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A circular membrane excited asymmetricaly is vibrating and radiating acoustic
waves into the quarter-space limited by two rigid baffles arranged perpendicularly to
one another. These processes are time harmonic. The classical Neumann boundary
value problem has been solved using the complete eigenfunctions system together
with the corresponding coupling matrix and including the acoustic attenuation ef-
fect.
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1. Introduction

The acoustic interactions between sources and baffles are essential in the
problems of sound radiation caused by some complex vibrating surface systems.
They often require computing the acoustic power and the acoustic impedance as
well. The complete eigenfunctions system and the coupling matrix can be used for
describing the sound radiation of the mentioned vibrating systems. An adequate
theoretical basis for such analysis was presented in [1–4].

A number of studies is devoted to the sound radiation emitted by various
sources, some of them being the vibrating surface sources located within a flat
rigid infinite baffle or within a rigid infinitely long cylinder. Noise control related
to this sound radiation is also being studied [5–19]. The computations of the
total, active and reactive, sound power radiated by a clamped circular plate have
been presented in [5]. Having applied the modal analysis, one can consider the
influence of the radiated sound pressure on the vibration velocity of the plate.
The asymptotic formulas of the modal radiation resistance and reactance of an
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annular plate have been presented in [8]. An efficient method for visualization
and analysis of the sound energy flow has been proposed in [20, 21]. However, so
far only few papers have dealt with the sound radiation inside a quarter-space
or inside a hemi-quarter-space. The analytical research in this field was initiated
in [22] and successively extended in [23–30].

The acoustic impedance of the vibrating flat rigid circular piston radiating
into the quarter-space has been presented in [23] and [24]. This paper proposes an
extension of the previous results. The acoustic impedance has been computed for
a circular membrane excited asymmetricaly including the acoustic attenuation.
The spectral form of the Green function has been applied for this purpose. This
function is the solution to the Helmholtz equation with the Neumann boundary
conditions for the area of the two rigid baffles bounding the quarter-space. This
has made it possible to join two different boundary value problems: one associated
with the vibrations of the excited membrane and the second one associated with
the sound radiation.

2. Sound pressure

A circular membrane of radius a vibrates asymmetrically and radiates the
acoustic waves into the region of the quarter-space bounded by the two rigid
baffles arranged perpendicularly to one another. The region can be defined by
−∞ < x < ∞, 0 ≤ y < ∞ and 0 ≤ z < ∞. It is filled with the lossless gaseous
medium of the rest density %0. The membrane is embedded into the half-plane
z = 0 (cf., Fig. 1). This is the formulation of the classical Neumann boundary
value problem.

Fig. 1. The arrangement of the circular membrane located near the two-wall corner.
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The sound pressure radiated by the membrane can be formulated for some
time harmonic processes as p(r, t) = p(r)e−iωt where ω is the excitation circular
frequency,

p(r) = −ik0%0c

∫

S0

v(r0) G(r | r0) dS0 (1)

is the sound pressure amplitude, k0 = 2π/λ is the acoustic wavenumber, λ is
the acoustic wavelength, and c is the sound velocity in the gaseous medium,
v(r0) is the vibration velocity of the acoustic particle adjoining directly to the
membrane’s surface, r is the leading vector of the field point and r0 is the leading
vector of the membrane’s point. It has been assumed that v(r0) = vN (r0) where
vN (r0) ≡ vN (r0, ϕ0) = −iωW (r0, ϕ0) is the normal component of the membrane’s
vibration velocity amplitude. This assumption enables joining the two boundary
value problems mentioned above. One associated with the Helmholtz equation
and the second associated with the excited vibrations of the membrane. The
membrane’s transverse deflection amplitude has been formulated in terms of the
complete eigenfunction series [2]

W (r0, ϕ0) =
∞∑

m=0

∞∑

n=1

{
c(c)
mnW (c)

mn(r0, ϕ0) + c(s)
mnW (s)

mn(r0, ϕ0)
}

. (2)

This kind of series requires completeness to assure the correct results. There-
fore, the cosine and sine eigenfunctions of the degenerated mode (m,n) have been
used and formulated as follows



W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)



 = Wmn(r0)

{
cosmϕ0

sinmϕ0

}
, Wmn(r0) =

√
εm

Jm(kmnr0)
Jm+1(βmn)

(3)

for m = 0, 1, 2, . . . where εm = 1 for m = 0 and εm = 2 for m ≥ 1, βmn =
kmna is the membrane’s eigenvalue as well as the root of the frequency equation
Jm(βmn) = 0, and kmn is the modal structural wavenumber of the mode (m,n).
It is obvious that W

