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The aim of this paper is to present the effect of acknowledging viscaunpihg, structural
internal damping and fluid loading on active vibration control of a circplate in case of axi-
ally symmetrical vibrations. It was assumed that a planar vibrating steulcicated in a finite
baffle and interacting with fluid is driven by a periodic force with constampléude, so the
structure radiates the acoustic waves into a surrounding fluid and the asyialiymetrically
located circular piezoelectric actuators are used to reduce its vibrationthd=purpose of
control strategy designing process the continuous model derivedghysical principles for
the system under consideration has been developed. Next, the lineanathtiewas obtained
by reduction and approximation of the continuous model using the orntabgeries method.
After that, the acquired model was used to produce body plots and to cmikesponding
Riccati equation. Obtained control forces led to significant reduction eptate vibration
and attenuation of accompanied acoustic waves. The simulations of the @anticellation of
the plate vibrations were made with a Simulink/Matlab computer program.

Keywords: fluid loading, viscous damping structural internal damping, plate vibratton
trol.

1. Introduction

The vibration and sound radiation of a circular plates have been studiathby
researchers since it is a significant structural element in many induséiids.fiLord
Rayleigh was the first who analysed the “reaction of the air on a vibratiroglair
plate” [14], showing that reaction to be equivalent to a virtual mass atidtran damp-
ing to be added to the plate mass and the mechanical damping. For the design of a
effective kind of control suppressing plates vibrations and relatedssicoradiation,
the accurate modeling of the acoustic structural and coupling componemtseissary.
Except of internal and viscous damping phenomenon, the major difficulgnwirteat-
ing acoustic radiation into fluid medium is the inclusion of the fluid structure cogplin
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As pointed out by UNGER and FeIT [5] it should be noted that the structure/fluid in-
teraction in case of plates, where all plate modes are coupled by the fluidhaage
plates responses in a significant way. The effect of the fluid loadingetisa/ the in-
fluence of viscous and internal damping needs to be carefully examined ifants to
design an effective kind of control.

Early solutions of the radiation of plates with fluid/structure coupling werergiv
by Davies [3] in case of a simply supported rectangular plate. He proposed to use
a wavenumber transformation of the fluid and structure governing eqeatiahto ex-
press the radiation impedance in terms ofitheacuomodes of the plate. The classical
methods usingn vacuoplate eigenfunctions to formulae fluid/structure coupling, which
essentially involves the calculation of the radiation impedance, have beameeplso
for a circular plate in an infinite baffle @vINE and LEPPINGTON[13], KwAK and
Kim [8], RDzANEK [16], more recently by INGGUO and QROCKER[4]) and also for
the plate located in a finite baffle EINlOWSKA [9]).

Furthermore, the problem of control of fluid-loaded circular plate has lexam-
ined by several authorsUtLER [5], GU and RULLER [6], MEIROVICH [14]. It was
also solved by the author of this papeefuowska [10-12]) for point and distributed
actuators and for different boundary conditions of the circular platatéatin a finite
baffle.

The present work is a continuation of a previous study that considets@ aon-

trol of vibration and sound radiation from a clamped circular plate whicratesl into
a “light” fluid medium. It is focused on the investigation how much the damping and
modal coupling may affect control performance. This study adds nelerstanding
to research in controlling the vibration and sound radiation from objectséstiuns.
It is demonstrated how the poles an zeros of object model can migrate oortipex
plane in dependence of changing parameters and what are the limits ¢f eneuing.
This information is very useful for finding basic object properties asilgialetc. and
to design an effective kind of control. Moreover, on the base of thigimétion the
feedback control law with feedforward correction is developed fanscand vibration
cancellation of the considered plate.

In this approach the solution is expressed in termga ohcuoplate eigenfunctions.
The resulting integral expressions can be calculated numerically and ihesed to
form the state-space equation. The formal solution of the fluid-plate adb@gjeation
is presented in case of axially symmetrical vibrations, for a plate drivenumifarm
harmonic primary force and controlled by a distributed secondary faeeerated by
piezodisks. Three parameters which characterize fluid density, plateiahatézrnal
damping and viscous fluid damping are included in the considered model. &llis w
known that the dynamic behavior of the linear systems depends stronglg @octtion
of the models’ roots (zeros and poles). To examine the stability of the systeradts
of the system with assumed parameters were plotted on a complex plane fadte ef
of fluid-loading, internal and viscous damping on the system resporselaserved
and presented graphically. Finally, the feedback control law is dewlfqpehe plate
vibration cancellation.
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2. State-space system model

