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Ultrasonic measurements of the velocity and absorption coefficigift?, of aqueous so-
lutions of 3-cyclodextrin with alkyl pyridinium bromides {Han+1CsH4NBr (n = 8, 10, 12),
were carried out at the following temperatures: 288.2 K, 298.2 K,Z&8nd 318.2 K, and
frequency range from 1 MHz to 150 MHz. Concentration of the both ecomapts equaled
0.01 M. The occurrence of two ultrasonic relaxation processes leasrbported. Thermody-
namic and kinetic parameters related to these processes have bedsi@alcthe obtained
results have been compared with data published previousty-tiyclodextrin systems.
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1. Introduction

a-, (- and~y-cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides
composed of six, seven, and eight D-glucose units, respectivelsuBecCDs are shaped
like a truncated cone with a cavity in center, they accommodate a substrate lmatecu
their cavities to form an inclusion complex. The hydrophobic cavity forms ealidar-
bor in which poorly water-soluble molecules can shelter their most hydtpiparts.
The contact between such a poorly soluble compound and CD in aquadrenenent
can result in complexation with no covalent bonds. Due to the hydrophilicdeuts
the CDs, such a complex is a soluble entity on its own. The CDs have beennegthk
to form inclusion complexes with a variety of molecular species by severdk ki
driving forces, where the hydrophobic interaction has been founthtogm important
role [1-3].

It has been demonstrated that the addition of the CD to an aqueous solutisoref
factant affects dramatically the physicochemical properties of the solutieti]. The
reason for these changes is the ability of CD to screen the hydrophobitesméthe
surfactant molecules from contact with the surrounding aqueous metha bgrmation
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of the inclusion complex in which the hydrophobic chain of the surfactantsisriad
into the CD cavity. As a result, surfactants are excellent guests which agst@matic
study of complexation with CDs since both their hydrophobic and hydrophilieties

can be systematically changed. Indeed, the ability of CDs to modify the ploysioe

ical properties of such aqueous solutions has been used to study thgitezation
behavior with surfactants, and a variety of experimental techniqueshemreapplied
for this purpose. They include calorimetry [6—9], conductivity [10-2®,28], compet-
itive binding using UV-visible and fluorescent probes [16, 21-24, R8]R [6, 25-29],

surface tension [30, 31], sound velocity [32—34], ultrasound gbieor [35, 36] and
electrochemical [37—41] methods.

The ultrasonic spectroscopy technique is an important tool for elucidatibasic
solution processes and reaction mechanisms occurring in the microseausbtsec-
ond range. Despite of the kinetic information, ultrasonic relaxation studrepreaide
thermodynamic information about the relaxation process [35, 36, 4204&]such area
still not well understood is the inclusion of guest molecules by CDs in theitieav

2. Experimental part

Measurements of the absorption coefficient,f2, in aqueous solutions g#-CD
(Aldrich) with alkyl pyridinium bromides GHsn11CsH4NBr (n = 8,10, 12) (Aldrich)
were performed in the frequency range from 1 MHz to 150 MHz at theatig tem-
peratures: 288.2 K, 298.2 K, 308.2 K and 318.2 K, and at the concemtizti®.01 M
of each of the components, i.e. CD and surfactant.

The measurements were made by means of the resonator [44—-46] andBuisg
methods in the frequency range 1-10 MHz and 10-150 MHz, resplgctiee mea-
surements errors were about 6% for the former method and below 3%gftattar one.

The additional measurements of the velocity of sound and the density fersbkes
tions were also made. They were needed for further calculations. Toatyeof sound
was measured applying the resonator method [44—46] at the frequeétciMHz. The
measurements of the density were performed by means of a MG-2 densiBmikt
Poland) which works on the principle of a U-shaped tube oscillator.

The parameters of the theoretical equations (1) and (2):

1

Z 1+ ( f/fm )
f/fvi

ZumzlJr GIr )

were adjusted to the measured values of absorption by means of nonégesgsion.
The adjusted parameters are: the relaxation frequefigythe relaxation amplitude,
A;, the “classical” sound absorption (the effects of viscosity and heatustivity on
sound absorption)3, and the maximum of the excess (i.e. above “classical”) absorption
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per wavelengthy,,;. f is the measured frequeney,is the ultrasonic absorption, =

(a — Bf?)) is the excess absorption per wavelengti\ = ¢/, c is the speed of
sound)/ is the number of relaxation processks=(2 in our case). The relation between
A; andy,; is as follows:p,,; = friA;i (¢/2).