(s)
0n (r0, ϕ0) = 0 as well as c

(s)
0n = 0. The eigenfunctions have

been normalized by

1
πa2

a∫

0

2π∫

0





W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)









W
(c)
m′n′(r0, ϕ0)

W
(s)
m′n′(r0, ϕ0)



 r0 dr0 dϕ0 = δmm′δnn′ (4)1

and satisfy the homogeneous equation of motion

(
k−2

mn∇2 + 1
)




W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)



 = 0, (4)2

where ∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂ϕ2
. The normal component of the membrane

vibration velocity is
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vN (r0, ϕ0) =
∞∑

m=0

∞∑

n=1

ω

ωmn

{
c(c)
mnv(c)

mn(r0, ϕ0) + c(s)
mnv(s)

mn(r0, ϕ0)
}

, (5)1

where



v
(c)
mn(r0, ϕ0)

v
(s)
mn(r0, ϕ0)



 = vmn(r0)

{
cosmϕ0

sinmϕ0

}
, vmn(r0) = −iωmnWmn(r0) (5)2

for m = 0, 1, 2, . . . and v
(s)
0n (r0, ϕ0) = 0 where ωm, n = cMkm, n is the eigenfre-

quency of the mode (m,n), cM =
√

T/σ is the velocity of the wave propagated
over the membrane surface, σ is the membrane’s mass per its surface unit and T is
the uniform tension applied along its edge. The Green function for the Neumann
boundary value problem under consideration for z0 = 0 is [24]

G(r | r0) ≡ G(x, y, z |x0, y0, 0)

=
i

π2

+∞∫

ξ=−∞

+∞∫

η=0

ei [ξ (x−x0)+γz] cos ηy cos ηy0
dξdη

γ
, (6)

where γ2 = k2
0−ξ2−η2. The Cartesian coordinates of the field point (x, y, z) and

the source point (x0, y0, 0) have been converted into their local polar counterparts

x = r cosϕ, y = l + r sinϕ,

x0 = r0 cosϕ0, y0 = l + r0 sinϕ0,
(7)

where l is the distance from the membrane center to the baffle y = 0 (cf., Fig. 1).
Inserting Eqs. (6) and (5)1 into Eq. (1) yields the sound pressure amplitude

in the form of

p(r, ϕ, z) =
k0

π
%0c a2

∞∫

−∞

∞∫

0

ei (ξx+γz) cos ηy M(ξ, η)
dξ dη

γ
, (8)1

where the characteristics function of the membrane’s radiation is

M(ξ, η) =
1

πa2

a∫

0

2π∫

0

vN (r0, ϕ0) e−iξr0 cos ϕ0 cos η (l + r0 sinϕ0) r0 dr0 dϕ0. (8)2

These physical quantities can also be formulated in terms of their correspond-
ing modal components as follows

p(r, ϕ, z) =
∞∑

m=0

∞∑

n=1

ω

ωmn

{
c(c)
mnp(c)

mn(r, ϕ, z) + c(s)
mnp(s)

mn(r, ϕ, z)
}

,

M(ξ, η) =
∞∑

m=0

∞∑

n=1

ω

ωmn

{
c(c)
mnM (c)

mn(ξ, η) + c(s)
mnM (s)

mn(ξ, η)
}

,

(9)
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where




p
(c)
mn(r, ϕ, z)

p
(s)
mn(r, ϕ, z)



=

k0

π
%0c a2

+∞∫

−∞

+∞∫

0

ei (ξx+γz) cos ηy





M
(c)
mn(ξ, η)

M
(s)
mn(ξ, η)





dξ dη

γ
,





M
(c)
mn(ξ, η)

M
(s)
mn(ξ, η)



 =

1
πa2

a∫

0

2π∫

0





v
(c)
mn(r0, ϕ0)

v
(s)
mn(r0, ϕ0)



 e−iξr0 cos ϕ0 cos η (l+r0 sinϕ0) r0 dr0 dϕ0

= (−i)m+1ωmn
√

εm Ψmn(τ)

{
cos ηl cosmα

−i sin ηl sinmα

}
,

Ψmn(τ) =
2
a2

a∫

0

Jm(kmnr0)
Jm+1(βmn)

Jm(τr0) r0 dr0 =
2βmnJm(τa)
β2

mn − (τa)2
,

ξ = τ cosα, η = τ sinα

(10)

for m = 0, 1, 2, . . . and M
(s)
0n (ξ, η) = 0. Equations (8)–(10) constitute the complete

set of data necessary to express the distribution of the sound pressure amplitude
above the membrane’s area. This quantity will be further used to obtain the total
sound power radiated.