The structure under study is a vibrating circular plate of radjusaving a constant
thicknessh, surrounded by a lossless medium with the rest depgitin the case being
considered, the applied loading and end restraints of the circular platedamendent
of the anglep, (axially symmetrical vibrations), thus we can write the governing differ-
ential equation of the forced motion of the plate as follows [11]:

2

0 0
4
[Viw(r,t)] + 'yatw(r, t) + ph8t2w(r, t)

:fw(rvt)+fs(r’t)+fp(rvt)a (1)

BVYw(r,t) + Ré)at

whereB = Eh3/12(1 — v?) is the bending stiffness of the plate, v and R are the
Young’s modulus, Poisson’s ratio and Kelvin—Voigt damping coefficientlie plate,

p is density for the combined structure, apnds viscous fluid damping coefficient,is
the radial variable. It is assumed that the plate, clamped in a flat, rigid andifafite

of radiusb, (b > r > a, z = 0), is excited on one side by a uniform periodic force
with constant amplitudéy: f,(r,t) = Fype ™! for 0 < r < a and it radiates into
free space filled with fluid of density,. The system model is formulated when taking
into account the coupling effect between the structure and the acoustiarmesb the
third component of the right hand side of Eq. (£),(r, t), represents the acoustic fluid-
loading acting on the plate as an additional force. The goal in the contblgm is

to determine a control forcé (r, t) which, when applied to the plate, leads to reduced
level of vibrations. The second component of the right hand side oflBqepresents
such a wanted control forcé; (r, t), which will cancel the plate vibrations. The model
presented above can be expressed in the state-space format [11]:

X(t) = Ax(t) + Bu(t) + Vz(t), 2)

where the dot denotes differentiation with respect to tirmis,the @z x 1) state vector,
uis (m x 1) control vector, and\ is (n x n) state matrixB is the ¢ x m) control input
matrix, V is (1 x n) disturbance matrix, described as follows:

0 1
AT 04 E 19 (im0 ) |
i ) 3
B = 0 V = [ -
RR( +E)‘1KJ ’ LU H+E) Ky |

In above expressiondenotes identity matriX ; andK ,, are the coefficient vectors,
E represents fluid-plate interaction matrf®, = diag[w, w2, ..,wn], p1 = R/B and
p2 = v/ph.
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3. System dynamics and damping effects

It is convenient to plot the roots of the system for assumed parametersoonmex
plane to examine the possibility of instability of the system and the influence of fluid
loading as well as structural internal damping and viscous damping. Tiedplaade of
aluminum. The surrounding fluids were water, propane and air refiregeaspectively
strong, moderate and light coupling between the structural and acousgimnise.

The location of poles and zeros of the eight-order system has beanfwdsn air,
for two values of parameter, and constant; (Fig. 1). It can be seen that the values of
internal damping coefficient; have considerable influence on systems’ root locations.
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Fig. 1. Distribution of poles and zeros of the considered system in ajfo+ 0.5: a) u1 = 0.0001,
b) 1 = 0.00002; o — zeros A — poles.

On the basis of the pole locations we can make a conclusion about the system d
namics which may be observed on the Bode diagram (Fig. 2). It is worthteothat
the modification of parametar,, assuming the linear range 0.1-100 [sR}ndoes
not change root locations noticeably and can be observed on the Bagtard in the
vicinity of the resonance peaks. The third parameter included in the modetdiethe
fluid-loading term [2]:eq = po/phko, in which kg is the acoustic wave number, is
helpful for examining the influence of the fluid surrounding the consdliplate.

As the density of the surrounding fluid medium increases, the roots of gtensy
move to point (0, 0) on the complex plane (Fig. 3).

The Bode diagram reveals an additional feature which is important foraimeat
design of controller transfer function, namely a phase shift, especiallgpidrequency
radiated acoustic waves. As a result of the fluid coupling the response @late in
fluid can be significantly different from responsesvacua It can also be observed,
that the effect of the fluid-loading on the considered plate is dependeheaxcitation
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Bode Diagram
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Fig. 2. Bode diagram of the fluid-plate system in air: Jur = 0.0001122, 2 — 1 = 0.000022,
3 — 1 = 0.000044.
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Fig. 3. Distribution of poles of the considered systemor= 0.00002, ;2 = 0.5 and three kinds of the
fluid density: — po = 1000, 0 — po = 500, + — po = 1.2.

frequency. In the case of lower frequencies, the shift of the rem@npeaks is greater
and when the operating frequency increases it diminishes.