3. Experimental results and calculations

The results of the measurements are presented in Tables 1-3.

Table 1. Ultrasound absorption, velocity of sound and density for aqueous sadutib3-cyclodextrin
with octyl pyridinium bromide.

temperature [K]
288.2 [ 298.2 [ 308.2 [ 3182
f [MHz] absorptiomy/ f? [107° ’m™]
1.00 | 428 | 345 | 27.1 | 214
155 | 409 [ 329 | 263 | 213
2.04 | 415 | 332 | 256 | 205
3.08 | 403 | 322 | 257 | 213
357 | 40.6 | 319 | 259 | 208
460 | 39.4 | 320 | 248 | 204
558 | 38.8 | 31.0 | 249 | 198
6.32 | 383 | 307 | 244 | 19.9
7.06 | 37.6 | 303 | 241 | 194
8.50 | 37.1 | 294 | 233 | 189
9.35 | 365 | 29.0 | 230 | 187
10.00 | 36.2 | 289 | 228 | 184
15.00 | 34.6 | 273 | 214 | 171
2000 | 337 | 264 | 206 | 162
3000 | 322 | 251 | 193 | 152
40.00 | 314 | 243 | 186 | 145
50.00 | 30.9 | 239 | 181 | 141
60.00 | 30.6 | 236 | 179 | 138
7000 | 304 | 234 | 17.7 | 136
80.00 | 30.3 | 233 | 176 | 135
90.00 | 30.2 | 232 | 175 | 134
100.00 | 30.1 | 23.1 | 174 | 133
11000 | 30.1 [ 231 | 17.4 | 133
120.00 | 30.0 | 23.0 | 173 | 132
130.00 | 30.0 [ 230 | 173 | 132
140.00 | 30.0 | 23.0 | 173 | 132
15000 | 29.9 [ 229 | 172 | 132
velocity [m/s]
1471.3] 1501.9] 1525.0] 1541.6
density [kg/m]
1001.7] 999.6 | 996.7 [ 992.8
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Table 2. Ultrasound absorption, velocity of sound and density for aqueous sadutibs-cyclodextrin
with decyl pyridinium bromide.

temperature [K]
288.2 | 298.2 | 308.2 | 318.2
f [MHz] absorptiomy/ f? [107° m™]
1.00 | 459 | 374 | 306 | 258
155 | 459 | 381 | 298 | 258
2.05 | 458 | 37.1 | 311 | 251
3.08 | 443 | 36.1 | 29.7 | 256
355 | 437 | 358 | 29.4 | 248
436 | 426 | 352 | 285 | 24.0
561 | 41.3 | 338 | 279 | 233
6.31 | 405 | 33.0 | 27.1 | 23.0
7.09 | 396 | 326 | 265 | 222
850 | 387 | 312 | 256 | 21.4
925 | 381 | 30.8 | 24.9 | 208
10.00 | 375 | 30.7 | 246 | 205
15.00 | 355 | 283 | 224 | 183
2000 | 341 | 272 | 212 | 172
30.00 | 325 | 257 | 198 | 158
40.00 | 316 | 247 | 189 | 14.9
50.00 | 31.1 | 242 | 184 | 144
60.00 | 30.8 | 239 | 181 | 14.1
70.00 | 306 | 237 | 17.9 | 139
80.00 | 304 | 236 | 17.8 | 138
90.00 | 30.3 | 234 | 176 | 137
100.00 | 30.2 | 234 | 176 | 136
110.00 | 30.2 | 233 | 175 | 135
120.00 | 30.1 | 233 | 175 | 135
130.00 | 30.1 | 232 | 17.4 | 134
140.00 | 30.1 | 232 | 174 | 13.4
150.00 | 30.1 | 232 | 174 | 13.4
velocity [m/s]
1471.3] 1502.2] 1525.5] 1541.9
density [kg/m]
1001.9] 999.8 | 996.9 [ 993.1

The representative plot of the coefficient of sound absorptigiiZ, vs. frequencyf,
for the aqueous solution gF-CD and decyl pyridinium bromide at temperature 298.2 K
and the plots of the dependence of the excess sound absorption fbengdk,.., on
frequency,f, for the investigated systems at 298.2 K are shown in Figs. 1-4, respec-
tively.
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Table 3. Ultrasound absorption, velocity of sound and density for aqueous sadutibs-cyclodextrin
with dodecyl pyridinium bromide.