3. The acoustic power and the normalized acoustic impedance

The time-averaged acoustic power of the excited membrane can be expressed

using the well-known equation Π =
1
2

∫
S

pv∗N dS where S is the surface enclosing

the sound source. Applying the impedance approach implies that the compu-
tations are preformed for z = 0. Consequently, p ≡ p(r, ϕ, 0) (cf., Eq. (8)1),
v∗N = iωW ∗ (cf., Eq. (2)), and

Π =
1
2

k0 %0c a4

∞∫

−∞

∞∫

0

M(ξ, η) M∗(ξ, η)
dξdη

γ
, (11)1

where the conjugate value of the characteristic function is

M∗(ξ, η) =
1

πa2

a∫

0

2π∫

0

v∗N (r, ϕ) eiξr cos ϕ cos η (l + r sinϕ) r dr dϕ, (11)2
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which can also be expressed as

M∗(ξ, η) =
∞∑

m′=0

∞∑

n′=1

ω

ωm′n′

{
c
(c)∗
m′n′M

(c)∗
m′n′(ξ, η) + c

(s)∗
m′n′M

(s)∗
m′n′(ξ, η)

}
(12)1

in term of the following modal conjugate quantities




M
(c)∗
m′n′(ξ, η)

M
(s)∗
m′n′(ξ, η)



=

1
πa2

a∫

0

2π∫

0





v
(c)∗
m′n′(r, ϕ)

v
(s)∗
m′n′(r, ϕ)



 eiξr cos ϕ cos η (l+r sinϕ)r dr dϕ

= im
′+1ωm′n′

√
εm′ Ψm′n′(τ)

{
cos ηl cosm′α

−i sin ηl sinm′α

}
, (12)2





v
(c)∗
m′n′(r, ϕ)

v
(s)∗
m′n′(r, ϕ)



=v∗m′n′(r)

{
cosm′ϕ

sinm′ϕ

}
, v∗m′n′(r) = iωm′n′Wm′n′(r) (12)3

for m′ = 0, 1, 2, . . ., v∗0n′(r) = 0 and M
(s)∗
0n′ (ξ, η) = 0. Further inserting Eqs. (9)2

and (12)1 into Eq. (11)1 yields the sound power as the following fourfold series

Π =
∑

mm′

∑

nn′

ω2

ωmnωm′n′

{
c(c)
mnc

(c)∗
m′n′Π

(c,c)
mn, m′n′ + signm′c(c)

mnc
(s)∗
m′n′Π

(c,s)
mn, m′n′

+ signmc(s)
mnc

(c)∗
m′n′Π

(s,c)
mn, m′n′ + signm, m′c(s)

mnc
(s)∗
m′n′Π

(s,s)
mn, m′n′

}
(13)

in terms of the mutual acoustic power of the two interacting modes (m, n) and
(m′, n′) where signm is the signum function for an integer argument m, and
consequently sign0 = 0, signm = 1 and sign−m = −1 for m ≥ 1, and signm, m′ =
signmsignm′ . Each of the modes can be cosine and sine which gives the following
four different forms of the mutual acoustic power




Π
(c,c)
mn, m′n′

Π
(c,s)
mn, m′n′

Π
(s,c)
mn, m′n′

Π
(s,s)
mn, m′n′





=
1
2

k0 %0c a4

∞∫

−∞

∞∫

0





M
(c)
mn(ξ, η)

M
(c)
mn(ξ, η)

M
(s)
mn(ξ, η)

M
(s)
mn(ξ, η)









M
(c)∗
m′n′(ξ, η)

M
(s)∗
m′n′(ξ, η)

M
(c)∗
m′n′(ξ, η)

M
(s)∗
m′n′(ξ, η)





dξdη

γ
(14)

for m,m′ = 0, 1, 2, . . . and n, n′ = 1, 2, 3, . . . The signum function has been used
in Eq. (13) to highlight the fact that sinmϕ = 0 and sinm′ϕ = 0 within the
integrands in Eq. (14).

The modal reference acoustic power must be the non-zero value for m,m′ =
0, 1, 2, . . . and n, n′ = 1, 2, 3, . . . Remembering that Eq. (4)1 is non-zero only for
m = m′ and n = n′, and that
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1
πa2

a∫

0

2π∫

0





W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)









W
(s)
m′n′(r0, ϕ0)

W
(c)
m′n′(r0, ϕ0)



 r0 dr0 dϕ0 = 0 (15)

the modal reference acoustic power has been formulated as

Π
(Ref.)
mn, m′n′ =

√
Π

(Ref.)
mn Π

(Ref.)
m′n′ =

S

2
%0c ωmnωm′n′ , (16)1

where
Π(Ref.)

mn =
1
2

%0c

∫

S

∣∣∣v(c)
mn(r, ϕ)

