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The system of hydrodynamic-type equations is derived by two-sided distribution
function for a stratified gas in gravity field and applied to the problem of ultrasound.
The theory is based on the generalized Gross–Jackson kinetic equation, the solution
of which is built by means of locally equilibrium distribution function with different
local parameters for molecules moving “up” and “down”. The problem of propagation
of the sound wave from an oscillating plane is explored. The linearized version of
the obtained system is studied and compared with other results and experiments
for a wide range of Knudsen numbers (Kn). The discrepancy with experiment in
attenuation behavior at big Kn range forced us to use generalized kinetic description
leading to the Alexeev–Boltzmann equation. Its use essentially improves the results.
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1. Introduction

The history of acoustic wave propagation theory for gases started from New-
ton’s works and has been almost completed in Stokes’ and Kirchhoff’s works
using the hydro-dynamical (Navier–Stokes–Kirchhoff) approach. The Navier–
Stokes equations are derived from Boltzmann kinetics under the strong condition
for the Knudsen number Kn¿ 1. Therefore this approach is not valid when the
mean free path is of comparable order or exceeds the wavelength (characteristic
space scale of a gas perturbation) under consideration.
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The problem of description of such waves is relevant to either rarefied gas or
to high frequencies (ultrasound). It is important, for example, at high altitudes
of atmosphere due to the mean free path growth. Other interesting applications
appear in microfluidics [1].

Recently the problems of all Knudsen range wave propagation was revisited
in connection with general fluid mechanics development by application of nonsin-
gular perturbation method [2–4] to kinetic description. Generalized Boltzmann
theories [5–7] also contributed to a progress with respect to this important prob-
lem.

In [3, 8] the propagation of one-dimensional gas disturbance was studied on
the basis of the method of a piecewise continuous distribution function, launched
in a pioneering paper of Lees [9]. In papers [8, 10] it was shown that ap-
plication of fluid equations based on the BGK model for the sound velocity
provides good agreement with experimental data of papers [11, 12]. Since the
Bhatnagar–Gross–Krook (BGK) model gives the Prandtl number equals 1, which
is incorrect for monatomic gases, a certain judicious choice of mean free path
is always required. It is of interest here to examine the higher-order kinetic
models of the collision term [13] to assess the model dependence of the re-
sults.

In this paper we have considered such class of higher-order models, namely
the Gross–Jackson ones [13]. As we may see, the fluid dynamics, based on Boltz-
mann kinetic equations and the Gross-Jackson model, improves the results at the
hydrodynamical realm, but still does not give a satisfactory agreement with the
experimental data for attenuation of sound at large Knudsen numbers. To solve
this problem we go to the generalized kinetic equations of Alexeev theory [4] in
Sec. 5. Our choice is justified by the natural reason: the Alexeev–Boltzmann equa-
tion is derived from Bogoliubov chain kinetic equations by the similar nonsingu-
lar perturbation method. Deriving the correspondent generalized fluid equations
along the algorithm described in previous sections, we again restrict ourselves to
the one-dimensional case (the distribution function depends only on one space
coordinate, but left the three-dimensional velocity space).

This article is an expanded version of the WESPAC (South Korea) confer-
ence presentation. It is organized as follows: for a reader’s convenience, in Secs. 2
and 3, we review our paper published at the electronic conference [14], i.e. the
fluid dynamics description and correspondent results for linear acoustics based
on the simplest Gross–Jackson kinetic equation are given. In Sec. 4 a comparison
between results of our previous study and other authors’ results is presented in
more details (Figs. 1, 2). Figures 3, 4 from Sec. 4 are reproduced from the authors’
earlier study [14], however the curves from Struchtrup–Torilhon’s paper [17] are
added. Section 5 contains new results arising from Alexeev–Boltzmann kinetics
that shows strong correlations in the deep Knudsen regime, and finally Conclu-
sions and References are given.
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2. Generalized fluid dynamics equations

The derivation of the hydrodynamic-type equations is based on the Gross–
Jackson kinetic equation [13], that looks in the one-dimensional case like:

∂ϕ

∂t
+ Vz

∂ϕ

∂z
− g

∂ϕ

∂Vz
= ν ·

(
3∑

I=1

〈χI , ϕ〉χI +
1
3
〈χ4, ϕ〉χ4 − ϕ

)
. (1)

Here ϕ(t, z,V) = (f − f0)/f0 represents a deviation of the distribution func-
tion from the Maxwellian; t is time, V is velocity of a particle of gas with mass m,
z is the (vertical) coordinate, ν(z) = ν0 exp(−z/H) is the effective frequency of
collisions between particles of the gas at height z, T – temperature, H = kT/mg
is a parameter of the gas stratification.

The moments of distribution function are defined by:

MI = 〈χI , ϕ〉 =
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where c = V/VT is the dimensionless velocity, VT =
√
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The expressions for the moments of distribution function in terms of the gas
parameters are:
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In linear approach the first three moments are proportional to mass density n,
velocity UZ and temperature T variations respectively. Here PZZ is the diagonal
component of the pressure tensor, qZ is the vertical component of a heat flux
vector, qZ is a similar parameter having dimension of the heat flux.

