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In the paper the finite element simulations of the reduction of the noise ingderdhe
cage by piezoelectric actuators glued to chosen external walls is didcd$s=whole cage
structure and internal acoustic medium is modelled and piezoelectric éearerdispersed.
The first two lower natural frequencies are considered. The conpléiféerent results of
reduction are obtained for the analysed modes. The aim of the analysishiewothe possi-
bility of application of piezoelectric elements to active noise and vibrationedkation for the
realistic machine structure as crane cage.
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1. Introduction

The fields of active control and adaptive structures have evolved toeepast
25 years. Early efforts focused on the integration of distributed sgasat actuators to
target specific structural modes for application in sensing, actuatiootiof®, 8, 12].
DimITRIADIS etal.[9, 10] developed a detailed model that characterize the interac-
tion between the piezoelectric material and the structure so that they coustigate
the use of piezoelectric actuators to reduce the sound pressure rdwjidted circular
and rectangular plates. They concluded that these types of actuaiergidat promise
for controlling the vibration in distributed systems and subsequently the ¢ohtound
radiation. It was shown that the shape and position of the actuators rhaalfiedts the
distribution of the response among the different modes.
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It was also shown that actuators directly coupled to the structure in cosiplexdure-
acoustic problems yield a higher noise reduction [13, 14] (active stmalcamoustic
control — ASAC).

The active control methods were effectively implemented in a wide varietgpi-a
cations, including control of vibration of the large space structuresatidor and noise
in an aircraft, or in cars [18, 19, 30, 31].

Feed forward and feedback control schemes have been studiegaaodsvmod-
els and control techniques have been established in the field of active cwigrol
and ASAC e.g.: linear quadratic regulator, linear quadratic Gaussiafteketi LMS
algorithms, adaptive filter techniques, robust control techniques, nooddtol tech-
niques [15-17, 24, 29, 34].

There are well known papers discussed the noise and vibration @assivellation
problems in the whole cages of cranes, building machines or tractors edayperi-
mentally and numerically by SEA, BEM and FEM [11, 25, 27, 28]. Howeverdlis
no papers presented the problems of active reduction by piezoelectriergke

The aim of the paper is to model and simulation of vibrations of the cage and to
show possibilities of application of piezoelectric elements to reduction of stalatid
brations, and thus to reduction of radiated structural noise. These akarermounted
(glued) to external surfaces of the cages elements and are activattes dyyplied volt-
age variable in time. To reduction of vibration, the elements should be placetiimad
positions on the elements, which depends on the forms of vibrations (mdde®-
over, the amplitude of voltage is important. The next important problem is aigptie
optimal control algorithm which can activate, in the case of broadbarithéra, a few
modes. The simulations were done by the authors previously, to answercfdire
mentioned problems. The finite element computer package Ansys [1] whedipthe
analyses.

The first authors’ simulations [21] in which system of two L-shaped platessmod-
eled, shown possibilities of application of the finite element method in low frezgesn
and statistical energy analysis in high frequencies to analyse the ac@dstiton by
vibrating systems of plates. In the second simulations [22, 23, 32] the whgke af
heavy duty machine was modeled. It was shown possibility of influence osotined
radiation by changing geometrical parameters of the realistic system (tbkifiche
roof and walls). The third simulations was connected with reduction of nagiation
by the vibrating single plate with system of piezoelectric elements in the forms of line
and crossed strips. The analysis show possibility of application of the fileiteeat
package Ansys to analyse such group of problems, and show infloéapelied volt-
age amplitude on the sound radiation. The configuration of the elements wiese n
optimal, therefore the next, fourth group of analyses were preformteeB[3 39, 40]. In
this simulations the single plate with dispersed configuration of piezoelectric migme
were analysed. It was shown, that configuration of the elements hastanpimfluence
on the level of radiated noise.

The discussed simulations makes possible to built the general finite elemerit mode
of the whole realistic cage with piezoelectric elements dispersed on chodisranc
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roof. The model gives possibility to perform many of simulations which shifece
tiveness of application of the piezoelectric concept of sound radiatiothéorealistic
systems of vibrating plates. Some aspects of simulations are discussed ip¢he pa

2. Methods of numerical simulations of vibroacoustic processes irages

The following computer methods can be applied to analysis of vibroacoustie s
of radiation of structural sound: the finite element method (FEM), the banyrelement
method (BEM) and the statistical energy analysis (SEA). The acousticsasabften
apply the energy attempts, and use the definition acoustic intensity vector.gAtimien
methods the hybrid one [20] is useful. It makes possible to estimate the acoustic
tensity vector, produced by system of small areas, in chosen point ustcoedium.
The application of previously mentioned theoretical methods depends orthehcy
range. For the low frequencies, the finite element method or the bouniéangmr can
both be applied. For the high frequencies the statistical energy analgssieapplied.
The low frequency analysis and the high frequency names do not simuhected with
the range of frequency, but is combined with the modal characteristice @rthlysed
system i.e. modal density and modal damping.

3. Reduction of vibration and structural noise in cages
3.1. Geometry of cage. Finite element model

The realistic crane cage has been taken to the analysis. The cage wiasiglye
experimentally investigated, having in mind its vibroactivity [33, 38]. The stmecof
cage was modeled by solid elemeantid45in elastic case. Piezoelectric elements was

Fig. 1. FEM model of the crane cage.
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modeled by the structural-electric elemestdid5. The internal acoustic volume was
modeled by structural-acoustic eleménid30. The finite element model of the struc-
ture is shown in Fig. 1. Due to solid character of applied elements the junctimede
plates (walls) must be modeled separately. The finite element mesh nearrike aor
cage is shown in Fig. 2. The boundary conditions was modeled as fixatlisfuace-
ments for all directions for the whole six corners of the cage’s roof.