∣∣∣
2
dS =

S

2
%0c ω2

mn. (16)2

Normalizing the modal mutual acoustic power from Eq. (14) by the modal ref-
erence acoustic power from Eq. (16)1 gives the modal mutual acoustic impedance




ζ
(c,c)
mn, m′n′

ζ
(c,s)
mn, m′n′

ζ
(s,c)
mn, m′n′

ζ
(s,s)
mn, m′n′





=
1

Π
(Ref.)
mn, m′n′





Π
(c,c)
mn, m′n′

Π
(c,s)
mn, m′n′

Π
(s,c)
mn, m′n′

Π
(s,s)
mn, m′n′





=
1
4

k0a
2 (−1)m im+m′√

εmεm′

·
∞∫

0





Φ
(c,c)
mm′

Φ
(c,s)
mm′

Φ
(s,c)
mm′

Φ
(s,s)
mm′





Ψmn(τ) Ψm′n′(τ)
τdτ√
k2

0 − τ2
, (17)

where the integration is performed in the complex plane of τ = τ ′ + iτ ′′ along
the real axis 0τ ′, omitting the branch point τ ′ = k0, and




Φ
(c,c)
mm′

Φ
(s,s)
mm′



 =

4
π

π∫

0

{
cos2ηl

sin2ηl

}{
cosmα cosm′α

sinmα sinm′α

}
dα

=

{
1

signm, m′

} {
2δmm′

εm
+ Jm+m′(2τ l)± Jm−m′(2τ l)

}
,





Φ
(c,s)
mm′

Φ
(s,c)
mm′



 =

4i

π

π∫

0

cos ηl sin ηl

{
cosmα sinm′α

− sinmα cosm′α

}
dα

= i

{
signm′

signm

}
{±signm+m′Jm+m′(2τ l)− signm−m′Jm−m′(2τ l)

}
.

(18)
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Applying Eqs. (13), (16) and (17) yields the acoustic power formulated in
terms of the modal mutual impedance as follows

Π =
S

2
%0c ω2

∑

mm′

∑

nn′

{
c(c)
mnc

(c)∗
m′n′ζ

(c,c)
mn, m′n′ + signm′c(c)

mnc
(s)∗
m′n′ζ

(c,s)
mn, m′n′

+ signmc(s)
mnc

(c)∗
m′n′ζ

(s,c)
mn, m′n′ + signm, m′c(s)

mnc
(s)∗
m′n′ζ

(s,s)
mn, m′n′

}
, (19)

where S = πa2.
Prior to using Eq. (19) for the numerical computations of the total sound

power, the complex coefficients cmn together with the modal mutual acoustic
impedance from Eq. (17) must be determined. For this purpose the equation of
motion of the excited membrane has to be solved.

The modal impedance can be approximated for k0a < βmn using the formulas
presented in [30]. It is worth noticing that the integrands in Eq. (17) are non zero
for m 6= m′ which result in the fourfold sum in Eq. (19). Moreover, the expression
within the brackets in Eq. (18)1 is asymmetric for the odd values of m−m′ since
Jm′−m(2τ l) = (−1)m−m′

Jm−m′(2τ l).

4. The equation of motion of the excited circular membrane

The basis of analysis is the model of membrane subjected to the uniform ten-
sion T along its edge of radius r = a. The membrane is made of the material of the
surface density σ and is embedded into a flat rigid baffle. The non-homogeneous
equation of motion of the membrane including the excitation f(r, t) and the
acoustic attenuation p(r, t) is

T ∇2W (r, t)− σ
∂2

∂t2
W (r, t) = −f(r, t)− p(r, t). (20)

The sound pressure amplitude from Eq. (9)1 appearing in Eq. (20) represents
only the radiation into the region of the quarter-space above the rigid baffle z ≥ 0.
It has been assumed that the radiation from the bottom of the membrane z < 0
is suppressed. If it would not then the sound pressure should be taken twice,
i.e. it should be written −2p(r, t) in Eq. (20) instead of −p(r, t). Assuming the
harmonic time dependence e−iωt yields

(
k−2

T ∇2 + 1
)
W (r, ϕ) = − 1

ω2σ
{f(r, ϕ) + p(r, ϕ, 0)} , (21)

where kT = ω/cM is the structural wavenumber and ω is the excitation circular
frequency. Inserting Eq. (2) and noting that Eq. (4)2 implied

∇2





W
(c)
mn(r, ϕ)

W
(s)
mn(r, ϕ)



 = −k2

mn





W
(c)
mn(r, ϕ)

W
(s)
mn(r, ϕ)



 . (22)
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Using the orthogonality of the trigonometric functions