Following the idea of the method of piecewise continuous distribution func-
tions for a gas in the gravity field [2, 3, 15], let’s search a solution ϕ of the Eq. (1)
as a combination of two locally equilibrium distribution functions, each of which
gives the contribution in its own area of velocities space:

ϕ±(t, z,V) = (f± − f0)/f0,

f± =
n±

π3/2V ±3
T

exp

(
−(V−U±)2

V ±2
T

)
.

(5)

The increase of the number of functional parameters of distribution function
results in the fact that the distribution function differs from the local-equilibrium
one and describes deviations from the hydrodynamic regime. In the range of small
Knudsen numbers l ¿ L we automatically have n+ = n−, U+ = U−, T+ = T−
and distribution function reproduces the hydrodynamics of Euler and, within
small difference range of the functional ‘up’ and ‘down’ parameters: the Navier–
Stokes equations. In the range of big Knudsen numbers the theory gives solutions
of collisionless problems [9, 15, 18].

If we now multiply the Gross–Jackson kinetic equation (1) by χI and integrate
over the velocity space, we obtain the fluid dynamic equations:
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[cont.]

where J1 = 〈c2
Zc2, ϕ〉, J2 = 〈c4

Z , ϕ〉.
System (6) of the equations, according to the derivation scheme, is valid at all

Knudsen numbers, when it is possible to neglect of higher momenta. It is a system
of hydrodynamical type and generalizes the classical equations of a viscous fluid
to arbitrary Kn, up to a free molecule flow. However, the system (6) is not
closed yet. It is necessary to present values of two integrals J1,2 as functions of
thermodynamic parameters.

In [8] we have obtained the expressions for the two integrals in the case of
a small Mach number:
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Substituting J1,2 into the system (6), in the small Mach number (linear) case
we obtain the system:
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Here the dimensionless viscous stress tensor π′ZZ =
PZZ − nkT

n0kT0
is introduced.

Thus a modification of the procedure for deriving fluid mechanics (hydrodyna-
mic-type) equations from the kinetic theory is proposed, it generalizes the Navier–
Stokes equation at arbitrary density or frequency (Knudsen numbers).

Our method gives a reasonable agreement with the experimental data in the
case of a homogeneous gas [8].

3. A limiting case of gas oscillations at high frequencies of collisions
(small Knudsen numbers)

Let us consider a system in the hydrodynamic limit ν → ∞. It follows from
the last three equations of the system (7) that q, πZZ , q ¿ ρ, T , U . Next assume
ν−1 = 0 in the zero-order of the parameter ν−1. We put q, πZZ , q = 0 and the
system (7) tends to the linearized Euler’s system:
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The small nonzero moments q, πZZ , q yield the next order of the parame-
ter ν−1. Then from the last three equations of the system (6), one obtains the
following relations:
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Further substitution of (8) into the first three equations of the system (7)
gives the linear version of Navier–Stokes equations:
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Comparing the mentioned expressions for the viscosity factor η and the coef-
ficient of heat conductivity κ with corresponding items in Eq. (9) we obtain

η = −n0kT0

ν
, κ = −15

4
n0kT0

ν
.

Finding the Prandtl number and taking into account the molecular thermal
capacity of the ideal gas under constant pressure Cp = 5/2, we obtain

Pr =
ηCP

κ
=

2
3
,

what coincides with the Prandtl number of ideal gas. So using Gross–Jackson
model in contrast to the BGK one, it gives us the right value of Prandtl number. In
higher orders of the theory, from the system (6) the linearized Burnett’s equations
follow.

4. Comparison with experiment and results of other evaluations

One of important verifications of fluid dynamics system concerns the problem
of sound propagation. Let’s consider a limiting case of homogeneous medium
and compare it with the classic experimental data of [11, 12]. A generating plate
oscillated in the direction of its normal with frequency w. The pressure of the
gas was changed from 0.001 Torr to the normal atmospheric pressure. We assume
plane wave solutions of the form:

ψ = ψ̃ exp{−i(wt− kz)},
where ψ is the complex amplitude of the wave, w is its frequency, and k is its
wave number. We obtain the dispersion relation
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Here the dimensionless wave number k̃ = kC0/w and the Reynolds number
r = ν/w are introduced, where w is the frequency of a wave, k – the (vertical)
component of the wave vector and C0 =

√
5/6VT – the adiabatic sound speed

of linear wave. The Reynolds number and the Knudsen number are obviously
linked:
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and the real part β = Re(k)C0/w = C0/C – the inverse non-dimensional phase
velocity, α – the factor of attenuation. The dispersion relation (10) is the binary
cubic equation with coefficients parametrized by r.

In Figs. 1, 2 a comparison of our results of numerical calculation of dimension-
less sound speed and attenuation factor depending on r for the Gross–Jackson

Fig. 1. The inverse non-dimensional phase velocity as a function of the inverse Knudsen num-
ber. The results of this paper for Gross–Jackson model – 1 are compared to BGK model [8] – 2,
Navier–Stokes – NS and the experimental data of Meyer–Sessler and Schotter [11, 12]

– circle.