Fig. 2. FEM mesh near corner of the cage.

The piezoelectric elements in the form of cuboid form with dimensi2o x
200 x 1 [mm], were placed in the form of four pairs on all external surfaces ef th
cage’s walls of its back part. Configuration of the glued elements comedfimmode
shapes of the lowest modes and is based on the experiences fromioeigyemade
analyses. Distribution of piezoelectric elements is shown in Fig. 3.

£

Fig. 3. Distribution of piezoelectric elements.

All the walls of the back part of the cage and the roof are made of steelthand
walls of the front part of the cage and the bottom wall were made of glasghdsws.
The piezoelectric elements are made of PZT material. The acoustic medium iagele c
is air. The assumed material properties are given in Table 1.
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Table 1. Material properties.

Material PZT 4 Steel Glass
Young modulus - 207 GPa 53 GPa
Poisson ratio 0.29 0.29 0.22
Density 7500 kg/nt 7820 kg/mi | 2500 kg/ni
Modal damping coefficient 0.0003 0.0003 0.0003
dz1 601072 mv—! - -
Charge constants ds3 200- 1072 mv—1 - -
ds1 265 - 1072 m-v 1 - -
Relative permitivity €11/€0 680 - -
e33/€0 800 - -

3.2. Free vibrations of cage

In the beginning, to known the dynamic properties of the cage, the freatvabs
analysis was performed. The results give the frequencies and maqakssialues of the
low natural frequencies are given in Table 2. The results show the higlalindensity
of structure. For the lower mode shapes there is no nodal lines on alldb&s eealls.

Table 2. The lowest eigenfrequencies of the cage.

Mode No. 1 2 3 4 5 6 7 8
Frequency [Hz]| 11.16 | 14.45 | 14.87 | 15.20 | 19.09 | 19.39 | 22.01 | 23.52

4. Reduction of structural noise by piezoelectric elements

For the analysis of noise and vibration reduction by piezoelectric elemeatsxth
cited vibrations of the cage was analysed. It was assumed, that excitaidhenform
of concentrated load (force), harmonically variable in time, with amplitude of 4nd
put in the middle of the line of connection of the rectangular and trapezoid etsrog
the cage’s roof. The reduction of vibrations, and structural noise @ene by activate
of piezoelectric elements glued to the steel walls of the cage in its back parfirgthe
two modes was examined.

In the beginning the optimal value of the voltage was found by step by step chetho
\Voltage amplitudes were been changed in the range of 0-300 V, taking icboirsc
polarization too. The control parameters were amplitudes of bending vibsdtioplate
elements with maximal modal displacements and the amplitudes of pressure leeel in th
volume, where hand of the operator is placed.

The results of simulation are completely different for the considered méaes.
the first mode the noise reduction is not spectacular. The reached Vakguotion is
only about 2 dB (from 87.5 dB to 85.5 dB), and distribution of pressuriglénsage,
especially in the chosen control volume seems to be not enough and slicwlttss
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of the method. In Fig. 4 the amplitude of pressure level for the cross-ssatibthe
volume are shown for the case of the first mode with no activated elementsia.sh

/\

86.118 86.344 86.569 86.794 87.02 87.245 87.471 87.696 87.921 88.147

Fig. 4. The sound pressure level in the horizontal cross-sectios (0.7 m) for the first resonance
frequency (non activated piezoelectric elements).

The completely other results were obtained for the second mode. The Vaieso
sure reduction is about 17 dB (from 80 dB to 63 dB), and optimal presfigtributions
inside cage, with minimal values in the control volume (see Fig. 5 and Fig. &) sho
possibility of application of the method for realistic structure.

To— — |
52752 56541 00329 g4 118 67906 71 g5 75483 7957, 8306 ggeug
Fig. 5. The sound pressure level in the vertical cross-sectior=(0.7 m) for the second resonance

frequency (activated piezoelectric elements).
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Fig. 6. The sound pressure level in the horizontal cross-sectica (0.7 m) for the second resonance

frequency (activated piezoelectric elements).

The two different results of reduction for the analysed forms show ohdéat fur-
ther analysis should be performed. They should be focused on catf@uof piezo-
electric elements and the control algorithm.

5. Conclusions

Results of the numerical analyses show the possibility of application of the-piez
electric elements to reduction of the structural vibration for realistic big ergimg
structures made of plate type elements, as crane cages. However, tinedbésults
show, that for such relatively big elements, the piezoelectric dampingt éféecto be
designed for spectacular results. The effect can be increased by:

e Optimization of the number and distribution of piezoelectric elements. These de-

pends on the actively vibrating mode shapes.

e Optimization of the voltage amplitudes. They can be different for differdmtt-

ing modes (thus depends on amplitudes of vibration of modes).

e Choosing the groups of piezoelectric elements due to different modessbape

trolled separately with different voltage amplitudes.

e Application of the control algorithm for choosing element and amplitudesgjas e

LMS algorithm for ANC.

The next simulations and experimental tests, having in mind the discussed new

ideas, are in progress.
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