εm

2π

2π∫

0

{
cosmϕ
sinmϕ

}{
cosm′ϕ
sinm′ϕ

}
dϕ = δmm′ (23)

makes it possible to formulate Eq. (21) in the form of

∑
mn

(
k2

mn

k2
T

− 1
){

c(c)
mnW (c)

mn(r, ϕ) + c(s)
mnW (s)

mn(r, ϕ)
}

=
1

ω2σ
{f(r, ϕ) + p(r, ϕ, 0)} . (24)

Multiplying it side by side by the cosine eigenfunction W
(c)
m′n′(r, ϕ) and by the

sine eigenfunction W
(s)
m′n′(r, ϕ) and further applying Eq. (4)1 gives one equation

for m = 0 and degenerates to the two complementary equations for m ≥ 1




c
(c)
mn

c
(s)
mn





(
k2

mn

k2
T

− 1
)

=
1

ω2σ








f
(c)
mn

f
(s)
mn



 +





p
(c)
mn

p
(s)
mn






 , (25)1

where 



f
(c)
mn

f
(s)
mn



 =

1
S

∫

S





W
(c)
mn(r, ϕ)

W
(s)
mn(r, ϕ)



 f(r, ϕ) dS, (25)2





p
(c)
mn

p
(s)
mn



 =

1
S

∫

S





W
(c)
mn(r, ϕ)

W
(s)
mn(r, ϕ)



 p(r, ϕ, 0) dS (25)3

and S = πa2, and dS = r dr dϕ. It is obvious here that when the acoustic
attenuation is neglected, i.e. p

(c)
mn = 0 and p

(s)
mn = 0, then the coupling matrix can

be determined immediately from Eq. (25)1



c
(c)
mn

c
(s)
mn



 =

1
ω2σ

(
k−2

T k2
mn − 1

)




f
(c)
mn

f
(s)
mn



 . (26)

However, this gives some improper solutions around the coincidence frequen-
cies k2

T ≈ k2
mn, and therefore the acoustic attenuation should to be included for

these frequencies. Further inserting Eq. (9)1 into Eq. (25)3, and applying Eqs. (16)
and (17) yields





p
(c)
mn

p
(s)
mn



 = −iω %0c

∑

m′n′


c

(c)
m′n′





ζ
(c,c)
m′n′,mn

ζ
(c,s)
m′n′,mn



 + c

(s)
m′n′





ζ
(s,c)
m′n′,mn

ζ
(s,s)
m′n′,mn






 (27)
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which inserted into Eq. (25)1 gives





c
(c)
mn

c
(s)
mn





(
k2

mn

k2
T

− 1
)

+ iε0

∑

m′n′


c

(c)
m′n′





ζ
(c,c)
m′n′,mn

ζ
(c,s)
m′n′,mn



 + c

(s)
m′n′





ζ
(s,c)
m′n′,mn

ζ
(s,s)
m′n′,mn








=
1

ω2σ





f
(c)
mn

f
(s)
mn



 , (28)

where the dimensionless acoustic attenuation factor has been denoted as

ε0 =
%0

k0σ
. (29)

Given that ε0 > 0, the double sum from Eq. (28) can be separated and inserted
into Eq. (19) providing another expression for the total acoustic power radiated
by the membrane formulated as the following double series

Π =
i

2
Sω

∑
mn

{
σω2

[
|c(c)

mn|2 + |c(s)
mn|2

] (
k2

mn

k2
T

− 1
)

−
[
c(c)∗
mn f (c)

mn + c(s)∗
mn f (s)

mn

]}
, (30)

where |c(c)
mn|2 = c

(c)
mnc

(c)∗
mn and |c(s)

mn|2 = c
(s)
mnc

(s)∗
mn . It is important to note that this

formulation cannot be used together with the coupling matrix computed from
Eq. (26). Instead, it must be used with the coupling matrix computed by solving
the algebraic equation system given in Eq. (28).

5. Numerical analysis

The following dimensionless parameters have been introduced to perform
some numerical computations of the total sound power radiated by the mem-
brane excited by the time harmonic surface force

ε1 = ε0
ω

ω01
, εT = ω01

a

c
= β01

cM

c
, (31)

where ω01 is the eigenfrequency of the membrane’s mode (0, 1). The parameter ε1

determines the influence of the acoustic attenuation on the membrane’s vibration
whereas the parameter εT determines its physical properties. The following four
excitations have been used
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f1(r, ϕ) = S
f0

r
δ(r − r0) δ(ϕ− ϕ0),

f2(r, ϕ) =

{
f0; 0 ≤ r ≤ b

0; b < r ≤ a

}
(cosMϕ− ϕ0),

f3(r, ϕ) = f0WMN(r) (cos Mϕ− ϕ0),

f4(r, ϕ) =

{
f0; 0 ≤ r ≤ b

0; b < r ≤ a

(32)

