57 0.0175 −0.5750 0.0272

Hanning −0.449 0.0027 −0.4500 0.0032

Blackman −0.415 0.0009 −0.4200 0.0037

Rectangular −2.254 0.4054 −2.2000 0.3966

Kaiser −0.6676 0.0124 −0.6600 0.0207

Triangular −0.575 0.002 −0.5750 0.0064

Table 4. Minimum MSE and αopt for real speech test
signal (Greville kernel).

Uncoded signal Signal coded
by MP3 algorithm

αopt MSEGSPmin αopt MSEGSP MP3min
Hamming −0.560 0.0310 −0.5800 0.0947

Hanning −0.450 0.0363 −0.4500 0.0986

Blackman −0.410 0.0344 −0.4000 0.1088

Rectangular −2.100 0.2016 −2.2000 0.3481

Kaiser −0.660 0.0255 −0.6900 0.0922

Triangular −0.575 0.0256 −0.5800 0.0874

According to the results presented in Tables 3
and 4, it is obvious that:

a) At sine test signal, the greatest precision of fun-
damental frequency estimation is when Blackman
(MSEGmin = 0.0009) window is applied. At MP3
coded sine test signal, the greatest precision of
estimation is in Hanning window (MSEG MP3min
= 0.0032). When coding is applied, the preci-
sion of the fundamental frequency estimation is
MSEG MP3min/MSEGmin = 0.0032/0.0009 = 3.55
times lower.

b) At real speech test signal, the greatest precision
is in Kaiser window (MSEGSPmin = 0.0255). At
coded real speech signal, the greatest precision is
in triangular window (MSEGSP MP3min = 0.0874).
When coding is applied, the precision of the fun-
damental frequency estimation is MSEGSP MP3min/
MSEGSPmin = 0.0874/0.0255 = 3.427 times lower.

c) At coded real speech signal in relation to coded
sine signal, the non-precision of the fundamen-
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tal frequency is MSEGSP MP3min/MSEG MP3min =
0.0874/0.0032 = 27.31 times higher.

4.2.3. G2P kernel

By applying the algorithm for determination of
Greville two-parametric interpolation kernel param-
eters, some diagrams MSE(α) are drawn and mini-
mum values MSEG2Pmin are determined for windows
with the smallest MSE. Three-dimensional MSE(α, β)
graphics are drawn for uncompressed real speech test
signal (Fig. 6a), the shift of minimumMSEmin in (α, β)
level (Fig. 6b) for Blackman window, and real speech
test signal coded by MP3 (Fig. 7a), the shift of min-
imum MSEmin in (α, β) level (Fig. 7b) for Kaiser
window. In Figs. 6b and 7b, positions of MSEmin =
MSE(αopt, βopt) minimum in (α, β) plane for Greville
(point A) and G2P (point B) interpolation kernel are
shown. Vector AB shows the position change of the
minimum (MSE(αopt, βopt)). The determined param-
eters αopt and βopt are presented in Table 5.

a)

b)

Fig. 6. Real speech test signal with the application of
Blackman window without compression: a) MSE(α, β) for
the application of G2P PCC interpolation; b) positions of
min(MSE(αopt, βopt)) in plane (α, β) for Greville (pointA)

and G2P PCC (point B) interpolation.

a)

b)

Fig. 7. Real speech test signal with the application of
Kaiser window with MP3 compression: a) MSE(α, β) for
the application of G2P PCC interpolation; b) positions of
min(MSE(αopt, βopt)) in plane (α, β) for Greville (pointA)

and G2P PCC (point B) interpolation.

According to the results presented in Table 5, it is
obvious that:

a) At real speech test signal with G2P ker-
nel comparing with Greville kernel, the preci-
sion of the fundamental frequency estimation
(MSEGSP MP3min/MSEG2PSP MP3min) is: (a) 1.57
(Hamming), (b) 1.76 (Hanning), (c) 1.83 (Black-
man), (d) 1.75 (Kaiser), and (e) 1.5 (Triangular)
times higher.

b) At real speech test signal, the greatest precision is
in Blackman window (MSEGSPmin = 0.0009). At
MP3 coded real speech signal, the greatest precision
is in Kaiser window (MSEG2PSP MP2min = 0.0524).
When MP3 coding with G2P kernel is applied, the
precision of the fundamental frequency estimation
is MSEG2PSP MP3min/MSEGSPmin = 0.0524/0.0009
= 58.22 times lower.

c) At MP3 coded real speech with Greville kernel,
the greatest precision is in Triangular window
(MSEGSPmin = 0.0874). At MP3 coded real speech
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Table 5. Minimum MSE, αopt, and βopt (G2P kernel).