temperature [K]
288.2 | 298.2 | 308.2 | 318.2
f [MHz] absorptiomy/ f? [107° m™]
1.00 | 493 | 433 | 350 | 287
155 | 49.6 | 40.1 | 342 | 29.9
2.05 | 482 | 402 | 343 | 30.2
3.08 | 47.0 | 396 | 332 | 288
355 | 466 | 39.2 | 334 | 288
436 | 455 | 379 | 324 | 279
561 | 436 | 36.7 | 30.8 | 265
6.31 | 429 | 357 | 304 | 26.2
7.09 | 421 | 351 | 29.7 | 25.4
850 | 405 | 339 | 281 | 241
925 | 399 | 330 | 277 | 236
10.00 | 392 | 326 | 27.0 | 231
15.00 | 36.6 | 295 | 240 | 20.0
20.00 | 349 | 279 | 223 | 183
30.00 | 330 | 26.2 | 205 | 16.4
40.00 | 32.0 | 251 | 194 | 154
50.00 | 314 | 245 | 189 | 148
60.00 | 310 | 242 | 185 | 144
70.00 | 30.7 | 239 | 183 | 142
80.00 | 30.6 | 237 | 181 | 14.0
90.00 | 304 | 236 | 179 | 139
100.00 | 30.3 | 235 | 17.8 | 138
110.00 | 303 | 234 | 178 | 137
120.00 | 30.2 | 234 | 17.7 | 136
130.00 | 30.2 | 234 | 17.7 | 136
140.00 | 30.1 | 233 | 176 | 135
150.00 | 30.1 | 233 | 176 | 135
velocity [m/s]
1471.5] 1502.4| 1525.5] 1542.2
density [kg/m]
1002.4] 1000.3| 997.3 | 993.6

The values of the parameters of Egs. (1) and (2) are shown in Table 4.

For 3-CD, two relaxation processes occur for the all used alkyl pyridiniugy br
mide surfactants. In case afCD there are also two relaxation processes for decyl and
dodecyl hydrocarbon chains of the surfactants and single relaxatimegs for octyl
one [48].
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Fig. 1. Plot of the coefficient of sound absorptiarf?, vs. frequencyf, for the aqueous solution g-CD
and decyl pyridinium bromide. Temperature 298.2 K, concentratioh Bl.
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Fig. 2. Plot of the excess sound absorption per wavelepgths. frequencyy, for the aqueous solution
of 3-CD and octyl pyridinium bromide. Temperature 298.2 K, concentrdlioa M.
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Fig. 3. Plot of the excess sound absorption per wavelepgths. frequencyy, for the aqueous solution
of 5-CD and decyl pyridinium bromide. Temperature 298.2 K, concentr&tiol M.
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Fig. 4. Plot of the excess sound absorption per wavelepgths. frequencyy, for the aqueous solution
of 3-CD and dodecyl pyridinium bromide. Temperature 298.2 K, conaéntr 0.01 M.
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Table 4. Relaxation parameters for aqueous solutiong-af/clodextrin with alkyl pyridinium bromides
at different temperatures.

15 15 15
w0 | | e | e | e |2 |y
octyl pyridinium bromide
288.2| 22.8 5.87 98.4 5.7 6.58 27.6 29.8
298.2| 25.2 4.79 90.7 6.7 6.22 31.1 22.8
308.2| 27.3 4.01 83.5 8.2 5.44 34.0 17.1
318.2| 31.1 3.18 76.3 9.5 5.29 38.7 13.0
decyl pyridinium bromide
288.2| 24.2 5.53 98.5 6.0 11.3 49.9 29.9
298.2| 27.0 4.55 92.2 7.2 10.3 55.9 23.0
308.2| 30.1 3.59 825 8.3 10.2 64.7 17.2
318.2| 324 3.06 76.4 9.1 9.95 69.8 13.2
dodecyl pyridinium bromide
288.2| 26.8 5.38 106 7.0 14.3 73.7 29.9
298.2| 294 4.29 94.7 8.0 14.1 84.6 23.1
308.2| 32.0 3.51 85.6 9.1 14.2 98.5 17.4
318.2| 35.7 2.95 81.1 9.9 14.0 107 13.3

The values of theB parameter are slightly greater then the absorption coefficient
o/ f? for pure water at given temperatures. This can be caused by a highesity of
the liquid systems under test than that of water. This fact indicates that 4B6vMHz
there are no other relaxation processes which could be connected wiiteence of
(£-CD and the surfactant in the aqueous solution.