for 0 ≤ b ≤ a, where f0 [N/m2] is the excitation amplitude. In the case of the
excitation given by Eq. (32)1, the product Sf0 can be interpreted as the excitation
force exerted to the membrane at the point (r0, ϕ0) for r0 ∈ [0, a] and ϕ0 ∈ [0, 2π].
In the case of the excitations given by Eqs. (32)2 and (32)3, M = 0, 1, 2, ... is
the number of their nodal diameters. The variable ϕ0 is the excitation rotation
angle with the rotation center located at the membrane’s center. These three
excitations are essentially asymmetric exept for r0 = 0 and M = 0 whereas the
fourth excitation is axisymmetric for any value of b. The reference sound power
has been defined as (cf., [7])

Π0 =
S%0cf

2
0

σ2ω2
01

. (33)

Inserting the excitation distribution from Eqs. (32) into Eq. (25)2 and apply-
ing Eqs. (4)1 and (15) yields





f
(c)
1, mn

f
(s)
1, mn



 = f0





W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)



 ,





f
(c)
2, mn

f
(s)
2, mn



 = f0

δmM

εm
Fmn(b)

{
cosϕ0

sinϕ0

}
,





f
(c)
3, mn

f
(s)
3, mn



 = f0 δmM δnN

{
cosϕ0

sinϕ0

}
,





f
(c)
4, mn

f
(s)
4, mn



 = f0 Fmn(b)

{
1; m = 0

0; m ≥ 0

}
,

(34)
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where

Fmn(b) =
2
a2

b∫

0

Wmn(r) r dr.

It is worth noticing that Eq. (32)4 gives an axisymmetric excitation and there-
fore all the coefficients in Eq. (34)4 are equal to zero except for the axisymmetric
cosine ones, i.e. for m = 0.

Both Eqs. (19) and (30) can be used for numerical computations of the total
sound power. From the practical viewpoint, the number of terms within the infi-
nite sums must be finite. The appropriate value of this number is determined by
the excitation frequency, i.e. at least all the modes for which the eigenfrequencies
are smaller than the excitation frequency should be included. If higher accuracy
is necessary, a greater number of modes should used. In this paper, the matrix
of (M = 3) × (N = 3) = 9 modes has been included (the normalized eigenfre-
quencies are given in Table 1). This set of modes enables calculating numerically
the total sound power with the satisfactory accuracy for the qualitative analysis
within the excitation frequency range ω/ω01 ∈ (0, 4.83). As a result, we obtain
the set of R = (2M − 1)×N = 15 algebraic equations necessary to calculate the
coupling matrix

c ≡ [c(c) | c(s)] =




c
(c)
0,1 c

(c)
0,2 c

(c)
0,3 · · ·

c
(c)
1,1 c

(c)
1,2 c

(c)
1,3 · · ·

c
(c)
2,1 c

(c)
2,2 c

(c)
2,3 · · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− − − · · ·

c
(s)
1,1 c

(s)
1,2 c

(s)
1,3 · · ·

c
(s)
2,1 c

(s)
2,2 c

(s)
2,3

. . .

...
...

...
. . .




(35)

consisting of M×N = 9 cosine coefficients and (M−1)×N = 6 sine coefficients.
Subsequently, it is necessary to calculate numerically R2 = 225 different values of
the modal impedance. The triple dots in Eq. (35) indicate the fact that a greater
number of modes can also be used.

Table 1. Normalized eigenfrequencies of the membrane ωm, n/ω0,1.

m\n 1 2 3 · · ·
0 1.00 2.29 3.60 · · ·
1 1.58 2.92 4.23 · · ·
2 2.13 3.50 4.83 · · ·
...

...
...

...
. . .

The modulus of the normalized total sound power grows as the parameter
εT grows for the excitation frequencies different than the membrane’s eigenfre-
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quencies (cf., Figs. 2a, 3a, 4a, 5a). The phase cosine also grows as the parameter
εT grows. The normalized total sound power of the membrane excited by the
Dirac delta function has been presented in Fig. 2a. The nine local maxima can
be noticed. They are associated with the nine eigenfrequencies of the membrane’s
modes included. In this case all the included modes are significantly excited and
significantly contribute the sound power. The excitation given by Eq. (32)2 has
been described by the cosine function. In this case the modulus of the normalized
sound power has only its three local maxima associated with the eigenfrequencies
of the three modes of the number of the nodal diameters m = 2 (cf., Fig. 3a).
In the general case this means that only the modes of the nodal diameters equal
to the nodal diameters of the excitation, i.e. for m = M , are significantly excited.
The normalized sound power of the membrane excited by the surface force given
by Eq. (32)3 has been presented in Fig. 4a. In this case only one mode is signifi-
cantly excited. This mode satisfies the conditions m = M and n = N (this mode
is (2, 1) in Fig. 4a).
a) b)