To illustrate this effect let us consider an example where the fluid is watéineso
strong coupling can be theoretically assumed. The Bode diagrams of tamspsjues-



Bode Diagram

L. LENIOWSKA
tion for the “lower” (Fig. 4) and “higher” (Fig. 5) frequencies of acbie waves presents

as follows:
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It can be observed that for higher frequencies the characteristiesrw shifted.
It leads into conclusion that the frequency spectrum is not an unifommado A fur-
ther examination of the system dynamics shows that it divides into two red@etsy

the frequency defined as [2;, = ;OC%, the surrounding fluid mass-loads the plate.
Tp

In this case the resonances peaks and corresponding phasestadetsvards lower

frequencies on the Bode diagram (Fig. 4). On the other hand, fardrezies of acoustic
response, the fluid acts as dampener — the effect of the fluid-loading lisssrd&urves

on Bode diagram cover each other (Fig. 5).

4. Plate vibration control

The aim of the project is to design a control system to modify the respontée of
plant in some desired fashion. The closed-loop setup is sketched in Fig. 6.

Pl
feedforward Per!od!c
controller excitation
Sound
s LaR |« Circular [+ Surrounded |PreSSUre
Reference ¥- | controller plate medium
signal T
Measurement Displacement,
transfer function velocity

Fig. 6. Block diagram of the simulated system.

The object is to minimise the plate vibrations and the far-field acoustic pressure
p(Py,t), in plate axis. This is to be achieved by the control forge) = u(¢) acting
on the plate surface. For the system modelled as (2)—(3) the problem isetonde
the necessary control(¢) which will minimise in timet;, the following performance
index [11]:
ty

1
=3 / [XTQx + uTRu + vXTP] dt, @)
0

whereQ, R denote weighting matrices amlis the far-field acoustic pressure matrix
corresponding tp( Py, t) [11]. The control input that minimises this performance index
is derived by applying Hamilton’s principle and by solving Riccatti equationguShur
tuning technique [1]. Finally we obtain the following control law [11]:

u=—R*![(Qaf +B'K)x+ Qfyz+B'v]. (5)

The obtained control contains three components. The first one is a madfficamt
BTK with an additional weighting matriQx5 multiplied by the state vector. The next
two components make additional feedforward correction with Pl-structure
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In the case of feedforward controller the gain coefficients are adhifreen the
analytical computations according to the expression [11]:

173

v(t) = / A TR u(r)dr (6)
0

The integral and the proportional part of the wanted cont(o) in (5) is calculated
directly from the excitation signal.

In simulations the model including the eight modes of the aluminum plate of a 0.4 m
diameter and 1 mm thickness was applied. The time response of the systenu-on sin
soidal disturbance of 100 Hz has been obtained using the Simulink/Matlabutemp
program.

The plate displacement (sum of eight modes) is plotted in Fig. 7a. It carebetsst
the uncontrolled plate response vibrates significantly while the switching obbQRe
controller (after 0.4 sec) causes that plate vibrations have been tedicet 50%. The
acoustic pressure generated by the plateaes at Fraunhofer’s zone is plotted in the
Fig. 7b. Itis attenuated after 0.4 sec about 40%, except of the pointe wWieecontroller
starts. The feedforward corrector which starts after 1.2 seconds egplmth results
significantly.
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Fig. 7. The time response of the open-loop system (0-0.4 s), thelolmgesystem with LQR controller

(0.4-1.2 s) and the close-loop system with LQR controller and feedfaraorrector (1.2—2 s) to the sinu-

soidal signal of 100 Hz foa; /a = 0.07: @) the plate displacement (sum of eight modes), b) the acoustics
pressure generated by the plate at Fraunhofer’s zone.

5. Concluding remarks

This paper is focused on the investigation how much the damping and modal cou
pling may affect control performance. The structure under congidaravas a thin
circular plate with distributed control forces located in its center. The apjaicaf
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optimal linear quadratic theory to the problem of plate vibrations, inducingsiico
noise in the audible frequency range, shows that this control technidue k& very
good reduction of plate vibration, but the response of the plate in fluid easidh
nificantly different from responses vacua It can be observed, that the effect of the
fluid-loading on the considered plate is dependent on the frequency ofitthation.
In the case of lower frequencies, the shift of the resonance peaksaaresponding
phases is greater and when the operating frequency increases it desinsfurther
examination of the system dynamics shows that the frequency spectrune clivided

into two regions. Below the border frequengy;: = 5002, the surrounding fluid mass-
p

loads the plate, and above — the fluid acts as dampener. It can be alsottstdtead
values of internal damping coefficient have considerable influence on systems’ root
locations.
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