In the case of3-CD solutions (contrary tax-CD [48, 49], there is lack of the
measurements of ultrasonic absorption at different concentrations doe solubil-
ity of 3-CD in water) it was assumed that indicate that the origin of the relaxations is
a first-order or a pseudo-first-order reactions. Subsequently, dhisygption was con-
firmed by linearity of dependencies (T) = ¢:1(1/T) and In,,,5T) = g2(1/T)
(g1 and go denote functions). Thus, for the first-order or a pseudo-firstrorelac-
tion is:

k12

Ay Ay, 3)
k21

where A, and A, denote two stages of the inclusion compliy andks, are the rate
constants of the direct and opposite reactions, respectively.

For this kind of relaxation processes, the following kinetic and thermodynfamic
mulas can be derived [50-52].
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The relaxation frequency,., can be expressed as

1 kT AS7, ~AHZ
r=—kn (1+K)= 2l — 2 (1+K 4
f 27Tk‘21( + K) zﬂhexp< = >6Xp< =T >( +K), (4

whereK is the equilibrium constant for reaction (X (= ki2/ks1), ASZ; andAHZ,
are the activation entropy and activation enthalpy for the opposite reactgpectively.
T is the absolute temperatur®, k andh are the gas, Boltzmann and Planck constants,
respectively.

The function (4) is a linear one in the If)(/T) and (/T) co-ordinates with the
slope

AH}, K AH

TR T1+K R ®)
and the intercept
B k AST,

when the relationship between the equilibrium consti&nand the reaction enthalpy
AHC,

dln K AH°
= - ) (7)
d(1/T) R
is applied.
The maximum excess attenuation per wavelength,is given by
s AVS2 K

Hm = 55 R (1+K)2C, (8)
whereg is the adiabatic compressibilith Vs is the isentropic change of volume which
accompanies the transition from the stdtgto the stated,, C' is the total molar con-
centration.

In the In(,,,5T) and (/T system of co-ordinates, the plot of Eq. (8) is a straight
line with the slope

AH°K —1
WTTR K+1 ©)
and the intercept
T AVZ
b, =In (2 RS ) . (10)
After combining Egs. (4), (5), (9), one can get a formula from fiatan be calculated:
y 7 (o)
=exp |=|ar+——a (1+K), (11)
kl AS; T\ T K 1™
onh P\ TR

where the values af, a, and AS, can be determined from the ultrasonic measure-
ments.
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Thus, from the Egs.: (6), (11), (9), (5) and (4), the valueAsf,, K, AH", AH,
andks; can be calculated. Subsequently, the values of other kinetic and theramityn
parameters can be determined according to the formulas:

e the rate constant of direct reaction

k1o = Kkay, (12)
e the free enthalpy of activation of the opposite reaction
AG3, = AHJ, — TAS3,, (13)
e the free enthalpy of the reaction (3)
AG’ = —RTIh K, (14)
e the entropy of the reaction (3)
ASO = M’ (15)
T
e the enthalpy of activation of the direct reaction
AH7, = AH® + AHJ,, (16)
e the entropy of activation of the direct reaction
AS7, = ASY + AST,, (17)
e the free enthalpy of activation of the direct reaction
AGT, = AG® + AGE,. (18)

The thermodynamic and kinetic parameters of the high- and low-frequeocggses
are presented in Tables 5 and 6.

The high-frequency relaxation process in the liquid systems, which wejeds of
testing, is connected with the exchange of water molecules in the hydrataébbofsh
the CD molecule [53, 54]. This conclusion results from the similarity of the wtias
kinetic and thermodynamic parameters of this relaxation process for systgmerw
without surfactants, and this process is similar to described one [54TB&§, pen-
etration of the surfactant into CD cavity only slightly modifies the exchangeasf w
ter molecules. However, one can notice the decrease of the equilibriustaogi’,
(Table 5), when the length of the surfactant alkyl chain increasdsetomes larger).
This means that a longer alkyl chain of the surfactant makes more diffieudtthange
of water molecules.