Fig. 2. The normalized total sound power radiated: a) modulus, b) phase cosine. Excitation
given by Eq. (32)1 for r0 = 0.5a, ϕ0 = π/4, l/a = 3 and ε1 = 0.6. Lines: solid εT = 0.01, dashed

εT = 0.1, dash-dotted εT = 0.3 and dotted εT = 0.5.

a) b)

Fig. 3. The normalized total sound power radiated: a) modulus, b) phase cosine. Excitation
given by Eq. (32)2 for M = 2, ϕ0 = π/4, l/a = 3 and ε1 = 0.6. Lines: solid εT = 0.01, dashed

εT = 0.1, dash-dotted εT = 0.3 and dotted εT = 0.5.
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a) b)

Fig. 4. The normalized total sound power radiated: a) modulus, b) phase cosine. Excitation
given by Eq. (32)3 for ϕ0 = π/4, M = 2, N = 1, l/a = 3 and ε1 = 0.6. Lines: solid εT = 0.01,

dashed εT = 0.1, dash-dotted εT = 0.3 and dotted εT = 0.5.

a) b)

Fig. 5. The normalized total sound power radiated: a) modulus, b) phase cosine. Excitation
given by Eq. (32)4 for l/a = 3, b = a and ε1 = 0.6. Lines: solid εT = 0.01, dashed εT = 0.1,

dash-dotted εT = 0.3 and dotted εT = 0.5.

In the case of the axisymmetric excitation given by Eq. (32)4, only the
axisymmetric modes are significantly excited for m = 0. This results in the
three local maxima of the sound power for the eigenfrequencies of the mem-
brane’s axisymmetric modes (0, 1), (0, 2), (0, 3) (see Fig. 5a). The influence of
some modes on the changes in the sound power phase cosine can be noticed in
Figs. 2b, 3b, 4b and 5b for the excitation frequencies equal to the corresponding
eigenfrequencies. This effect results from the influence of the acoustic attenua-
tion on the membrane’s vibrations and sound power radiated. Comparing the
sound power radiated for the four different excitations leads to the conclusion
that the sound power assumes greater values for the axisymmetric excitation
given in Eq. (32)4 and for the excitation described by the Dirac delta func-
tion given in Eq. (32)1 where all the axisymmetric modes are significantly ex-
cited.
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The modulus of the normalized total sound power radiated as the function of
ε1 has been presented in Fig. 6. The parameter ε1 has been given in Eq. (31) and
determines the acoustic attenuation. The most significant influence of this para-
meter on the sound power radiated can be noticed for the excitation frequencies
equal to and close to the successive eigenfrequencies of the membrane when the
effect of the resonance can be observed. Therefore all the curves have been plot-
ted for ω = ωmn. On the other hand, the modulus depends very weakly on the
parameter ε1 for the excitation frequencies much different from the successive
eigenfrequencies and for these excitation frequencies the acoustics attenuation
can neglected. This fact has been illustrated, e.g., by the flat solid line in Fig. 6b
plotted for such the excitation frequency that the sound power resonance does
not appear (cf., Fig. 3a).

a) b)

c) d)

Fig. 6. The normalized total sound power radiated for εT = 0.1 and l/a = 3: a) excitation
given by Eq. (32)1 for r0 = 0.5a, ϕ0 = π/4 and lines: solid ω/ω01 = 1.0, dashed ω/ω01 = 1.6,
dash-dotted ω/ω01 = 2.13 and dotted ω/ω01 = 2.3; b) excitation given by Eq. (32)2 for M = 2,
ϕ0 = π/4 and lines: solid ω/ω01 = 1.0, dashed ω/ω01 = 1.6, dash-dotted ω/ω01 = 2.92 and
dotted ω/ω01 = 4.83; c) excitation given by Eq. (32)3 for ϕ0 = π/4, M = 2, N = 1 and lines:
solid ω/ω01 = 1.0, dashed ω/ω01 = 1.6, dash-dotted ω/ω01 = 2.13 and dotted ω/ω01 = 2.3;
d) excitation given by Eq. (32)4 for b = a and lines: solid ω/ω01 = 1.0, dashed ω/ω01 = 2.13,

dash-dotted ω/ω01 = 2.3 and dotted ω/ω01 = 3.6.