Fig. 2. The attenuation factor of the linear disturbance as a function of the inverse Knudsen
number. Notation – see Fig. 1.
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model is made with our results for BGK-model [8], Navier–Stokes and experimen-
tal data. Our results for the Gross–Jackson model give good consistency with the
experiments at r > 3. In Figs. 3, 4 our results of numerical calculation of the
sound characteristics are compared with the results obtained by other authors
for wider range of the Knudsen numbers.

Fig. 3. The inverse non-dimensional phase velocity as a function of the inverse Knudsen num-
ber. The results of this paper – 1 are compared to the results of Chen–Rao–Spiegel [4] – 2,
Navier–Stokes – NS, Struchtrup–Torrilhon [17] – Reg13 and the experimental data [11, 12]

– circles.

Fig. 4. The attenuation factor of the linear disturbance as a function of the inverse Knudsen
number. Notation – see Fig. 3.
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The Navier–Stokes-based prediction is qualitatively wrong at big Knudsen
numbers. Our results for phase speed give a good consistency with the experi-
ments at all Knudsen numbers. However, our results for the attenuation of ul-
trasound are good (as we can see comparing them with experiment) only for
numbers r up to the order of unity. Note that our results look a bit better than
those based on Navier–Stokes, Chen–Rao–Spiegel [4] and the regularization
of Grad’s method [17]. Unlike the BGK model, using of the Gross–Jackson model
yields right coefficients of viscosity and heat conductivity.

From the linearized Eq. (7) we can obtain the integral quantity of perturbed
component of pressure tensor and a vertical component of a heat flux vector:

πzz = −e−νt
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VT
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.

In the first terms one recognizes the Navier–Stokes ones. The nonlinearity and
boundary effect could be incorporated e.g. as in [20].

5. Generalized kinetic equation

We see that fluid dynamics equations, based on the Boltzmann equation in
all the mentioned theories, result in curves which crucially do not agree with the
experimental results for attenuation factor at big Knudsen numbers.

To solve this problem we go to the generalized kinetic equations, derived
by Alexeev from the Bogoliubov kinetic chain system by means of nonsingular
perturbation theory [4, 19]. This theory, even in its simplest version of one ki-
netic equation, accounts correlations between particles that are essential in the
Kn regime because of a “memory” that is brought through the interval between
transducer and receiver when the number of collisions is small.

This kinetic equation has the form:
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− D
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= JB, (11)

where
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+ F

∂

∂V
is the substantial (particle) derivative, V and r are the velocity and radius vector
of the particle, respectively; τ – relaxation time, F – external field force, JB is
the collision Boltzmann integral. The application of the method described in the
previous sections gives the system of equations:
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where ξ = V − U is the relative velocity, ρ = nm is mass density. It is easy
to recognize extra terms following from the correlations: the terms contain the
factor τ and the integrals
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The values of integrals (13) as functions of thermodynamic parameters of the
system (12) are evaluated as in [8]:
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Repeating the procedure from the previous section, we derive the dispersion
relation that allows us to plot the corresponding dependences for the improved
description numerically and compare it against experiment and other theories
[4, 17] – see Figs. 5, 6.

Fig. 5. The inverse non-dimensional phase velocity as a function of the inverse Knudsen number.
Comparison of different theories of sound propagation with experiment.
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Fig. 6. The attenuation factor of the linear disturbance as a function of the inverse Knudsen
number. Comparison of different theories of sound propagation with experiment.

One can also compare our results with those obtained by Alexeev himself for
the same problem of the linear one-dimensional sound (Fig. 9 of [19]), which are
obtained by momentum expansion. The attenuation factor behaves similarly in
Kn∼1 region but our results are obviously better in the deep Kn (collisionless)
range.

6. Conclusions

In this paper we have proposed a one-dimensional theory of linear disturbances
in a gas, propagating through regions with crucially different Kn numbers. The
regime of the propagation dramatically changes from a typically hydrodynamic
to the free-molecular one. We have also studied the three-dimensional case [10,
15]. Generally, the theory is based on the Gross–Jackson kinetic equation, the
solution of which is built by means of locally equilibrium distribution function
with different local parameters for molecules moving “up” and “down”. Equations
for six moments yield the closed fluid mechanics system. The use of the Gross–
Jackson kinetic equation gives us right Prandtl number and right description at
small Knudsen numbers. But it does not help much to determine the interme-
diate values of Kn. In papers [14, 16, 17] it was shown, that the inclusion of
the higher eigenfunctions of the collision operator would allow to move into the
range of higher Knudsen numbers, but the number of the equations significantly
increases. On the other hand, we can increase the order of equations. Hence we
apply our method to the generalized Boltzmann equation of Alexeev [4, 19],
observing a good progress and we hope, that such “joint” theory development
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would give a better agreement with the experimental data for attenuation at
arbitrary Knudsen numbers in nonlinear acoustics as well.
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