The obtained results suggest that the origin of the low-frequency taaxarocess
is the penetration of the hydrophobic alkyl chain of the surfactant intoatigyoof CD.
The rate constarit;> and the equilibrium constarit (Table 6) increase when the alkyl
chain becomes longer (i.e. whanincreases). These facts reflect a deeper penetration
of the longer (and more hydrophobic) hydrocarbon chain into the Ipydroic cavity
of CD. As it was mentioned in [48], for the short octyl chain in the case-@fD (this



Table 5. Kinetic and thermodynamic parameters of the high-frequency relaxatiocess for aqueous solutions @fcyclodextrin with alkyl pyri-
dinium bromides GHzn+1CsH5sNBr at 298.2 K.

n| @ by | W | b, |K.107] AGT | AH? | AS° k12-107°| AGT, | AHZ, | AS7, |ka1-107%| AGZ, | AHZ | ASE
K] K] [kd/mol]|[k3/mol]|[J/(mokK)] | [s~!] |[kd/mol]|[kd/mol]|[I/(motK)]| [s~'] |[kd/mol]|[kd/mol]|[J/(molK)]
8|—-620.613.43724.4—27.58 4.31 | 135 | —6.08| —657 | 6.80 | 39.7 | —0.89| —136 | 1.58 | 262 | 519 | —70.6
10|-588.713.39761.0 —27.70 2.71 | 14.7 | —6.36| —70.5 | 459 | 40.7 | —1.44| —141 | 169 | 26.1 | 492 | —70.9
12| -566.813.40782.9—27.72 1.54 | 16.1 | —6.53| —75.7 | 2.84 | 419 | —1.81| —147 | 184 | 258 | 472 | —708

Table 6. Kinetic and thermodynamic parameters of the low-frequency relaxatioceps for aqueous solutions gfcyclodextrin with alkyl pyri-
dinium bromides GHan+1CsH5NBr at 298.2 K.

n| @ | b | | b, |K.107] AGT | AH | AS k12107°| AGT, | AH, | AS7, |k21-107%| AGZ, | AHZ, | AS3,
K] K=Y [kd/mol]|[kd/mol]|[3/(mokK)] | [s7]1 |[kI/mol]|[kd/mol]|[3/(motK)]| [s7*] |[kI/mol]|[kd/mol]|[J/(mokK)]
8|—-1312/14.43—-1052 22.69| 36.2 | —8.90| —9.24| —1.16 | 4.10 | 296 | 10.7 | —63.4 | 11.3 | 385 | 199 | —62.3
10/-984.513.3§—-1101/—21.92 43.3 | —9.34| —9.59| —-0.83 | 4.42 | 294 | 797 | —71.8 | 102 | 387 | 176 | —71.0
12/-809.812.91-1220—21.12 63.0 | —10.3| —10.5| —0.67 | 4.95 | 291 | 657 | —756 | 7.85 | 39.4 | 17.0 | —74.9

"'SNOILNTOS SNOINOV 40 SINFNIYNSYIN DINOSVYHLIN

LE9
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chain has rather weak hydrophobicity), this kind of penetration doetakeplace, thus
there is no low-frequency relaxation process in the agueous solutian<@f. For G-

CD solutions two relaxation processes have been established for abuisactant i.e.

with octyl, decyl and dodecyl chains., This difference behavior otith@D and3-CD
solutions can be connected with the dimensions of the cavity, which are gieate

CD than fora-CD. This means less steric hindrances when the alkyl chain penetrates the
(-CD’s cavity than thex-CD’s one. It seems that the stability of the inclusion complexes
depends mainly on a geometric factor i.e. similarity between the cavity dimensidns an
the penetrating moiety, as it was stated in [49, 56].

4. Conclusions

Ultrasonic measurements of the velocity and absorption coefficigift, of aque-
ous solutions of-CD with alkyl pyridinium bromides €Hon 1 CsH4NBr (n =8, 10, 12),
were carried by means of ultrasonic spectroscopy. For all of them thaxatgon proce-
sses have been established. Thermodynamic and kinetic parametereqgirthessses
have been calculated. The obtained results have been compared withubbshau
previously for agueous solutions @fCD with the same surfactants.

It seems, that the origin of the high-frequency relaxation process sected with
the exchange of water molecules in the hydratation shell of CD. The layudrecy
process results from the penetration of the alkyl chain of the surfadtanthe CD cav-
ity. The occurrence or not of the low-frequency process intteD and3-CD solutions
with alkyl pyridinium bromides can be connected with the dimensions of theitiesv
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