90 W.P. Rdzanek, W.J. Rdzanek, K. Szemela

The relative difference modulus

δΠ =
|Π2 −Π1|
|Π1| , (36)

as the function of ω/ω01 has been presented in Fig. 7 where Π2 is the total sound
power radiated by the membrane located near the two-wall corner and Π1 is the
total sound power radiated by the same membrane embedded into a single flat
baffle. This quantity is the measure of the relative change in the sound power
radiated in the presence of the vertical baffle located in the distance l from the
center of the vibrating membrane compared with the sound power radiated when
the vertical baffle is not present. The phase difference cosine cos(ϕ2−ϕ1), where
ϕ2 is the phase of Π2 and ϕ1 is the phase of Π1, is nearly equal to the unity
for all the considered excitation frequencies ω ∈ [0.1; 10]. The changes in this
quantity do not exceed the value of 2 ·10−3 when the excitation frequency varies.
These changes are so weak that they can be neglected and hence have not been
plotted. The curves presented in Fig. 7 have been plotted for the Dirac delta
function as the excitation (32)1 and for the axisymmetric excitation (32)4. The
analysis of the curves makes it possible to conclude that the closer the vibrating
membrane center is located to the vertical baffle the greater is the baffle’s influ-
ence on the sound power radiated. The presence of the vertical baffle causes the
greatest relative change in the sound power modulus for the low frequencies, i.e.
for ω/ω01 < 1, and the smallest change for the excitation frequencies equal or
close to the successive eigenfrequencies when the effect of resonance apears. The
normalized total sound power radiated by the membrane embedded into a single
flat baffle as the function of ω/ω01 has been presented in Fig. 8 for the reference
of the curves presented in Fig. 7.

Four different formulations for the modal radiation impedance are necessary
to assure their completeness together with the computing results of the total
sound power radiated by the vibrating circular membrane into the region of

a) b)

Fig. 7. The relative difference modulus δΠ of the total sound power radiated for ε1 = 0.6 and
εT = 0.1: a) excitation given by Eq. (32)1 for r0 = 0.5a and ϕ0 = π/4, b) excitation given by

Eq. (32)4 for b = a. Lines: solid l/a = 1, dashed l/a = 2 and dash-dotted l/a = 3.
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a) b)

Fig. 8. The normalized total sound power radiated by the membrane embedded into a single
flat baffle for εT = 0.1 and ε1 = 0.6: a) modulus, b) phase cosine. Lines: solid – excitation given
by Eq. (32)1 for r0 = 0.5a and ϕ0 = π/4; dashed – axisymmetric excitation given by Eq. (32)4

for b = a.

the quarter-space. The analysis of Eqs. (18) containing the mentioned formu-
lations leads to the conclusion that they can be asymmetric as the order of
the two influencing modes is inverted, i.e. there exist such pairs of the modes
(m,n) and (m′, n′) that ξmn,m′n′ 6= ξm′n′,mn where ξmn,m′n′ represents one of
the four mentioned impedance formulations. Moreover, ξ

(s,s)
0n,m′n′ = ξ

(s,s)
mn,0n′ = 0,

ξ
(c,s)
mn,0n′ = ξ

(s,c)
0n,m′n′ = 0, ξ

(c,c)
mn,m′n′ = ξ

(s,s)
mn,m′n′ for m,m′ 6= 0 and the odd m −m′,

ξ
(c,s)
mn,m′n′ = ξ

(s,c)
mn,m′n′ for m,m′ 6= 0 and m − m′ being even. The asymmetry

of the modulus and the phase cosine of the modal radiation impedance results
from the term containing Jm−m′(2τ l) = (−1)m′−mJm′−m(2τ l) within Eqs. (18)
(cf., [31]).

6. Concluding remarks

Applying the modal analysis and the Green function has made it possible to
join two different boundary value problems: one concerning the vibrations of the
excited circular membrane in the polar coordinates and the second one regarding
the sound radiated by the membrane into the region of the quarter-space. As
a result, all the modal and physical quantities have been presented for describing
the acoustic interactions within the region of the quarter-space.

Solving the algebraic equations system (28) leads to determining the coeffi-
cients cmn given that the modal mutual impedance ζmn,m′n′ has been determined
earlier. Assuming the surface excitation force makes it possible to determine the
modal coefficients fmn from Eq. (34)). The modal mutual impedance ζmn,m′n′

has been determined using Eq. (17) performing integration over the variable τ
within the limits τ ∈ (0, k0) for the mutual resistance θmn,m′n′ and within the
limits τ ∈ (k0,∞) for the mutual reactance χmn,m′n′ . It has been noted that the
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reciprocity law is not satisfied for the mutual impedance for each pair of the two
different modes (m, n) and (m′, n′).

The total sound power active and reactive both can be computed from Eqs. (19)
and (30). It is worth noticing that Eq. (30) does not contain the modal radiation
resistance from Eqs. (17) and (18). However, it can only be used with the coef-
ficients cmn computed from Eq. (28) where the modal radiation impedance have
to be included.
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