Sine test signal (uncoded)

Window αopt βopt MSEG2Pmin

Hamming −0.55 0.03 0.0046

Hanning 0.5 0.015 0.0018

Blackman −0.42 0.002 0.000377

Kaiser −0.681 0.001 0.0096

Triangular 0.6 −0.001 0.001

Sine test signal (coded by MP3 algorithm)

Window αopt βopt MSEG2P MP3min

Hamming −0.5900 −0.0060 0.0270

Hanning −0.4600 −0.0060 0.0029

Blackman −0.4200 −0.0020 0.0022

Kaiser −0.6600 0.0060 0.0178

Triangular −0.5680 0.0030 0.0060

Real speech test signal (uncoded)

Window αopt βopt MSEG2PSPmin

Hamming 0.1 0.2975 0.0072

Hanning 0.1531 0.2719 0.0025

Blackman 0.0625 0.2463 0.001

Kaiser −0.1 0.2463 0.0075

Triangular −0.3219 0.1181 0.0016

Real speech test signal (coded by MP3 algorithm)

Window αopt αopt MSEG2PSP MP3min

Hamming 0.0687 0.2788 0.0600

Hanning 0.0625 0.2375 0.0559

Blackman −0.0625 0.1738 0.0592

Kaiser −0.0062 0.2975 0.0524

Triangular −0.3500 0.1194 0.0581

signal with G2P kernel, the greatest precision is in
Kaiser window (MSEG2PSP MPmin = 0.0524). When
MP3 coding with G2P kernel is applied, the pre-
cision of the fundamental frequency estimation is
MSEGSPmin/ MSEG2PSP MP3min = 0.0874/0.0524=
1.66 times higher.

5. Comparative analysis

The comparative analysis of the estimated fun-
damental frequency for the sine test signal and the
real speech test signal, without and with MP3 com-
pression, will be performed on the base of MSE
minimum values. The minimum value of MSE is
determined on the base of the diagram in the
Figs. 2 and 3 (Keys), Figs. 4 and 5 (Greville),
and Figs. 6 and 7 (G2P). It is presented in Ta-
ble 1 (MSEKmin, MSEK MP3min), Table 2 (MSEKSPmin,
MSEKSP MP3min), Table 3 (MSEGmin, MSEG MP3min),
Table 4 (MSEGSPmin, MSEGSP MP3min), and Ta-

ble 5 (MSEG2Pmin, MSEG2P MP3min, MSEG2PSPmin,
MSEG2PSP MP3min), respectively.
Comparing the values MSEmin from Tables 1–5, it

can be concluded that:

a) The optimum choice for sine test signal is Blackman
window for all interpolation kernels. G2P interpo-
lation kernel, which generates MSE by 60.05% less
than Keys and 55.55% less than Greville kernel,
showed the best results.

b) The optimum choice for real speech test signal is
G2P kernel with Blackman window, which gener-
ates MSE by 96.387% less than Keys kernel (Trian-
gular window), and 96.07% less than Greville kernel
(Kaiser window).

c) The optimum choice for sine test signal coded by
MP3 algorithm is G2P interpolation kernel with
Blackman window, which generates MSE by 21.43%
less than Keys (Blackman window) and 31.25% less
than Greville kernel (Kaiser window), showed the
best results.

d) The optimum choice for real speech test signal
coded by MP3 algorithm is G2P interpolation ker-
nel with Kaiser window, which generates MSE by
37.27% less than Keys (Triangular window) and
43.16% less than Greville kernel (Kaiser window),
showed the best results.

e) Comparing MSE for G2P kernel for uncoded
real speech test signal (Blackman window,
MSEG2PSPmin=0.0022) and MP3 coded real speech
test signal (Kaiser window, MSEG2PSP MP3min =
0.0524), relation MSEG2PSP MP3min/MSEG2PSPmin
= 0.0524/ 0.0022 = 23.818 has been obtained.

Comparison of the estimation of the fundamental
frequency for the signal coded with SYMPES algo-
rithm (Milivojevic, Mirkovic, 2009), G.723.1 algo-
rithm (Milivojevic, Brodic, 2011), and MP3 algo-
rithm with real speech test signal given in this pa-
per shows that the proposed algorithm has the least
MSE values. Accordingly, the obtained results recom-
mend the use of PCC algorithm with G2P kernel in
preprocessing signals which are compressed by MP3
method. Hence, it is recommended for further process-
ing by algorithms that require a precise determination
of the fundamental frequency (automatic verification
of a speaker, recognition of the speech, etc.).

6. Conclusions

This paper presents the comparative analysis of the
fundamental frequency estimation for the real speech
signal modeled by MP3 method. The estimation of the
fundamental frequency has been made by the Picking-
Peaks algorithm with implemented PCC interpolation.
Experiments have been performed with Keys, Gre-
ville, and Greville two-parametric kernels. In order
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to minimize MSE, different windows have been im-
plemented. The detailed analysis has shown that the
optimal choice is Greville two-parametric kernel and
the Kaiser window implemented in PCC algorithm.
The optimum choice for real speech test signal coded
by MP3 algorithm is G2P interpolation kernel with
Kaiser window, which generates MSE by 37.27% less
than Keys (Triangular window) and 43.16% less than
Greville kernel (Kaiser window). Comparing these re-
sults with the results of the estimation of the fun-
damental frequency in the real speech signal that is
not modeled by MP3 method, the relation of mini-
mum MSEs 23.818 has been obtained. Comparison be-
tween algorithms shows MSE for SYMPES (MSEmin =
3.174) and G.723.1 algorithm (MSEmin = 0.2898), and
for the proposed MP3 algorithm (MSEmin = 0.0524).
These results prove the quality of the proposed solu-
tion. Hence, the obtained results recommend the use
of PCC algorithm with G2P kernel in preprocessing
of signals compressed by MP3 method for further pro-
cessing by algorithms which require a precise determi-
nation of the fundamental frequency.
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